
Amazon EMR Serverless User Guide

Amazon EMR

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon EMR Amazon EMR Serverless User Guide

Amazon EMR: Amazon EMR Serverless User Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon EMR Amazon EMR Serverless User Guide

Table of Contents

What is Amazon EMR Serverless? ... 1
Concepts ... 1

Release version .. 1
Application .. 1
Job run .. 2
Workers .. 3
Pre-initialized capacity ... 3
EMR Studio ... 3

Prerequisites for getting started .. 4
Sign up for an AWS account .. 4
Create a user with administrative access .. 5
Grant permissions ... 6

Grant programmatic access .. 8
Set up the AWS CLI ... 9
Open the console ... 10

Getting started .. 11
Permissions .. 11
Storage ... 11
Interactive workloads .. 11
Create a job runtime role ... 12
Getting started from the console ... 17

Step 1: Create an application ... 17
Step 2: Submit a job run or interactive workload ... 18
Step 3: View application UI and logs ... 21
Step 4: Clean up ... 22

Getting started from the AWS CLI ... 22
Step 1: Create an application ... 22
Step 2: Submit a job run .. 23
Step 3: Review output ... 26
Step 4: Clean up ... 27

Interact with and configure an EMR Serverless application ... 29
Application states ... 29
Using the EMR Studio console .. 30

Create an application ... 31

iii

Amazon EMR Amazon EMR Serverless User Guide

List applications from the EMR Studio console .. 32
Manage applications from the EMR Studio console .. 32

Using the AWS CLI ... 32
Configuring an application ... 33

Application behavior .. 34
Pre-initialized capacity for working with an application in EMR Serverless 36
Default app configuration ... 39

Customizing an image .. 45
Prerequisites ... 34
Step 1: Create a custom image from EMR Serverless base images .. 46
Step 2: Validate image locally ... 47
Step 3: Upload the image to your Amazon ECR repository ... 48
Step 4: Create or update an application with custom images .. 48
Step 5: Allow EMR Serverless to access the custom image repository 50
Considerations and limitations .. 51

Configuring VPC access for EMR Serverless applications to connect to data 51
Create application ... 52
Configure application ... 55
Best practices for subnet planning ... 55

Architecture options .. 57
Using x86_64 architecture .. 57
Using arm64 architecture (Graviton) .. 57
Launch new apps with Graviton .. 58
Convert existing apps to Graviton .. 58
Considerations ... 59

Job concurrency and queuing ... 59
Key benefits of concurrency and queuing ... 60
Getting started with concurrency and queuing ... 60
Considerations for concurrency and queuing ... 61

Uploading data .. 62
Prerequisites .. 62
Getting started with S3 Express One Zone .. 63

Running jobs .. 65
Job run states ... 65
Using the EMR Studio console .. 67

Submit a job .. 67

iv

Amazon EMR Amazon EMR Serverless User Guide

View job runs ... 69
Using the AWS CLI ... 69
Using shuffle-optimized disks ... 71

Key benefits ... 71
Getting started .. 71

Streaming jobs for processing continuously streamed data ... 75
Considerations and limitations .. 77
Getting started .. 77
Streaming connectors .. 78
Log management .. 81

Using Spark configurations when you run EMR Serverless jobs ... 81
Spark parameters .. 81
Spark properties .. 85
Spark examples ... 90

Using Hive configurations when you run EMR Serverless jobs ... 91
Hive parameters .. 91
Hive properties .. 93
Hive examples ... 106

Job resiliency .. 107
Monitoring a job with a retry policy .. 110
Logging with retry policy ... 110

Metastore configuration for EMR Serverless .. 110
Using the AWS Glue Data Catalog as a metastore .. 111
Using an external Hive metastore .. 116
Working with AWS Glue multi-catalog hierarchy on EMR Serverless 120
Considerations when using an external metastore ... 122

Cross-account S3 access ... 122
Prerequisites .. 122
Use an S3 bucket policy ... 123
Use an assumed role ... 124
Assumed role examples .. 126

Troubleshooting errors ... 131
Error: Job failed as account has reached the service limit on the maximum vCPU it can use
concurrently. .. 131
Error: Job failed as application has exceeded maximumCapacity settings. 131

v

Amazon EMR Amazon EMR Serverless User Guide

Error: Job failed due to Worker could not be allocated as the application has exceeded
maximumCapacity. ... 131
Error: S3 access is denied. Please check S3 access permissions of the job runtime role on
the required S3 resources. .. 132
Error: ModuleNotFoundError: No module named <module>. Please refer to the user guide
on how to use python libraries with EMR Serverless. ... 132
Error: Could not assume execution role <role name> because it does not exist or is not set
up with the required trust relationship. .. 132

Running interactive workloads ... 133
Overview .. 133
Prerequisites .. 133
Permissions .. 134
Configuration .. 135
Considerations .. 135
Running interactive workloads through Apache Livy endpoint ... 136

Prerequisites .. 137
Required permissions ... 137
Getting started .. 138
Considerations ... 145

Logging and monitoring ... 146
Storing logs ... 146

Managed storage .. 147
Amazon S3 ... 147
Amazon CloudWatch .. 148

Rotating logs ... 151
Encrypting logs .. 153

Managed storage .. 153
Amazon S3 buckets .. 153
Amazon CloudWatch .. 153
Required permissions ... 154

Configuring Log4j2 .. 157
Log4j2 and Spark ... 157

Monitoring ... 162
Applications and jobs .. 162
Spark engine metrics ... 169
Usage metrics .. 174

vi

Amazon EMR Amazon EMR Serverless User Guide

Automating with EventBridge ... 175
Sample EMR Serverless EventBridge events ... 176

Tagging resources .. 180
What is a tag? .. 180
Tagging resources .. 180
Tagging limitations .. 181
Working with tags ... 182

Tutorials ... 184
Using Java 17 ... 184

JAVA_HOME .. 184
spark-defaults .. 185

Using Hudi ... 186
Using Iceberg .. 187
Using Python libraries .. 188

Using native Python features .. 188
Building a Python virtual environment ... 188
Configuring PySpark jobs to use Python libraries ... 190

Using different Python versions ... 190
Using Delta Lake OSS ... 192

Amazon EMR versions 6.9.0 and higher .. 192
Amazon EMR versions 6.8.0 and lower .. 194

Submitting jobs from Airflow ... 195
Using Hive user-defined functions ... 197
Using custom images .. 199

Use a custom Python version .. 199
Use a custom Java version ... 200
Build a data science image ... 200
Processing geospatial data with Apache Sedona .. 201
Licensing information for using custom images .. 201

Using Spark on Amazon Redshift ... 202
Launch a Spark application .. 202
Authenticate to Amazon Redshift ... 203
Read and write to Amazon Redshift .. 206
Considerations ... 208

Connecting to DynamoDB ... 209
Step 1: Upload to Amazon S3 ... 209

vii

Amazon EMR Amazon EMR Serverless User Guide

Step 2: Create a Hive table .. 210
Step 3: Copy to DynamoDB ... 211
Step 4: Query from DynamoDB .. 213
Setting up cross-account access .. 214
Considerations ... 216

Security .. 218
Security best practices .. 219

Apply principle of least privilege .. 219
Isolate untrusted application code ... 219
Role-based access control (RBAC) permissions .. 219

Data protection .. 219
Encryption at rest ... 220
Encryption in transit .. 223

Identity and Access Management (IAM) .. 223
Audience ... 224
Authenticating with identities ... 224
Managing access using policies ... 228
How EMR Serverless works with IAM ... 230
Using service-linked roles ... 236
Job runtime roles for Amazon EMR Serverless .. 242
User access policies .. 244
Policies for tag-based access control ... 248
Identity-based policies .. 251
Policy updates ... 254
Troubleshooting .. 255

Lake Formation for FGAC ... 257
Overview ... 257
How it works ... 257
Enable Lake Formation .. 260
Enable runtime permissions ... 260
Set up runtime permissions ... 262
Submitting a job run ... 262
Supported operations .. 262
Debugging jobs ... 263
Considerations ... 265
Troubleshooting .. 266

viii

Amazon EMR Amazon EMR Serverless User Guide

Inter-worker encryption .. 268
Enabling mutual-TLS encryption on EMR Serverless .. 268

Secrets Manager for data protection .. 268
How secrets work ... 269
Create a secret .. 269
Specify secret references .. 269
Grant access to the secret .. 272
Rotate the secret .. 274

S3 Access Grants for data access control ... 274
Overview ... 274
Launch an application ... 275
Considerations ... 276

CloudTrail for logging ... 276
EMR Serverless information in CloudTrail ... 277
Understanding EMR Serverless log file entries .. 278

Compliance validation .. 279
Resilience ... 280
Infrastructure security ... 280
Configuration and vulnerability analysis .. 281

Endpoints and quotas ... 282
Service endpoints ... 282
Service quotas .. 286
API limits .. 287

Other considerations ... 51
Release versions ... 291

EMR Serverless 7.6.0 ... 291
EMR Serverless 7.5.0 ... 292
EMR Serverless 7.4.0 ... 292
EMR Serverless 7.3.0 ... 292
EMR Serverless 7.2.0 ... 293
EMR Serverless 7.1.0 ... 294
EMR Serverless 7.0.0 ... 294
EMR Serverless 6.15.0 .. 294
EMR Serverless 6.14.0 .. 295
EMR Serverless 6.13.0 .. 295
EMR Serverless 6.12.0 .. 295

ix

Amazon EMR Amazon EMR Serverless User Guide

EMR Serverless 6.11.0 .. 296
EMR Serverless 6.10.0 .. 296
EMR Serverless 6.9.0 ... 297
EMR Serverless 6.8.0 ... 298
EMR Serverless 6.7.0 ... 298

Engine-specific changes .. 298
EMR Serverless 6.6.0 ... 299

Document history .. 301

x

Amazon EMR Amazon EMR Serverless User Guide

What is Amazon EMR Serverless?

Amazon EMR Serverless is a deployment option for Amazon EMR that provides a serverless runtime
environment. This simplifies the operation of analytics applications that use the latest open-
source frameworks, such as Apache Spark and Apache Hive. With EMR Serverless, you don’t have to
configure, optimize, secure, or operate clusters to run applications with these frameworks.

EMR Serverless helps you avoid over- or under-provisioning resources for your data processing
jobs. EMR Serverless automatically determines the resources that the application needs, gets these
resources to process your jobs, and releases the resources when the jobs finish. For use cases where
applications need a response within seconds, such as interactive data analysis, you can pre-initialize
the resources that the application needs when you create the application.

With EMR Serverless, you'll continue to get the benefits of Amazon EMR, such as open source
compatibility, concurrency, and optimized runtime performance for popular frameworks.

EMR Serverless is suitable for customers who want ease in operating applications using
open source frameworks. It offers quick job startup, automatic capacity management, and
straightforward cost controls.

Concepts

In this section, we cover EMR Serverless terms and concepts that appear throughout our EMR
Serverless User Guide.

Release version

An Amazon EMR release is a set of open-source applications from the big data ecosystem. Each
release includes different big data applications, components, and features that you select for EMR
Serverless to deploy and configure so that they can run your applications. When you create an
application, you must specify its release version. Choose the Amazon EMR release version and the
open source framework version that you want to use in your application. To learn more about pre-
release versions, see Amazon EMR Serverless release versions.

Application

With EMR Serverless, you can create one or more EMR Serverless applications that use open source
analytics frameworks. To create an application, you must specify the following attributes:

Concepts 1

Amazon EMR Amazon EMR Serverless User Guide

• The Amazon EMR release version for the open source framework version that you want to use. To
determine your release version, see Amazon EMR Serverless release versions.

• The specific runtime that you want your application to use, such as Apache Spark or Apache Hive.

After you create an application, you can submit data-processing jobs or interactive requests to your
application.

Each EMR Serverless application runs on a secure Amazon Virtual Private Cloud (VPC) strictly apart
from other applications. Additionally, you can use AWS Identity and Access Management (IAM)
policies to define which users and roles can access the application. You can also specify limits to
control and track usage costs incurred by the application.

Consider creating multiple applications when you need to do the following:

• Use different open source frameworks

• Use different versions of open source frameworks for different use cases

• Perform A/B testing when upgrading from one version to another

• Maintain separate logical environments for test and production scenarios

• Provide separate logical environments for different teams with independent cost controls and
usage tracking

• Separate different line-of-business applications

EMR Serverless is a Regional service that simplifies how workloads run across multiple Availability
Zones in a Region. To learn more about how to use applications with EMR Serverless, see Interact
with and configure an EMR Serverless application.

Job run

A job run is a request submitted to an EMR Serverless application that the application
asychronously executes and tracks through completion. Examples of jobs include a HiveQL query
that you submit to an Apache Hive application, or a PySpark data processing script that you submit
to an Apache Spark application. When you submit a job, you must specify a runtime role, authored
in IAM, that the job uses to access AWS resources, such as Amazon S3 objects. You can submit
multiple job run requests to an application, and each job run can use a different runtime role to
access AWS resources. An EMR Serverless application starts executing jobs as soon as it receives

Job run 2

Amazon EMR Amazon EMR Serverless User Guide

them and runs multiple job requests concurrently. To learn more about how EMR Serverless runs
jobs, see Running jobs.

Workers

An EMR Serverless application internally uses workers to execute your workloads. The default sizes
of these workers are based on your application type and Amazon EMR release version. When you
schedule a job run, you can override these sizes.

When you submit a job, EMR Serverless computes the resources that the application needs for the
job and schedules workers. EMR Serverless breaks down your workloads into tasks, downloads
images, provisions and sets up workers, and decommissions them when the job finishes. EMR
Serverless automatically scales workers up or down based on the workload and parallelism
required at every stage of the job. This automatic scaling removes the need for you to estimate the
number of workers that the application needs to run your workloads.

Pre-initialized capacity

EMR Serverless provides a pre-initialized capacity feature that keeps workers initialized and ready
to respond in seconds. This capacity effectively creates a warm pool of workers for an application.
To configure this feature for each application, set the initial-capacity parameter of an
application. When you configure pre-initialized capacity, jobs can start immediately so that you
can implement iterative applications and time-sensitive jobs. To learn more about pre-initialized
workers, see Configuring an application when working with EMR Serverless.

EMR Studio

EMR Studio is the user console that you can use to manage your EMR Serverless applications. If an
EMR Studio doesn't exist in your account when you create your first EMR Serverless application, we
automatically create one for you. You can access EMR Studio either from the Amazon EMR console,
or you can turn on federated access from your identity provider (IdP) through IAM or IAM Identity
Center. When you do this, users can access Studio and manage EMR Serverless applications without
direct access to the Amazon EMR console. To learn more about how EMR Serverless applications
works with EMR Studio, see Creating an EMR Serverless application from the EMR Studio console
and Running jobs from the EMR Studio console.

Workers 3

Amazon EMR Amazon EMR Serverless User Guide

Prerequisites for getting started with EMR Serverless

This section describes the administrative prerequisites for running EMR Serverless. These include
account configuration and permissions management.

Topics

• Sign up for an AWS account

• Create a user with administrative access

• Grant permissions

• Install and configure the AWS CLI

• Open the console

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to a user, and use only the root user to perform tasks that require root
user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Sign up for an AWS account 4

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://aws.amazon.com/

Amazon EMR Amazon EMR Serverless User Guide

Create a user with administrative access

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create a user with administrative access

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to a user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the user with administrative access

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Create a user with administrative access 5

https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html

Amazon EMR Amazon EMR Serverless User Guide

Assign access to additional users

1. In IAM Identity Center, create a permission set that follows the best practice of applying least-
privilege permissions.

For instructions, see Create a permission set in the AWS IAM Identity Center User Guide.

2. Assign users to a group, and then assign single sign-on access to the group.

For instructions, see Add groups in the AWS IAM Identity Center User Guide.

Grant permissions

In production environments, we recommend that you use finer-grained policies. For examples
of such policies, see User access policy examples for EMR Serverless. To learn more about access
management, see Access management for AWS resources in the IAM User Guide.

For users who need to get started with EMR Serverless in a sandbox environment, use a policy
similar to the following:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "EMRStudioCreate",
 "Effect": "Allow",
 "Action": [
 "elasticmapreduce:CreateStudioPresignedUrl",
 "elasticmapreduce:DescribeStudio",
 "elasticmapreduce:CreateStudio",
 "elasticmapreduce:ListStudios"
],
 "Resource": "*"
 },
 {
 "Sid": "EMRServerlessFullAccess",
 "Effect": "Allow",
 "Action": [
 "emr-serverless:*"
],
 "Resource": "*"
 },

Grant permissions 6

https://docs.aws.amazon.com/singlesignon/latest/userguide/get-started-create-a-permission-set.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/addgroups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access.html

Amazon EMR Amazon EMR Serverless User Guide

 {
 "Sid": "AllowEC2ENICreationWithEMRTags",
 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkInterface"
],
 "Resource": [
 "arn:aws:ec2:*:*:network-interface/*"
],
 "Condition": {
 "StringEquals": {
 "aws:CalledViaLast": "ops.emr-serverless.amazonaws.com"
 }
 }
 },
 {
 "Sid": "AllowEMRServerlessServiceLinkedRoleCreation",
 "Effect": "Allow",
 "Action": "iam:CreateServiceLinkedRole",
 "Resource": "arn:aws:iam::*:role/aws-service-role/*"
 }
]
}

To provide access, add permissions to your users, groups, or roles:

• Users and groups in AWS IAM Identity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM
Identity Center User Guide.

• Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Create a role for a third-party
identity provider (federation) in the IAM User Guide.

• IAM users:

• Create a role that your user can assume. Follow the instructions in Create a role for an IAM user
in the IAM User Guide.

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the
instructions in Adding permissions to a user (console) in the IAM User Guide.

Grant permissions 7

https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Amazon EMR Amazon EMR Serverless User Guide

Grant programmatic access

Users need programmatic access if they want to interact with AWS outside of the AWS
Management Console. The way to grant programmatic access depends on the type of user that's
accessing AWS.

To grant users programmatic access, choose one of the following options.

Which user needs
programmatic access?

To By

Workforce identity

(Users managed in IAM
Identity Center)

Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions for
the interface that you want to
use.

• For the AWS CLI, see
Configuring the AWS
CLI to use AWS IAM
Identity Center in the AWS
Command Line Interface
User Guide.

• For AWS SDKs, tools, and
AWS APIs, see IAM Identity
Center authentication in
the AWS SDKs and Tools
Reference Guide.

IAM Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions in
Using temporary credentia
ls with AWS resources in the
IAM User Guide.

IAM (Not recommended)
Use long-term credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions for
the interface that you want to
use.

• For the AWS CLI, see
Authenticating using IAM

Grant programmatic access 8

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html

Amazon EMR Amazon EMR Serverless User Guide

Which user needs
programmatic access?

To By

user credentials in the AWS
Command Line Interface
User Guide.

• For AWS SDKs and tools,
see Authenticate using
long-term credentials in
the AWS SDKs and Tools
Reference Guide.

• For AWS APIs, see
Managing access keys for
IAM users in the IAM User
Guide.

Install and configure the AWS CLI

If you want to use EMR Serverless APIs, you must install the latest version of the AWS Command
Line Interface (AWS CLI). You don't need the AWS CLI to use EMR Serverless from the EMR Studio
console, and you can get started without the CLI by following the steps in Getting started with
EMR Serverless from the console.

To set up the AWS CLI

1. To install the latest version of the AWS CLI for macOS, Linux, or Windows, see Installing or
updating the latest version of the AWS CLI.

2. To configure the AWS CLI and secure setup of your access to AWS services, including EMR
Serverless, see Quick configuration with aws configure.

3. To verify the setup, enter the following DataBrew command at the command prompt.

aws emr-serverless help

AWS CLI commands use the default AWS Region from your configuration, unless you set it with
a parameter or a profile. To set your AWS Region with a parameter, you can add the --region
parameter to each command.

Set up the AWS CLI 9

https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config

Amazon EMR Amazon EMR Serverless User Guide

To set your AWS Region with a profile, first add a named profile in the ~/.aws/config file or
the %UserProfile%/.aws/config file (for Microsoft Windows). Follow the steps in Named
profiles for the AWS CLI. Next, set your AWS Region and other settings with a command similar
to the one in the following example.

[profile emr-serverless]
aws_access_key_id = ACCESS-KEY-ID-OF-IAM-USER
aws_secret_access_key = SECRET-ACCESS-KEY-ID-OF-IAM-USER
region = us-east-1
output = text

Open the console

Most of the console-oriented topics in this section start from the Amazon EMR console. If you
aren't already signed in to your AWS account, sign in, then open the Amazon EMR console and
continue to the next section to continue getting started with Amazon EMR.

Open the console 10

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-profiles.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-profiles.html
https://console.aws.amazon.com/elasticmapreduce/home
https://console.aws.amazon.com/elasticmapreduce/home

Amazon EMR Amazon EMR Serverless User Guide

Getting started with Amazon EMR Serverless

This tutorial helps you get started with EMR Serverless when you deploy a sample Spark or Hive
workload. You'll create, run, and debug your own application. We show default options in most
parts of this tutorial.

Before you launch an EMR Serverless application, complete the following tasks.

Topics

• Grant permissions to use EMR Serverless

• Prepare storage for EMR Serverless

• Create an EMR Studio to run interactive workloads

• Create a job runtime role

• Getting started with EMR Serverless from the console

• Getting started from the AWS CLI

Grant permissions to use EMR Serverless

To use EMR Serverless, you need a user or IAM role with an attached policy that grants permissions
for EMR Serverless. To create a user and attach the appropriate policy to that user, follow the
instructions in Grant permissions.

Prepare storage for EMR Serverless

In this tutorial, you'll use an S3 bucket to store output files and logs from the sample Spark or
Hive workload that you'll run using an EMR Serverless application. To create a bucket, follow the
instructions in Creating a bucket in the Amazon Simple Storage Service Console User Guide. Replace
any further reference to amzn-s3-demo-bucket with the name of the newly created bucket.

Create an EMR Studio to run interactive workloads

If you want to use EMR Serverless to execute interactive queries through notebooks that are hosted
in EMR Studio, you need to specify an S3 bucket and the minimum service role for EMR Serverless
to create a Workspace. For steps to get set up, see Set up an EMR Studio in the Amazon EMR

Permissions 11

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-studio-service-role.html#emr-studio-service-role-serverless
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-studio-set-up.html

Amazon EMR Amazon EMR Serverless User Guide

Management Guide. For more information on interactive workloads, see Run interactive workloads
with EMR Serverless through EMR Studio.

Create a job runtime role

Job runs in EMR Serverless use a runtime role that provides granular permissions to specific AWS
services and resources at runtime. In this tutorial, a public S3 bucket hosts the data and scripts. The
bucket amzn-s3-demo-bucket stores the output.

To set up a job runtime role, first create a runtime role with a trust policy so that EMR Serverless
can use the new role. Next, attach the required S3 access policy to that role. The following steps
guide you through the process.

Console

1. Navigate to the IAM console at https://console.aws.amazon.com/iam/.

2. In the left navigation pane, choose Roles.

3. Choose Create role.

4. For role type, choose Custom trust policy and paste the following trust policy. This allows
jobs submitted to your Amazon EMR Serverless applications to access other AWS services
on your behalf.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "emr-serverless.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

5. Choose Next to navigate to the Add permissions page, then choose Create policy.

6. The Create policy page opens on a new tab. Paste the policy JSON below.

Create a job runtime role 12

https://console.aws.amazon.com/iam/

Amazon EMR Amazon EMR Serverless User Guide

Important

Replace amzn-s3-demo-bucket in the policy below with the actual bucket
name created in Prepare storage for EMR Serverless. This is a basic policy for S3
access. For more job runtime role examples, see Job runtime roles for Amazon EMR
Serverless.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadAccessForEMRSamples",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::*.elasticmapreduce",
 "arn:aws:s3:::*.elasticmapreduce/*"
]
 },
 {
 "Sid": "FullAccessToOutputBucket",
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:GetObject",
 "s3:ListBucket",
 "s3:DeleteObject"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket",
 "arn:aws:s3:::amzn-s3-demo-bucket/*"
]
 },
 {
 "Sid": "GlueCreateAndReadDataCatalog",
 "Effect": "Allow",
 "Action": [

Create a job runtime role 13

Amazon EMR Amazon EMR Serverless User Guide

 "glue:GetDatabase",
 "glue:CreateDatabase",
 "glue:GetDataBases",
 "glue:CreateTable",
 "glue:GetTable",
 "glue:UpdateTable",
 "glue:DeleteTable",
 "glue:GetTables",
 "glue:GetPartition",
 "glue:GetPartitions",
 "glue:CreatePartition",
 "glue:BatchCreatePartition",
 "glue:GetUserDefinedFunctions"
],
 "Resource": ["*"]
 }
]
}

7. On the Review policy page, enter a name for your policy, such as
EMRServerlessS3AndGlueAccessPolicy.

8. Refresh the Attach permissions policy page, and choose
EMRServerlessS3AndGlueAccessPolicy.

9. In the Name, review, and create page, for Role name, enter a name for your role, for
example, EMRServerlessS3RuntimeRole. To create this IAM role, choose Create role.

CLI

1. Create a file named emr-serverless-trust-policy.json that contains the trust
policy to use for the IAM role. The file should contain the following policy.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "EMRServerlessTrustPolicy",
 "Action": "sts:AssumeRole",
 "Effect": "Allow",
 "Principal": {
 "Service": "emr-serverless.amazonaws.com"
 }
 }]

Create a job runtime role 14

Amazon EMR Amazon EMR Serverless User Guide

}

2. Create an IAM role named EMRServerlessS3RuntimeRole. Use the trust policy that you
created in the previous step.

aws iam create-role \
 --role-name EMRServerlessS3RuntimeRole \
 --assume-role-policy-document file://emr-serverless-trust-policy.json

Note the ARN in the output. You use the ARN of the new role during job submission,
referred to after this as the job-role-arn.

3. Create a file named emr-sample-access-policy.json that defines the IAM policy for
your workload. This provides read access to the script and data stored in public S3 buckets
and read-write access to amzn-s3-demo-bucket.

Important

Replace amzn-s3-demo-bucket in the policy below with the actual bucket name
created in Prepare storage for EMR Serverless.. This is a basic policy for AWS Glue
and S3 access. For more job runtime role examples, see Job runtime roles for
Amazon EMR Serverless.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadAccessForEMRSamples",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::*.elasticmapreduce",
 "arn:aws:s3:::*.elasticmapreduce/*"
]
 },
 {
 "Sid": "FullAccessToOutputBucket",

Create a job runtime role 15

Amazon EMR Amazon EMR Serverless User Guide

 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:GetObject",
 "s3:ListBucket",
 "s3:DeleteObject"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket",
 "arn:aws:s3:::amzn-s3-demo-bucket/*"
]
 },
 {
 "Sid": "GlueCreateAndReadDataCatalog",
 "Effect": "Allow",
 "Action": [
 "glue:GetDatabase",
 "glue:CreateDatabase",
 "glue:GetDataBases",
 "glue:CreateTable",
 "glue:GetTable",Understanding default application behavior,
 including auto-start and auto-stop, as well as maximum capacity and worker
 configurations for configuring an application with &EMRServerless;.
 "glue:UpdateTable",
 "glue:DeleteTable",
 "glue:GetTables",
 "glue:GetPartition",
 "glue:GetPartitions",
 "glue:CreatePartition",
 "glue:BatchCreatePartition",
 "glue:GetUserDefinedFunctions"
],
 "Resource": ["*"]
 }
]
}

4. Create an IAM policy named EMRServerlessS3AndGlueAccessPolicy with the policy
file that you created in Step 3. Take note of the ARN in the output, as you will use the ARN
of the new policy in the next step.

aws iam create-policy \
 --policy-name EMRServerlessS3AndGlueAccessPolicy \

Create a job runtime role 16

Amazon EMR Amazon EMR Serverless User Guide

 --policy-document file://emr-sample-access-policy.json

Note the new policy's ARN in the output. You'll substitute it for policy-arn in the next
step.

5. Attach the IAM policy EMRServerlessS3AndGlueAccessPolicy to the job runtime role
EMRServerlessS3RuntimeRole.

aws iam attach-role-policy \
 --role-name EMRServerlessS3RuntimeRole \
 --policy-arn policy-arn

Getting started with EMR Serverless from the console

This section describes working with EMR Serverless, including creating an EMR Studio. It also
describes how to submit job runs and view logs.

Steps to complete

• Step 1: Create an EMR Serverless application

• Step 2: Submit a job run or interactive workload

• Step 3: View application UI and logs

• Step 4: Clean up

Step 1: Create an EMR Serverless application

Create a new application with EMR Serverless as follows.

1. Sign in to the AWS Management Console and open the Amazon EMR console at https://
console.aws.amazon.com/emr.

2. In the left navigation pane, choose EMR Serverless to navigate to the EMR Serverless landing
page.

3. To create or manage EMR Serverless applications, you need the EMR Studio UI.

• If you already have an EMR Studio in the AWS Region where you want to create an
application, then select Manage applications to navigate to your EMR Studio, or select the
studio that you want to use.

Getting started from the console 17

https://console.aws.amazon.com/emr
https://console.aws.amazon.com/emr

Amazon EMR Amazon EMR Serverless User Guide

• If you don't have an EMR Studio in the AWS Region where you want to create an application,
choose Get started and then Choose Create and launch Studio. EMR Serverless creates a
EMR Studio for you so that you can create and manage applications.

4. In the Create studio UI that opens in a new tab, enter the name, type, and release version for
your application. If you only want to run batch jobs, select Use default settings for batch jobs
only. For interactive workloads, select Use default settings for interactive workloads. You can
also run batch jobs on interactive-enabled applications with this option. If you need to, you
can change these settings later.

For more information, see Create a studio.

5. Select Create application to create your first application.

Continue to the next section Step 2: Submit a job run or interactive workload to submit a job run or
interactive workload.

Step 2: Submit a job run or interactive workload

Spark job run

In this tutorial, we use a PySpark script to compute the number of occurrences of unique words
across multiple text files. A public, read-only S3 bucket stores both the script and the dataset.

To run a Spark job

1. Upload the sample script wordcount.py into your new bucket with the following
command.

aws s3 cp s3://us-east-1.elasticmapreduce/emr-containers/samples/wordcount/
scripts/wordcount.py s3://amzn-s3-demo-bucket/scripts/

2. Completing Step 1: Create an EMR Serverless application takes you to the Application
details page in EMR Studio. There, choose the Submit job option.

3. On the Submit job page, complete the following.

• In the Name field, enter the name that you want to call your job run.

• In the Runtime role field, enter the name of the role that you created in Create a job
runtime role.

Step 2: Submit a job run or interactive workload 18

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-studio-create-studio.html

Amazon EMR Amazon EMR Serverless User Guide

• In the Script location field, enter s3://amzn-s3-demo-bucket/scripts/
wordcount.py as the S3 URI.

• In the Script arguments field, enter ["s3://amzn-s3-demo-bucket/emr-
serverless-spark/output"].

• In the Spark properties section, choose Edit as text and enter the following
configurations.

--conf spark.executor.cores=1 --conf spark.executor.memory=4g --
conf spark.driver.cores=1 --conf spark.driver.memory=4g --conf
 spark.executor.instances=1

4. To start the job run, choose Submit job .

5. In the Job runs tab, you should see your new job run with a Running status.

Hive job run

In this part of the tutorial, we create a table, insert a few records, and run a count aggregation
query. To run the Hive job, first create a file that contains all Hive queries to run as part of single
job, upload the file to S3, and specify this S3 path when starting the Hive job.

To run a Hive job

1. Create a file called hive-query.ql that contains all the queries that you want to run in
your Hive job.

create database if not exists emrserverless;
use emrserverless;
create table if not exists test_table(id int);
drop table if exists Values__Tmp__Table__1;
insert into test_table values (1),(2),(2),(3),(3),(3);
select id, count(id) from test_table group by id order by id desc;

2. Upload hive-query.ql to your S3 bucket with the following command.

aws s3 cp hive-query.ql s3://amzn-s3-demo-bucket/emr-serverless-hive/query/hive-
query.ql

3. Completing Step 1: Create an EMR Serverless application takes you to the Application
details page in EMR Studio. There, choose the Submit job option.

Step 2: Submit a job run or interactive workload 19

Amazon EMR Amazon EMR Serverless User Guide

4. On the Submit job page, complete the following.

• In the Name field, enter the name that you want to call your job run.

• In the Runtime role field, enter the name of the role that you created in Create a job
runtime role.

• In the Script location field, enter s3://amzn-s3-demo-bucket/emr-serverless-
hive/query/hive-query.ql as the S3 URI.

• In the Hive properties section, choose Edit as text, and enter the following
configurations.

--hiveconf hive.log.explain.output=false

• In the Job configuration section, choose Edit as JSON, and enter the following JSON.

{
 "applicationConfiguration":
 [{
 "classification": "hive-site",
 "properties": {
 "hive.exec.scratchdir": "s3://amzn-s3-demo-bucket/emr-
serverless-hive/hive/scratch",
 "hive.metastore.warehouse.dir": "s3://amzn-s3-demo-bucket/emr-
serverless-hive/hive/warehouse",
 "hive.driver.cores": "2",
 "hive.driver.memory": "4g",
 "hive.tez.container.size": "4096",
 "hive.tez.cpu.vcores": "1"
 }
 }]
}

5. To start the job run, choose Submit job.

6. In the Job runs tab, you should see your new job run with a Running status.

Interactive workload

With Amazon EMR 6.14.0 and higher, you can use notebooks that are hosted in EMR Studio
to run interactive workloads for Spark in EMR Serverless. For more information including
permissions and prerequisites, see Run interactive workloads with EMR Serverless through EMR
Studio.

Step 2: Submit a job run or interactive workload 20

Amazon EMR Amazon EMR Serverless User Guide

Once you've created your application and set up the required permissions, use the following
steps to run an interactive notebook with EMR Studio:

1. Navigate to the Workspaces tab in EMR Studio. If you still need to configure an Amazon
S3 storage location and EMR Studio service role, select the Configure studio button in the
banner at the top of the screen.

2. To access a notebook, select a Workspace or create a new Workspace. Use Quick launch to
open your Workspace in a new tab.

3. Go to the newly opened tab. Select the Compute icon from the left navigation. Select EMR
Serverless as the Compute type.

4. Select the interactive-enabled application that you created in the previous section.

5. In the Runtime role field, enter the name of the IAM role that your EMR Serverless
application can assume for the job run. To learn more about runtime roles, see Job runtime
roles in the Amazon EMR Serverless User Guide.

6. Select Attach. This may take up to a minute. The page will refresh when attached.

7. Pick a kernel and start a notebook. You can also browse example notebooks on EMR
Serverless and copy them to your Workspace. To access the example notebooks, navigate
to the {...} menu in the left navigation and browse through notebooks that have
serverless in the notebook file name.

8. In the notebook, you can access the driver log link and a link to the Apache Spark UI, a
real-time interface that provides metrics to monitor your job. For more information, see
Monitoring EMR Serverless applications and jobs in the Amazon EMR Serverless User Guide.

When you attach an application to an Studio workspace, the application start triggers
automatically if it's not already running. You can also pre-start the application and keep it ready
before you attach it to the workspace.

Step 3: View application UI and logs

To view the application UI, first identify the job run. An option for Spark UI or Hive Tez UI is
available in the first row of options for that job run, based on the job type. Select the appropriate
option.

If you chose the Spark UI, choose the Executors tab to view the driver and executors logs. If you
chose the Hive Tez UI, choose the All Tasks tab to view the logs.

Step 3: View application UI and logs 21

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-studio-service-role.html
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/security-iam-runtime-role.html
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/security-iam-runtime-role.html
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/app-job-metrics.html

Amazon EMR Amazon EMR Serverless User Guide

Once the job run status shows as Success, you can view the output of the job in your S3 bucket.

Step 4: Clean up

While the application you created should auto-stop after 15 minutes of inactivity, we still
recommend that you release resources that you don't intend to use again.

To delete the application, navigate to the List applications page. Select the application that you
created and choose Actions → Stop to stop the application. After the application is in the STOPPED
state, select the same application and choose Actions → Delete.

For more examples of running Spark and Hive jobs, see Using Spark configurations when you run
EMR Serverless jobs and Using Hive configurations when you run EMR Serverless jobs.

Getting started from the AWS CLI

Get started with EMR Serverless from the AWS CLI with commands to create an application, run
jobs, check job run output, and delete your resources.

Step 1: Create an EMR Serverless application

Use the emr-serverless create-application command to create your first EMR Serverless
application. You need to specify the application type and the the Amazon EMR release label
associated with the application version you want to use. The name of the application is optional.

Spark

To create a Spark application, run the following command.

aws emr-serverless create-application \
 --release-label emr-6.6.0 \
 --type "SPARK" \
 --name my-application

Hive

To create a Hive application, run the following command.

aws emr-serverless create-application \
 --release-label emr-6.6.0 \
 --type "HIVE" \

Step 4: Clean up 22

https://docs.aws.amazon.com/emr-serverless/latest/APIReference/API_CreateApplication.html

Amazon EMR Amazon EMR Serverless User Guide

 --name my-application

Note the application ID returned in the output. You'll use the ID to start the application and during
job submission, referred to after this as the application-id.

Before you move on to Step 2: Submit a job run to your EMR Serverless application, make sure that
your application has reached the CREATED state with the get-application API.

aws emr-serverless get-application \
 --application-id application-id

EMR Serverless creates workers to accommodate your requested jobs. By default, these are created
on demand, but you can also specify a pre-initialized capacity by setting the initialCapacity
parameter when you create the application. You can also limit the total maximum capacity that an
application can use with the maximumCapacity parameter. To learn more about these options,
see Configuring an application when working with EMR Serverless.

Step 2: Submit a job run to your EMR Serverless application

Now your EMR Serverless application is ready to run jobs.

Spark

In this step, we use a PySpark script to compute the number of occurrences of unique words
across multiple text files. A public, read-only S3 bucket stores both the script and the dataset.
The application sends the output file and the log data from the Spark runtime to /output and
/logs directories in the S3 bucket that you created.

To run a Spark job

1. Use the following command to copy the sample script we will run into your new bucket.

aws s3 cp s3://us-east-1.elasticmapreduce/emr-containers/samples/wordcount/
scripts/wordcount.py s3://amzn-s3-demo-bucket/scripts/

2. In the following command, substitute application-id with your application ID.
Substitute job-role-arn with the runtime role ARN you created in Create a job runtime
role. Substitute job-run-name with the name you want to call your job run. Replace all
amzn-s3-demo-bucket strings with the Amazon S3 bucket that you created, and add /

Step 2: Submit a job run 23

https://docs.aws.amazon.com/emr-serverless/latest/APIReference/API_GetApplication.html

Amazon EMR Amazon EMR Serverless User Guide

output to the path. This creates a new folder in your bucket where EMR Serverless can
copy the output files of your application.

aws emr-serverless start-job-run \
 --application-id application-id \
 --execution-role-arn job-role-arn \
 --name job-run-name \
 --job-driver '{
 "sparkSubmit": {
 "entryPoint": "s3://amzn-s3-demo-bucket/scripts/wordcount.py",
 "entryPointArguments": ["s3://amzn-s3-demo-bucket/emr-serverless-
spark/output"],
 "sparkSubmitParameters": "--conf spark.executor.cores=1
 --conf spark.executor.memory=4g --conf spark.driver.cores=1 --conf
 spark.driver.memory=4g --conf spark.executor.instances=1"
 }
 }'

3. Note the job run ID returned in the output . Replace job-run-id with this ID in the
following steps.

Hive

In this tutorial, we create a table, insert a few records, and run a count aggregation query. To
run the Hive job, first create a file that contains all Hive queries to run as part of single job,
upload the file to S3, and specify this S3 path when you start the Hive job.

To run a Hive job

1. Create a file called hive-query.ql that contains all the queries that you want to run in
your Hive job.

create database if not exists emrserverless;
use emrserverless;
create table if not exists test_table(id int);
drop table if exists Values__Tmp__Table__1;
insert into test_table values (1),(2),(2),(3),(3),(3);
select id, count(id) from test_table group by id order by id desc;

2. Upload hive-query.ql to your S3 bucket with the following command.

Step 2: Submit a job run 24

Amazon EMR Amazon EMR Serverless User Guide

aws s3 cp hive-query.ql s3://amzn-s3-demo-bucket/emr-serverless-hive/query/hive-
query.ql

3. In the following command, substitute application-id with your own application ID.
Substitute job-role-arn with the runtime role ARN you created in Create a job runtime
role. Replace all amzn-s3-demo-bucket strings with the Amazon S3 bucket that you
created, and add /output and /logs to the path. This creates new folders in your bucket,
where EMR Serverless can copy the output and log files of your application.

aws emr-serverless start-job-run \
 --application-id application-id \
 --execution-role-arn job-role-arn \
 --job-driver '{
 "hive": {
 "query": "s3://amzn-s3-demo-bucket/emr-serverless-hive/query/hive-
query.ql",
 "parameters": "--hiveconf hive.log.explain.output=false"
 }
 }' \
 --configuration-overrides '{
 "applicationConfiguration": [{
 "classification": "hive-site",
 "properties": {
 "hive.exec.scratchdir": "s3://amzn-s3-demo-bucket/emr-serverless-
hive/hive/scratch",
 "hive.metastore.warehouse.dir": "s3://amzn-s3-demo-bucket/emr-
serverless-hive/hive/warehouse",
 "hive.driver.cores": "2",
 "hive.driver.memory": "4g",
 "hive.tez.container.size": "4096",
 "hive.tez.cpu.vcores": "1"
 }
 }],
 "monitoringConfiguration": {
 "s3MonitoringConfiguration": {
 "logUri": "s3://amzn-s3-demo-bucket/emr-serverless-hive/logs"
 }
 }
 }'

Step 2: Submit a job run 25

Amazon EMR Amazon EMR Serverless User Guide

4. Note the job run ID returned in the output. Replace job-run-id with this ID in the
following steps.

Step 3: Review your job run's output

The job run should typically take 3-5 minutes to complete.

Spark

You can check for the state of your Spark job with the following command.

aws emr-serverless get-job-run \
 --application-id application-id \
 --job-run-id job-run-id

With your log destination set to s3://amzn-s3-demo-bucket/emr-serverless-spark/
logs, you can find the logs for this specific job run under s3://amzn-s3-demo-bucket/
emr-serverless-spark/logs/applications/application-id/jobs/job-run-id.

For Spark applications, EMR Serverless pushes event logs every 30 seconds to the sparklogs
folder in your S3 log destination. When your job completes, Spark runtime logs for the driver
and executors upload to folders named appropriately by the worker type, such as driver
or executor. The output of the PySpark job uploads to s3://amzn-s3-demo-bucket/
output/.

Hive

You can check for the state of your Hive job with the following command.

aws emr-serverless get-job-run \
 --application-id application-id \
 --job-run-id job-run-id

With your log destination set to s3://amzn-s3-demo-bucket/emr-serverless-hive/
logs, you can find the logs for this specific job run under s3://amzn-s3-demo-bucket/
emr-serverless-hive/logs/applications/application-id/jobs/job-run-id.

For Hive applications, EMR Serverless continuously uploads the Hive driver to the HIVE_DRIVER
folder, and Tez tasks logs to the TEZ_TASK folder, of your S3 log destination. After the
job run reaches the SUCCEEDED state, the output of your Hive query becomes available in

Step 3: Review output 26

Amazon EMR Amazon EMR Serverless User Guide

the Amazon S3 location that you specified in the monitoringConfiguration field of
configurationOverrides.

Step 4: Clean up

When you’re done working with this tutorial, consider deleting the resources that you created. We
recommend that you release resources that you don't intend to use again.

Delete your application

To delete an application, use the following command.

aws emr-serverless delete-application \
 --application-id application-id

Delete your S3 log bucket

To delete your S3 logging and output bucket, use the following command. Replace amzn-
s3-demo-bucket with the actual name of the S3 bucket created in Prepare storage for EMR
Serverless..

aws s3 rm s3://amzn-s3-demo-bucket --recursive
aws s3api delete-bucket --bucket amzn-s3-demo-bucket

Delete your job runtime role

To delete the runtime role, detach the policy from the role. You can then delete both the role and
the policy.

aws iam detach-role-policy \
 --role-name EMRServerlessS3RuntimeRole \
 --policy-arn policy-arn

To delete the role, use the following command.

aws iam delete-role \
 --role-name EMRServerlessS3RuntimeRole

To delete the policy that was attached to the role, use the following command.

Step 4: Clean up 27

Amazon EMR Amazon EMR Serverless User Guide

aws iam delete-policy \
 --policy-arn policy-arn

For more examples of running Spark and Hive jobs, see Using Spark configurations when you run
EMR Serverless jobs and Using Hive configurations when you run EMR Serverless jobs.

Step 4: Clean up 28

Amazon EMR Amazon EMR Serverless User Guide

Interact with and configure an EMR Serverless
application

This section covers how you can interact with your Amazon EMR Serverless application with the
AWS CLI. It also describes configuring an application, performing customizations, and defaults for
Spark and Hive engines.

Topics

• Application states

• Creating an EMR Serverless application from the EMR Studio console

• Interacting with your EMR Serverless application on the AWS CLI

• Configuring an application when working with EMR Serverless

• Customizing an EMR Serverless image

• Configuring VPC access for EMR Serverless applications to connect to data

• Amazon EMR Serverless architecture options

• Job concurrency and queuing for an EMR Serverless application

Application states

When you create an application with EMR Serverless, the application run enters the CREATING
state. It then passes through the following states until it succeeds (exits with code 0) or fails (exits
with a non-zero code).

Applications can have the following states:

State Description

Creating The application is being prepared and isn't
ready to use yet.

Created The application has been created but hasn't
provisioned capacity yet. You can modify
the application to change its initial capacity
configuration.

Application states 29

Amazon EMR Amazon EMR Serverless User Guide

State Description

Starting The application is starting and is provisioning
capacity.

Started The application is ready to accept new jobs.
The application only accepts jobs when it's in
this state.

Stopping All jobs have completed and the application is
releasing its capacity.

Stopped The application is stopped and no resources
are running on the application. You can
modify the application to change its initial
capacity configuration.

Terminated The application has been terminated and
doesn't appear on your application list.

The following diagram shows the trajectory of EMR Serverless application states.

Creating an EMR Serverless application from the EMR Studio
console

From the EMR Studio console, you can create, view, and manage EMR Serverless applications. To
navigate to the EMR Studio console, follow the instructions in Getting started from the console.

Using the EMR Studio console 30

https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/getting-started.html#gs-console

Amazon EMR Amazon EMR Serverless User Guide

Create an application

With the Create application page, you can create an EMR Serverless application by following these
steps.

1. In the Name field, enter the name you want to call your application.

2. In the Type field, choose Spark or Hive as the type of the application.

3. In the Release version field, choose the EMR release number.

4. In the Architecture options, choose the instruction set architecture to use. For more
information, see Amazon EMR Serverless architecture options.

• arm64 — 64-bit ARM architecture; to use Graviton processors

• x86_64 — 64-bit x86 architecture; to use x86-based processors

5. There are two application setup options for the remaining fields: default settings and custom
settings. These fields are optional.

Default settings — Default settings allow you to create an application quickly with pre-
initialized capacity. This includes one driver and one executor for Spark, and one driver and
one Tez Task for Hive. The default settings don't enable network connectivity to your VPCs.
The application is configured to stop if idle for 15 minutes, and auto-starts on job submission.

Custom settings — Custom settings allow you to modify the following properties.

• Pre-initialized capacity — The number of drivers and executors or Hive Tez Task workers,
and the size of each worker.

• Application limits — The maximum capacity of an application.

• Application behavior — The application's auto-start and auto-stop behavior.

• Network connections — Network connectivity to VPC resources.

• Tags — Custom tags that you can assign to the application.

For more information about pre-initialized capacity, application limits, and application
behavior, see Configuring an application when working with EMR Serverless. For more
information about network connectivity, see Configuring VPC access for EMR Serverless
applications to connect to data.

6. To create the application, choose Create application .

Create an application 31

Amazon EMR Amazon EMR Serverless User Guide

List applications from the EMR Studio console

You can view all existing EMR Serverless applications from the List applications page. You can
choose an application’s name to navigate to the Details page for that application.

Manage applications from the EMR Studio console

You can perform the following actions on an application from either the List applications page or
from a specific application’s Details page.

Start application

Choose this option to manually start an application.

Stop application

Choose this option to manually stop an application. An application should have no running jobs
in order to be stopped. To learn more about application state transitions, see Application states.

Configure application

Edit the optional settings for an application from the Configure application page. You
can change most application settings. For example, you can change the release label for
an application to upgrade it to a different version of Amazon EMR, or you can switch the
architecture from x86_64 to arm64. The other optional settings are the same as those that are
in the Custom settings section on the Create application page. For more information about the
application settings, see Create an application.

Delete application

Choose this option to manually delete an application. You must stop an application in order to
delete it. To learn more about application state transitions, see Application states.

Interacting with your EMR Serverless application on the AWS
CLI

From the AWS CLI, you can create, describe, and delete individual applications. You can also list
all of your applications so that you can view them at a glance. This section describes how to
perform these actions. For more application operations, such starting, stopping, and updating your
application, see the EMR Serverless API Reference. For examples of how to use the EMR Serverless

List applications from the EMR Studio console 32

https://docs.aws.amazon.com/emr-serverless/latest/APIReference/Welcome.html

Amazon EMR Amazon EMR Serverless User Guide

API using the AWS SDK for Java, see Java examples in our GitHub repository. For examples of how
to use the EMR Serverless API using the AWS SDK for Python (Boto), see Python examples in our
GitHub repository.

To create an application, use create-application. You must specify SPARK or HIVE as the
application type. This command returns the application’s ARN, name, and ID.

aws emr-serverless create-application \
--name my-application-name \
--type 'application-type' \
--release-label release-version

To describe an application, use get-application and provide its application-id. This
command returns the state and capacity-related configurations for your application.

aws emr-serverless get-application \
--application-id application-id

To list all of your applications, call list-applications. This command returns the same
properties as get-application but includes all of your applications.

aws emr-serverless list-applications

To delete your application, call delete-application and supply your application-id.

aws emr-serverless delete-application \
--application-id application-id

Configuring an application when working with EMR Serverless

With EMR Serverless, you can configure the applications that you use. For example, you can set
the maximum capacity that an application can scale up to, configure pre-initialized capacity to
keep driver and workers ready to respond, and specify a common set of runtime and monitoring
configurations at the application level. The following pages describe how to configure applications
when you use EMR Serverless.

Topics

Configuring an application 33

https://github.com/aws-samples/emr-serverless-samples/tree/main/examples/java-api
https://github.com/aws-samples/emr-serverless-samples/tree/main/examples/python-api

Amazon EMR Amazon EMR Serverless User Guide

• Understanding application behavior in EMR Serverless

• Pre-initialized capacity for working with an application in EMR Serverless

• Default application configuration for EMR Serverless

Understanding application behavior in EMR Serverless

This section describes job submission behavior, capacity configuration for scaling, and worker
configuration settings for EMR Serverless.

Default application behavior

Auto-start — An application by default is configured to auto-start on job submission. You can turn
this feature off.

Auto-stop — An application by default is configured to auto-stop when idle for 15 minutes. When
an application changes to the STOPPED state, it releases any configured pre-initialized capacity.
You can modify the amount of idle time before an application auto-stops, or you can turn this
feature off.

Maximum capacity

You can configure the maximum capacity that an application can scale up to. You can specify your
maximum capacity in terms of CPU, memory (GB), and disk (GB).

Note

We recommend configuring your maximum capacity to be proportional to your supported
worker sizes by multiplying the number of workers by their sizes. For example, if you want
to limit your application to 50 workers with 2 vCPUs, 16 GB for memory, and 20 GB for
disk, set your maximum capacity to 100 vCPUs, 800 GB for memory, and 1000 GB for disk.

Supported worker configurations

The following table shows supported worker configurations and sizes that you can specify for EMR
Serverless. You can configure different sizes for drivers and executors based on the need of your
workload.

Application behavior 34

Amazon EMR Amazon EMR Serverless User Guide

CPU Memory Default ephemeral storage

1 vCPU Minimum 2 GB, maximum
8 GB, in 1 GB increments

20 GB - 200 GB

2 vCPU Minimum 4 GB, maximum
16 GB, in 1 GB increments

20 GB - 200 GB

4 vCPU Minimum 8 GB, maximum
30 GB, in 1 GB increments

20 GB - 200 GB

8 vCPU Minimum 16 GB, maximum
60 GB, in 4 GB increments

20 GB - 200 GB

16 vCPU Minimum 32 GB, maximum
120 GB, in 8 GB increments

20 GB - 200 GB

CPU — Each worker can have 1, 2, 4, 8, or 16 vCPUs.

Memory — Each worker has memory, specified in GB, within the limits listed in the earlier table.
Spark jobs have a memory overhead, meaning that the memory they use is more than the specified
container sizes. This overhead is specified with the properties spark.driver.memoryOverhead
and spark.executor.memoryOverhead. The overhead has a default value of 10% of container
memory, with a minimum of 384 MB. You should consider this overhead when you choose worker
sizes.

For example, If you choose 4 vCPUs for your worker instance, and a pre-initialized storage capacity
of 30 GB, then you should set a value of approximately 27 GB as executor memory for your Spark
job. This maximizes the utilization of your pre-initialized capacity. Usable memory would be 27 GB,
plus 10% of 27 GB (2.7 GB), for a total of 29.7 GB.

Disk — You can configure each worker with temporary storage disks with a minimum size of 20 GB
and a maximum of 200 GB. You only pay for additional storage beyond 20 GB that you configure
per worker.

Application behavior 35

Amazon EMR Amazon EMR Serverless User Guide

Pre-initialized capacity for working with an application in EMR
Serverless

EMR Serverless provides an optional feature that keeps driver and workers pre-initialized
and ready to respond in seconds. This effectively creates a warm pool of workers for an
application. This feature is called pre-initialized capacity. To configure this feature, you can set
the initialCapacity parameter of an application to the number of workers you want to pre-
initialize. With pre-initialized worker capacity, jobs start immediately. This is ideal when you want
to implement iterative applications and time-sensitive jobs.

Pre-initialized capacity keeps a warm pool of workers ready for jobs and sessions to startup in
seconds. You will be paying for provisioned pre-initialized workers even when the application is
idle, hence we recommend enabling it for use cases that benefit from the fast start-up time and
sizing it for optimal utilization of resources. EMR Serverless applications automatically shut down
when idle. We recommend keeping this feature on when using pre-initialized workers to avoid
unexpected charges.

When you submit a job, if workers from initialCapacity are available, the job uses those
resources to start its run. If those workers are already in use by other jobs, or if the job needs
more resources than available from initialCapacity, then the application requests and gets
additional workers, up to the maximum limits on resources set for the application. When a job
finishes its run, it releases the workers that it used, and the number of resources available for
the application returns to initialCapacity. An application maintains the initialCapacity
of resources even after jobs finish their runs. The application releases excess resources beyond
initialCapacity when the jobs no longer need them to run.

Pre-initialized capacity is available and ready to use when the application has started. The pre-
initialized capacity becomes inactive when the application is stopped. An application moves to
the STARTED state only if the requested pre-initialized capacity has been created and is ready
to use. The whole time that the application is in the STARTED state, EMR Serverless keeps the
pre-initialized capacity available for use or in use by jobs or interactive workloads. The feature
restores capacity for released or failed containers. This maintains the number of workers that the
InitialCapacity parameter specifies. The state of an application with no pre-initialized capacity
can immediately change from CREATED to STARTED.

You can configure the application to release pre-initialized capacity if it isn't used for a certain
period of time, with a default of 15 minutes. A stopped application starts automatically when you

Pre-initialized capacity for working with an application in EMR Serverless 36

Amazon EMR Amazon EMR Serverless User Guide

submit a new job. You can set these automatic start and stop configurations when you create the
application, or you can change them when the application is in a CREATED or STOPPED state.

You can change the InitialCapacity counts, and specify compute configurations such as CPU,
memory, and disk, for each worker. Because you can't make partial modifications, you should
specify all compute configurations when you change values. You can only change configurations
when the application is in the CREATED or STOPPED state.

Note

To optimize your application’s use of resources, we recommend aligning your container
sizes with your pre-initialized capacity worker sizes. For example, if you configure your
Spark executor size to 2 CPUs and your memory to 8 GB, but your pre-initialized capacity
worker size is 4 CPUs with 16 GB of memory, then the Spark executors only use half of the
workers’ resources when they are assigned to this job.

Customizing pre-initialized capacity for Spark and Hive

You can further customize pre-initialized capacity for workloads that run on specific big data
frameworks. For example, when a workload runs on Apache Spark, you can specify how many
workers start as drivers and how many start as executors. Similarly, when you use Apache Hive, you
can specify how many workers start as Hive drivers, and how many should run Tez tasks.

Configuring an application running Apache Hive with pre-initialized capacity

The following API request creates an application running Apache Hive based on Amazon EMR
release emr-6.6.0. The application starts with 5 pre-initialized Hive drivers, each with 2 vCPU
and 4 GB of memory, and 50 pre-initialized Tez task workers, each with 4 vCPU and 8 GB of
memory. When Hive queries run on this application, they first use the pre-initialized workers and
start executing immediately. If all of the pre-initialized workers are busy and more Hive jobs are
submitted, the application can scale to a total of 400 vCPU and 1024 GB of memory. You can
optionally omit capacity for either the DRIVER or the TEZ_TASK worker.

aws emr-serverless create-application \
 --type "HIVE" \
 --name my-application-name \
 --release-label emr-6.6.0 \
 --initial-capacity '{

Pre-initialized capacity for working with an application in EMR Serverless 37

Amazon EMR Amazon EMR Serverless User Guide

 "DRIVER": {
 "workerCount": 5,
 "workerConfiguration": {
 "cpu": "2vCPU",
 "memory": "4GB"
 }
 },
 "TEZ_TASK": {
 "workerCount": 50,
 "workerConfiguration": {
 "cpu": "4vCPU",
 "memory": "8GB"
 }
 }
 }' \
 --maximum-capacity '{
 "cpu": "400vCPU",
 "memory": "1024GB"
 }'

Configuring an application running Apache Spark with pre-initialized capacity

The following API request creates an application that runs Apache Spark 3.2.0 based on Amazon
EMR release 6.6.0. The application starts with 5 pre-initialized Spark drivers, each with 2 vCPU and
4 GB of memory, and 50 pre-initialized executors, each with 4 vCPU and 8 GB of memory. When
Spark jobs run on this application, they first use the pre-initialized workers and start to execute
immediately. If all of the pre-initialized workers are busy and more Spark jobs are submitted, the
application can scale to a total of 400 vCPU and 1024 GB of memory. You can optionally omit
capacity for either the DRIVER or the EXECUTOR.

Note

Spark adds a configurable memory overhead, with a 10% default value, to the memory
requested for driver and executors. For jobs to use pre-initialized workers, the initial
capacity memory configuration should be greater than the memory that the job and the
overhead request.

aws emr-serverless create-application \
 --type "SPARK" \
 --name my-application-name \

Pre-initialized capacity for working with an application in EMR Serverless 38

Amazon EMR Amazon EMR Serverless User Guide

 --release-label emr-6.6.0 \
 --initial-capacity '{
 "DRIVER": {
 "workerCount": 5,
 "workerConfiguration": {
 "cpu": "2vCPU",
 "memory": "4GB"
 }
 },
 "EXECUTOR": {
 "workerCount": 50,
 "workerConfiguration": {
 "cpu": "4vCPU",
 "memory": "8GB"
 }
 }
 }' \
 --maximum-capacity '{
 "cpu": "400vCPU",
 "memory": "1024GB"
 }'

Default application configuration for EMR Serverless

You can specify a common set of runtime and monitoring configurations at the application level
for all the jobs that you submit under the same application. This reduces the additional overhead
that is associated with the need to submit the same configurations for each job.

You can modify the configurations at the following points in time:

• Declare application-level configurations at job submission.

• Override default configurations during job run.

The following sections provide more details and an example for further context.

Declaring configurations at the application level

You can specify application-level logging and runtime configuration properties for the jobs that
you submit under the application.

Default app configuration 39

Amazon EMR Amazon EMR Serverless User Guide

monitoringConfiguration

To specify the log configurations for jobs that you submit with the application, use the
monitoringConfiguration field. For more information on logging for EMR Serverless, see
Storing logs.

runtimeConfiguration

To specify runtime configuration properties such as spark-defaults, provide a configuration
object in the runtimeConfiguration field. This affects the default configurations for all the
jobs that you submit with the application. For more information, see Hive configuration override
parameter and Spark configuration override parameter.

Available configuration classifications vary by specific EMR Serverless release. For example,
classifications for custom Log4j spark-driver-log4j2 and spark-executor-log4j2 are
only available with releases 6.8.0 and higher. For a list of application-specific properties, see
Spark job properties and Hive job properties.

You can also configure Apache Log4j2 properties, AWS Secrets Manager for data protection,
and Java 17 runtime at the application level.

To pass Secrets Manager secrets at the application level, attach the following policy to users
and roles that need to create or update EMR Serverless applications with secrets.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "SecretsManagerPolicy",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue",
 "secretsmanager:DescribeSecret",
 "kms:Decrypt"
],
 "Resource": "arn:aws:secretsmanager:your-secret-arn"
 }
]
}

For more information on creating custom policies for secrets, see Permissions policy examples
for AWS Secrets Manager in the AWS Secrets Manager User Guide.

Default app configuration 40

https://docs.aws.amazon.com/emr-serverless/latest/APIReference/API_MonitoringConfiguration.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/auth-and-access_examples.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/auth-and-access_examples.html

Amazon EMR Amazon EMR Serverless User Guide

Note

The runtimeConfiguration that you specify at application level maps to
applicationConfiguration in the StartJobRun API.

Example declaration

The following example shows how to declare default configurations with create-application.

aws emr-serverless create-application \
 --release-label release-version \
 --type SPARK \
 --name my-application-name \
 --runtime-configuration '[
 {
 "classification": "spark-defaults",
 "properties": {
 "spark.driver.cores": "4",
 "spark.executor.cores": "2",
 "spark.driver.memory": "8G",
 "spark.executor.memory": "8G",
 "spark.executor.instances": "2",

 "spark.hadoop.javax.jdo.option.ConnectionDriverName":"org.mariadb.jdbc.Driver",
 "spark.hadoop.javax.jdo.option.ConnectionURL":"jdbc:mysql://db-host:db-
port/db-name",
 "spark.hadoop.javax.jdo.option.ConnectionUserName":"connection-user-
name",
 "spark.hadoop.javax.jdo.option.ConnectionPassword":
 "EMR.secret@SecretID"
 }
 },
 {
 "classification": "spark-driver-log4j2",
 "properties": {
 "rootLogger.level":"error",
 "logger.IdentifierForClass.name": "classpathForSettingLogger",
 "logger.IdentifierForClass.level": "info"
 }
 }
]' \
 --monitoring-configuration '{

Default app configuration 41

https://docs.aws.amazon.com/emr-serverless/latest/APIReference/API_StartJobRun.html

Amazon EMR Amazon EMR Serverless User Guide

 "s3MonitoringConfiguration": {
 "logUri": "s3://amzn-s3-demo-logging-bucket/logs/app-level"
 },
 "managedPersistenceMonitoringConfiguration": {
 "enabled": false
 }
 }'

Overriding configurations during a job run

You can specify configuration overrides for the application configuration and monitoring
configuration with the StartJobRun API. EMR Serverless then merges the configurations that
you specify at the application level and the job level to determine the configurations for the job
execution.

The granularity level when the merge occurs is as follows:

• ApplicationConfiguration - Classification type, for example spark-defaults.

• MonitoringConfiguration - Configuration type, for example
s3MonitoringConfiguration.

Note

The priority of configurations that you provide at StartJobRun supersede the
configurations that you provide at the application level.

For more information priority rankings, see Hive configuration override parameter and Spark
configuration override parameter.

When you start a job, if you don’t specify a particular configuration, it will be inherited from
the application. If you declare the configurations at job level, you can perform the following
operations:

• Override an existing configuration - Provide the same configuration parameter in the
StartJobRun request with your override values.

• Add an additional configuration - Add the new configuration parameter in the StartJobRun
request with the values that you want to specify.

Default app configuration 42

https://docs.aws.amazon.com/emr-serverless/latest/APIReference/API_StartJobRun.html
https://docs.aws.amazon.com/emr-serverless/latest/APIReference/API_ConfigurationOverrides.html#emrserverless-Type-ConfigurationOverrides-applicationConfiguration
https://docs.aws.amazon.com/emr-serverless/latest/APIReference/API_ConfigurationOverrides.html#emrserverless-Type-ConfigurationOverrides-monitoringConfiguration
https://docs.aws.amazon.com/emr-serverless/latest/APIReference/API_StartJobRun.html

Amazon EMR Amazon EMR Serverless User Guide

• Remove an existing configuration - To remove an application runtime configuration, provide
the key for the configuration that you want to remove, and pass an empty declaration {} for the
configuration. We don't recommend removing any classifications that contain parameters that
are required for a job run. For example, if you try to remove the required properties for a Hive
job, the job will fail.

To remove an application monitoring configuration, use the appropriate method for the relevant
configuration type:

• cloudWatchLoggingConfiguration - To remove cloudWatchLogging, pass the enabled
flag as false.

• managedPersistenceMonitoringConfiguration - To remove managed persistence
settings and fall back to the default enabled state, pass an empty declaration {} for the
configuration.

• s3MonitoringConfiguration - To remove s3MonitoringConfiguration, pass an empty
declaration {} for the configuration.

Example override

The following example shows different operations you can perform during job submission at
start-job-run.

aws emr-serverless start-job-run \
 --application-id your-application-id \
 --execution-role-arn your-job-role-arn \
 --job-driver '{
 "sparkSubmit": {
 "entryPoint": "s3://us-east-1.elasticmapreduce/emr-containers/samples/
wordcount/scripts/wordcount.py",
 "entryPointArguments": ["s3://amzn-s3-demo-destination-bucket1/
wordcount_output"]
 }
 }' \
 --configuration-overrides '{
 "applicationConfiguration": [
 {
 // Override existing configuration for spark-defaults in the
 application
 "classification": "spark-defaults",
 "properties": {
 "spark.driver.cores": "2",

Default app configuration 43

Amazon EMR Amazon EMR Serverless User Guide

 "spark.executor.cores": "1",
 "spark.driver.memory": "4G",
 "spark.executor.memory": "4G"
 }
 },
 {
 // Add configuration for spark-executor-log4j2
 "classification": "spark-executor-log4j2",
 "properties": {
 "rootLogger.level": "error",
 "logger.IdentifierForClass.name": "classpathForSettingLogger",
 "logger.IdentifierForClass.level": "info"
 }
 },
 {
 // Remove existing configuration for spark-driver-log4j2 from the
 application
 "classification": "spark-driver-log4j2",
 "properties": {}
 }
],
 "monitoringConfiguration": {
 "managedPersistenceMonitoringConfiguration": {
 // Override existing configuration for managed persistence
 "enabled": true
 },
 "s3MonitoringConfiguration": {
 // Remove configuration of S3 monitoring
 },
 "cloudWatchLoggingConfiguration": {
 // Add configuration for CloudWatch logging
 "enabled": true
 }
 }
 }'

At the time of job execution, the following classifications and configurations will apply based
on the priority override ranking described in Hive configuration override parameter and Spark
configuration override parameter.

• The classification spark-defaults will be updated with the properties specified at the job
level. Only the properties included in StartJobRun would be considered for this classification.

Default app configuration 44

Amazon EMR Amazon EMR Serverless User Guide

• The classification spark-executor-log4j2 will be added in the existing list of classifications.

• The classification spark-driver-log4j2 will be removed.

• The configurations for managedPersistenceMonitoringConfiguration will be updated
with configurations at job level.

• The configurations for s3MonitoringConfiguration will be removed.

• The configurations for cloudWatchLoggingConfiguration will be added to existing
monitoring configurations.

Customizing an EMR Serverless image

Starting with Amazon EMR 6.9.0, you can use custom images to package application dependencies
and runtime environments into a single container with Amazon EMR Serverless. This simplifies
how you manage workload dependencies and makes your packages more portable. When you
customize your EMR Serverless image, it provides the following benefits:

• Installs and configures packages that are optimized to your workloads. These packages might
not be widely available in the public distribution of Amazon EMR runtime environments.

• Integrates EMR Serverless with current established build, test, and deployment processes within
your organization, including local development and testing.

• Applies established security processes, such as image scanning, that meet compliance and
governance requirements within your organization.

• Lets you use your own versions of JDK and Python for your applications.

EMR Serverless provides images that you can use as your base when you create your own images.
The base image provides the essential jars, configuration, and libraries for the image to interact
with EMR Serverless. You can find the base image in the Amazon ECR Public Gallery. Use the image
that matches your application type (Spark or Hive) and release version. For example, if you create
an application on Amazon EMR release 6.9.0, use the following images.

Type Image

Spark public.ecr.aws/emr-serverless/
spark/emr-6.9.0:latest

Customizing an image 45

https://gallery.ecr.aws/emr-serverless/

Amazon EMR Amazon EMR Serverless User Guide

Type Image

Hive public.ecr.aws/emr-serverless/
hive/emr-6.9.0:latest

Prerequisites

Before you create an EMR Serverless custom image, complete these prerequisites.

1. Create an Amazon ECR repository in the same AWS Region that you use to launch EMR
Serverless applications. To create an Amazon ECR private repository, see Creating a private
repository.

2. To grant users access to your Amazon ECR repository, add the following policies to users and
roles that create or update EMR Serverless applications with images from this repository.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ECRRepositoryListGetPolicy",
 "Effect": "Allow",
 "Action": [
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage",
 "ecr:DescribeImages"
],
 "Resource": "ecr-repository-arn"
 }
]
}

For more examples of Amazon ECR identity-based policies, see Amazon Elastic Container
Registry identity-based policy examples.

Step 1: Create a custom image from EMR Serverless base images

First, create a Dockerfile that begins with a FROM instruction that uses your preferred base image.
After the FROM instruction, you can include any modification that you want to make to the image.

Prerequisites 46

https://docs.aws.amazon.com/AmazonECR/latest/userguide/repository-create.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/repository-create.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/security_iam_id-based-policy-examples.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/security_iam_id-based-policy-examples.html
https://docs.docker.com/engine/reference/builder/

Amazon EMR Amazon EMR Serverless User Guide

The base image automatically sets the USER to hadoop. This setting might not have permissions
for all the modifications you include. As a workaround, set the USER to root, modify your image,
and then set the USER back to hadoop:hadoop. To see samples for common use cases, see Using
custom images with EMR Serverless.

Dockerfile
FROM public.ecr.aws/emr-serverless/spark/emr-6.9.0:latest

USER root
MODIFICATIONS GO HERE

EMRS will run the image as hadoop
USER hadoop:hadoop

After you have the Dockerfile, build the image with the following command.

build the docker image
docker build . -t aws-account-id.dkr.ecr.region.amazonaws.com/my-
repository[:tag]or[@digest]

Step 2: Validate image locally

EMR Serverless provides an offline tool that can statically check your custom image to validate
basic files, environment variables, and correct image configurations. For information on how to
install and run the tool, see the Amazon EMR Serverless Image CLI GitHub.

After you install the tool, run the following command to validate an image:

amazon-emr-serverless-image \
validate-image -r emr-6.9.0 -t spark \
-i aws-account-id.dkr.ecr.region.amazonaws.com/my-repository:tag/@digest

You should see an output similar to the following.

Amazon EMR Serverless - Image CLI
Version: 0.0.1
... Checking if docker cli is installed
... Checking Image Manifest
[INFO] Image ID: 9e2f4359cf5beb466a8a2ed047ab61c9d37786c555655fc122272758f761b41a

Step 2: Validate image locally 47

https://github.com/awslabs/amazon-emr-serverless-image-cli

Amazon EMR Amazon EMR Serverless User Guide

[INFO] Created On: 2022-12-02T07:46:42.586249984Z
[INFO] Default User Set to hadoop:hadoop : PASS
[INFO] Working Directory Set to : PASS
[INFO] Entrypoint Set to /usr/bin/entrypoint.sh : PASS
[INFO] HADOOP_HOME is set with value: /usr/lib/hadoop : PASS
[INFO] HADOOP_LIBEXEC_DIR is set with value: /usr/lib/hadoop/libexec : PASS
[INFO] HADOOP_USER_HOME is set with value: /home/hadoop : PASS
[INFO] HADOOP_YARN_HOME is set with value: /usr/lib/hadoop-yarn : PASS
[INFO] HIVE_HOME is set with value: /usr/lib/hive : PASS
[INFO] JAVA_HOME is set with value: /etc/alternatives/jre : PASS
[INFO] TEZ_HOME is set with value: /usr/lib/tez : PASS
[INFO] YARN_HOME is set with value: /usr/lib/hadoop-yarn : PASS
[INFO] File Structure Test for hadoop-files in /usr/lib/hadoop: PASS
[INFO] File Structure Test for hadoop-jars in /usr/lib/hadoop/lib: PASS
[INFO] File Structure Test for hadoop-yarn-jars in /usr/lib/hadoop-yarn: PASS
[INFO] File Structure Test for hive-bin-files in /usr/bin: PASS
[INFO] File Structure Test for hive-jars in /usr/lib/hive/lib: PASS
[INFO] File Structure Test for java-bin in /etc/alternatives/jre/bin: PASS
[INFO] File Structure Test for tez-jars in /usr/lib/tez: PASS

Overall Custom Image Validation Succeeded.

Step 3: Upload the image to your Amazon ECR repository

Push your Amazon ECR image to your Amazon ECR repository with the following commands.
Ensure you have the correct IAM permissions to push the image to your repository. For more
information, see Pushing an image in the Amazon ECR User Guide.

login to ECR repo
aws ecr get-login-password --region region | docker login --username AWS --password-
stdin aws-account-id.dkr.ecr.region.amazonaws.com

push the docker image
docker push aws-account-id.dkr.ecr.region.amazonaws.com/my-repository:tag/@digest

Step 4: Create or update an application with custom images

Choose the AWS Management Console tab or AWS CLI tab according to how you want to launch
your application, then complete the following steps.

Step 3: Upload the image to your Amazon ECR repository 48

https://docs.aws.amazon.com/AmazonECR/latest/userguide/image-push.html

Amazon EMR Amazon EMR Serverless User Guide

Console

1. Sign in to the EMR Studio console at https://console.aws.amazon.com/emr. Navigate to
your application, or create a new application with the instructions in Create an application.

2. To specify custom images when you create or update an EMR Serverless application, select
Custom settings in the application setup options.

3. In the Custom image settings section, select the Use the custom image with this
application check box.

4. Paste the Amazon ECR image URI into the Image URI field. EMR Serverless uses this image
for all worker types for the application. Alternatively, you can choose Different custom
images and paste different Amazon ECR image URIs for each worker type.

CLI

• Create an application with the image-configuration parameter. EMR Serverless applies
this setting to all worker types.

aws emr-serverless create-application \
--release-label emr-6.9.0 \
--type SPARK \
--image-configuration '{
 "imageUri": "aws-account-id.dkr.ecr.region.amazonaws.com/my-repository:tag/
@digest"
}'

To create an application with different image settings for each worker type, use the
worker-type-specifications parameter.

aws emr-serverless create-application \
--release-label emr-6.9.0 \
--type SPARK \
--worker-type-specifications '{
 "Driver": {
 "imageConfiguration": {
 "imageUri": "aws-account-id.dkr.ecr.region.amazonaws.com/my-
repository:tag/@digest"
 }
 },
 "Executor" : {

Step 4: Create or update an application with custom images 49

https://console.aws.amazon.com/emr
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/studio.html#studio-create-app

Amazon EMR Amazon EMR Serverless User Guide

 "imageConfiguration": {
 "imageUri": "aws-account-id.dkr.ecr.region.amazonaws.com/my-
repository:tag/@digest"
 }
 }
}'

To update an application, use the image-configuration parameter. EMR Serverless
applies this setting to all worker types.

aws emr-serverless update-application \
--application-id application-id \
--image-configuration '{
 "imageUri": "aws-account-id.dkr.ecr.region.amazonaws.com/my-repository:tag/
@digest"
}'

Step 5: Allow EMR Serverless to access the custom image repository

Add the following resource policy to the Amazon ECR repository to allow the EMR Serverless
service principal to use the get, describe, and download requests from this repository.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Emr Serverless Custom Image Support",
 "Effect": "Allow",
 "Principal": {
 "Service": "emr-serverless.amazonaws.com"
 },
 "Action": [
 "ecr:BatchGetImage",
 "ecr:DescribeImages",
 "ecr:GetDownloadUrlForLayer"
],
 "Condition":{
 "StringEquals":{
 "aws:SourceArn": "arn:aws:emr-serverless:region:aws-account-id:/
applications/application-id"
 }

Step 5: Allow EMR Serverless to access the custom image repository 50

Amazon EMR Amazon EMR Serverless User Guide

 }
 }
]
}

As a security best practice, add an aws:SourceArn condition key to the repository policy. The IAM
global condition key aws:SourceArn ensures that EMR Serverless uses the repository only for an
application ARN. For more information on Amazon ECR repository policies, see Creating a private
repository.

Considerations and limitations

When you work with custom images, consider the following:

• Use the correct base image that matches the type (Spark or Hive) and release label (for example,
emr-6.9.0) for your application.

• EMR Serverless ignores [CMD] or [ENTRYPOINT] instructions in the Docker file. Use common
instructions in the Docker file, such as [COPY], [RUN], and [WORKDIR].

• You shouldn't modify environment variables JAVA_HOME, SPARK_HOME, HIVE_HOME, TEZ_HOME
when you create a custom image.

• Custom images can't exceed 10 GB in size.

• If you modify binaries or jars in the Amazon EMR base images, it might cause application or job
launch failures.

• The Amazon ECR repository should be in the same AWS Region that you use to launch EMR
Serverless applications.

Configuring VPC access for EMR Serverless applications to
connect to data

You can configure EMR Serverless applications to connect to your data stores within your VPC, such
as Amazon Redshift clusters, Amazon RDS databases or Amazon S3 buckets with VPC endpoints.
Your EMR Serverless application has outbound connectivity to the data stores within your VPC. By
default, EMR Serverless blocks inbound access to your applications to improve security.

Considerations and limitations 51

https://docs.aws.amazon.com/AmazonECR/latest/userguide/repository-policies.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/repository-policies.html

Amazon EMR Amazon EMR Serverless User Guide

Note

You must configure VPC access if you want to use an external Hive metastore database for
your application. For information about how to configure an external Hive metastore, see
Metastore configuration.

Create application

On the Create application page, you can choose custom settings and specify the VPC, subnets and
security groups that EMR Serverless applications can use.

VPCs

Choose the name of the virtual private cloud (VPC) that contains your data stores. The Create
application page lists all VPCs for your chosen AWS Region.

Subnets

Choose the subnets within the VPC that contains your data store. The Create application page lists
all subnets for the data stores in your VPC. Both public and private subnets are supported. You can
pass either private or public subnets to your applications. The choice of whether to have a public or
private subnet has a few associated considerations to be aware of.

For private subnets:

• The associated route tables must not have internet gateways.

• For outbound connectivity to the internet, if needed, configure outbound routes using a NAT
Gateway. To configure a NAT Gateway, see NAT gateways.

• For Amazon S3 connectivity, configure either a NAT Gateway or a VPC endpoint. To configure an
S3 VPC endpoint, see Create a gateway endpoint.

• For connectivity to other AWS services outside the VPC, such as to Amazon DynamoDB, configure
either VPC endpoints or a NAT gateway. To configure VPC endpoints for AWS services, see Work
with VPC endpoints.

Create application 52

https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/metastore-config.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html#nat-gateway-working-with
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-s3.html#create-gateway-endpoint-s3
https://docs.aws.amazon.com/vpc/latest/privatelink/what-is-privatelink.html#working-with-privatelink
https://docs.aws.amazon.com/vpc/latest/privatelink/what-is-privatelink.html#working-with-privatelink

Amazon EMR Amazon EMR Serverless User Guide

Note

When you set up an Amazon EMR Serverless application in a private subnet, we
recommend that you also set up VPC endpoints for Amazon S3. If your EMR Serverless
application is in a private subnet without VPC endpoints for Amazon S3, you could incur
additional NAT gateway charges that are associated with S3 traffic. This is because the
traffic between your EMR application and Amazon S3 will not stay within your VPC when
VPC endpoints aren't configured.

For public subnets:

• These have a route to an Internet Gateway.

• You must ensure proper security group configurations to control outbound traffic.

Workers can connect to the data stores within your VPC through outbound traffic. By default, EMR
Serverless blocks inbound access to workers. This is to improve security.

When you use AWS Config, EMR Serverless creates an elastic network interface item
record for every worker. To avoid costs related to this resource, consider turning off
AWS::EC2::NetworkInterface in AWS Config.

Note

We recommend that you select multiple subnets across multiple Availability Zones. This is
because the subnets that you choose determine the Availability Zones available for an EMR
Serverless application to launch. Each worker consumes an IP address on the subnet where
it is launched. Please ensure that the specified subnets have sufficient IP addresses for the
number of workers you plan to launch. For more information on subnet planning, see the
section called “Best practices for subnet planning”.

Considerations and limitations for subnets

• EMR Serverless with public subnets does not support AWS Lake Formation.

• Inbound traffic isn't supported for public subnets.

Create application 53

Amazon EMR Amazon EMR Serverless User Guide

Security groups

Choose one or more security groups that can communicate with your data stores. The Create
application page lists all security groups in your VPC. EMR Serverless associates these security
groups with elastic network interfaces that are attached to your VPC subnets.

Note

We recommend that you create a separate security group for EMR Serverless applications.
EMR Serverless will not allow you to Create/Update/Start application if security
groups have ports open to the public internet on 0.0.0.0/0 or the ::/0 range. This
provides enhanced security, isolation, and makes managing network rules more efficient.
For example, this blocks unexpected traffic to workers with public IP addresses. To
communicate with Amazon Redshift clusters, for instance, you can define the traffic rules
between Redshift and EMR Serverless security groups, as demonstrated in the example
below.

Example Example — Communication with Amazon Redshift clusters

1. Add a rule for inbound traffic to the Amazon Redshift security group from one of the EMR
Serverless security groups.

Type Protocol Port range Source

All TCP TCP 5439 emr-serve
rless-sec
urity-group

2. Add a rule for outbound traffic from one of the EMR Serverless security groups. You can do
this in one of two ways. First, you can open outbound traffic to all ports.

Type Protocol Port range Destination

All traffic TCP ALL 0.0.0.0/0

Create application 54

Amazon EMR Amazon EMR Serverless User Guide

Alternatively, you can restrict outbound traffic to Amazon Redshift clusters. This is useful only
when the application must communicate with Amazon Redshift clusters and nothing else.

Type Protocol Port range Source

All TCP TCP 5439 redshift-
security-
group

Configure application

You can change the network configuration for an existing EMR Serverless application from the
Configure application page.

View job run details

On the Job run detail page, you can view the subnet used by your job for a specific run. Note that
a job runs only in one subnet selected from the specified subnets.

Best practices for subnet planning

AWS resources are created in a subnet which is a subset of available IP addresses in an Amazon
VPC. For example, a VPC with a /16 netmask has up to 65,536 available IP addresses which can be
broken into multiple smaller networks using subnet masks. As an example, you can split this range
into two subnets with each using /17 mask and 32,768 available IP addresses. A subnet resides
within an Availability Zone and cannot span across zones.

The subnets should be designed keeping in mind your EMR Serverless application scaling limits.
For example, if you have an application requesting 4 vCpu workers and can scale up to 4,000 vCpu,
then your application will require at most 1,000 workers for a total of 1,000 network interfaces. We
recommend that you create subnets across multiple Availability Zones. This allows EMR Serverless
to retry your job or provision pre-initialized capacity in a different Availability Zone in an unlikely
event when an Availability Zone fails. Therefore, each subnet in at least two Availability Zones
should have more than 1,000 available IP addresses.

You need subnets with mask size lower than or equal to 22 to provision 1,000 network interfaces.
Any mask greater than 22 will not meet the requirement. For example, a subnet mask of /23

Configure application 55

Amazon EMR Amazon EMR Serverless User Guide

provides 512 IP addresses, while a mask of /22 provides 1024 and a mask of /21 provides 2048 IP
addresses. Below is an example of 4 subnets with /22 mask in a VPC of /16 netmask that can be
allocated to different Availability Zones. There is a difference of five between available and usable
IP addresses because first four IP addresses and last IP address in each subnet is reserved by AWS.

Subnet ID Subnet
Address

Subnet Mask IP Address
Range

Available IP
Addresses

Usable IP
Addresses

1 10.0.0.0 255.255.2
52.0/22

10.0.0.0 -
10.0.3.255

1,024 1,019

2 10.0.4.0 255.255.2
52.0/22

10.0.4.0 -
10.0.7.255

1,024 1,019

3 10.0.8.0 255.255.2
52.0/22

10.0.4.0 -
10.0.7.255

1,024 1,019

4 10.0.12.0 255.255.2
52.0/22

10.0.12.0 -
10.0.15.255

1,024 1,019

You should evaluate if your workload is best suited for larger worker sizes. Using larger worker sizes
requires fewer network interfaces. For example, using 16vCpu workers with an application scaling
limit of 4,000 vCpu will require at most 250 workers for a total of 250 available IP addresses to
provision network interfaces. You need subnets in multiple Availability Zones with mask size lower
than or equal to 24 to provision 250 network interfaces. Any mask size greater than 24 offers less
than 250 IP addresses.

If you share subnets across multiple applications, each subnet should be designed keeping in mind
collective scaling limits of all your applications. For example, if you have 3 applications requesting
4 vCpu workers and each can scale up to 4000 vCpu with 12,000 vCpu account-level service based
quota, each subnet will require 3000 available IP addresses. If the VPC that you want to use doesn't
have a sufficient number of IP addresses, try to increase the number of available IP addresses. You
can do this by associating additional Classless Inter-Domain Routing (CIDR) blocks with your VPC.
For more information, see Associate additional IPv4 CIDR blocks with your VPC in the Amazon VPC
User Guide.

You can use one of the many tools available online to quickly generate subnet definitions and
review their available range of IP addresses.

Best practices for subnet planning 56

https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#add-ipv4-cidr

Amazon EMR Amazon EMR Serverless User Guide

Amazon EMR Serverless architecture options

The instruction set architecture of your Amazon EMR Serverless application determines the type
of processors that the application uses to run the job. Amazon EMR provides two architecture
options for your application: x86_64 and arm64. EMR Serverless automatically updates to the
latest generation of instances as they become available, so your applications can use the newer
instances without requiring additional effort from you.

Topics

• Using x86_64 architecture

• Using arm64 architecture (Graviton)

• Launching new applications with Graviton support

• Configuring existing applications to use Graviton

• Considerations when using Graviton

Using x86_64 architecture

The x86_64 architecture is also known as x86 64-bit or x64. x86_64 is the default option for EMR
Serverless applications. This architecture uses x86-based processors and is compatible with most
third-party tools and libraries.

Most applications are compatible with the x86 hardware platform and can run successfully on the
default x86_64 architecture. However, if your application is compatible with 64-bit ARM, then you
can switch to arm64 to use Graviton processors for improved performance, compute power, and
memory. It costs less to run instances on arm64 architecture than when you run instances of equal
size on x86 architecture.

Using arm64 architecture (Graviton)

AWS Graviton processors are custom designed by AWS with 64-bit ARM Neoverse cores and
leverage the arm64 architecture (also known as Arch64 or 64-bit ARM). The AWS Graviton line
of processors available on EMR Serverless include Graviton3 and Graviton2 processors. These
processors deliver superior price-performance for Spark and Hive workloads compared to
equivalent workloads that run on the x86_64 architecture. EMR Serverless automatically uses the
latest generation of processors when available without any effort from your side to upgrade to the
latest generation of processors.

Architecture options 57

Amazon EMR Amazon EMR Serverless User Guide

Launching new applications with Graviton support

Use one of the following methods to launch an application that uses the arm64 architecture.

AWS CLI

To launch an application using Graviton processors from AWS CLI, specify ARM64 as the
architecture parameter in the create-application API. Provide the appropriate values
for your application in the other parameters.

aws emr-serverless create-application \
 --name my-graviton-app \
 --release-label emr-6.8.0 \
 --type "SPARK" \
 --architecture "ARM64" \
 --region us-west-2

EMR Studio

To launch an application using Graviton processors from EMR Studio, choose arm64 as the
Architecture option when you create or update an application.

Configuring existing applications to use Graviton

You can configure your existing Amazon EMR Serverless applications to use the Graviton (arm64)
architecture with the SDK, AWS CLI, or EMR Studio.

To convert an existing application from x86 to arm64

1. Confirm that you are using the latest major version of the AWS CLI/SDK that supports the
architecture parameter.

2. Confirm that there are no jobs running and then stop the application.

aws emr-serverless stop-application \
 --application-id application-id \
 --region us-west-2

3. To update the application to use Graviton, specify ARM64 for the architecture parameter in
the update-application API.

Launch new apps with Graviton 58

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/emr-serverless/index.html#cli-aws-emr-serverless

Amazon EMR Amazon EMR Serverless User Guide

aws emr-serverless update-application \
 --application-id application-id \
 --architecture 'ARM64' \
 --region us-west-2

4. To verify that the CPU architecture of the application is now ARM64, use the get-
application API.

aws emr-serverless get-application \
 --application-id application-id \
 --region us-west-2

5. When you're ready, restart the application.

aws emr-serverless start-application \
 --application-id application-id \
 --region us-west-2

Considerations when using Graviton

Before you launch an EMR Serverless application using arm64 for Graviton support, confirm the
following.

Library compatibility

When you select Graviton (arm64) as an architecture option, ensure that third-party packages
and libraries are compatible with the 64-bit ARM architecture. For information on how to
package Python libraries into a Python virtual environment that is compatible with your selected
architecture, see Using Python libraries with EMR Serverless.

To learn more about how to configure a Spark or Hive workload to use 64-bit ARM, see the AWS
Graviton Getting Started repository on GitHub. This repository contains essential resources that
can help you get started with the ARM-based Graviton.

Job concurrency and queuing for an EMR Serverless application

Starting with Amazon EMR version 7.0.0 and later, you can specify job run queue timeout and
concurrency configuration for your application. When you specify this configuration, Amazon EMR

Considerations 59

https://github.com/aws/aws-graviton-getting-started
https://github.com/aws/aws-graviton-getting-started

Amazon EMR Amazon EMR Serverless User Guide

Serverless starts by queuing your job and begins execution based on concurrency utilization on
your application. For example, if your job run concurrency is 10, only ten jobs are run at a time on
your application. Remaining jobs are queued until one of the running jobs terminates. If queue
timeout is reached earlier, your job times out. For more information, see Job run states.

Key benefits of concurrency and queuing

Job concurrency and queuing provides the following benefits when many job submissions are
required:

• It helps control concurrent executing jobs to efficiently use your application level capacity limits.

• The queue can contain a sudden burst of job submissions, with a configurable timeout setting.

Getting started with concurrency and queuing

The following procedures show a couple different ways to implement concurrency and queuing.

Using the AWS CLI

1. Create an Amazon EMR Serverless application with queue timeout and concurrent job runs:

aws emr-serverless create-application \
--release-label emr-7.0.0 \
--type SPARK \
--scheduler-configuration '{"maxConcurrentRuns": 1, "queueTimeoutMinutes": 30}'

2. Update an application to change the job queue timeout and concurrency:

aws emr-serverless update-application \
--application-id application-id \
--scheduler-configuration '{"maxConcurrentRuns": 5, "queueTimeoutMinutes": 30}'

Note

You can update your existing application to enable job concurrency and queuing. To do
this, the application must have a release label emr-7.0.0 or later.

Using the AWS Management Console

Key benefits of concurrency and queuing 60

job-states.html

Amazon EMR Amazon EMR Serverless User Guide

The following steps show you how to get started with job concurrency and queuing, using the AWS
Management Console:

1. Go to EMR Studio and choose to create an application with release label EMR-7.0.0 or higher.

2. Under Application setup options, select the option Use custom settings.

3. Under Additional configurations there is a section for Job Run Settings. Select the option
Enable job concurrency to enable the feature.

4. Once selected, you can select both Concurrent job runs and Queue timeout to configure the
number of concurrent job runs and queue timeout, respectively. If you do not enter values for
these settings, the default values are used.

5. Choose Create Application and the application will be created with this feature enabled.
To verify, go to the dashboard, select your application and check under properties tab to
determine if the feature is enabled.

Following configuration, you can submit jobs with this feature enabled.

Considerations for concurrency and queuing

Take the following into consideration when you implement concurrency and queuing:

• Job concurrency and queuing is supported on Amazon EMR release 7.0.0 and higher.

• Job concurrency and queuing is enabled by default on Amazon EMR release 7.3.0 and higher.

• You can update concurrency for an application in the STARTED state.

• The valid range for maxConcurrentRuns is 1 to 1000, and for queueTimeoutMinutes it is 15
to 720.

• A maximum of 2000 jobs can be in the QUEUED state for an account.

• Concurrency and queuing applies to batch and streaming jobs. It cannot be used for interactive
jobs. For more information, see Run interactive workloads with EMR Serverless through EMR
Studio.

Considerations for concurrency and queuing 61

interactive-workloads.html
interactive-workloads.html

Amazon EMR Amazon EMR Serverless User Guide

Get data into S3 Express One Zone with EMR Serverless

With Amazon EMR releases 7.2.0 and higher, you can use EMR Serverless with the Amazon S3
Express One Zone storage class for improved performance when you run jobs and workloads. S3
Express One Zone is a a high-performance, single-zone Amazon S3 storage class that delivers
consistent, single-digit millisecond data access for most latency-sensitive applications. At the time
of its release, S3 Express One Zone delivers the lowest latency and highest performance cloud
object storage in Amazon S3.

Prerequisites

• S3 Express One Zone permissions – When S3 Express One Zone initially performs an action like
GET, LIST, or PUT on an S3 object, the storage class calls CreateSession on your behalf. Your
IAM policy must allow the s3express:CreateSession permission so that the S3A connector
can invoke the CreateSession API. For an example policy with this permission, see Getting
started with S3 Express One Zone.

• S3A connector – To configure Spark to access data from an Amazon S3 bucket that uses the S3
Express One Zone storage class, you must use the Apache Hadoop connector S3A. To use the
connector, ensure all S3 URIs use the s3a scheme. If they don’t, you can change the filesystem
implementation that you use for s3 and s3n schemes.

To change the s3 scheme, specify the following cluster configurations:

[
 {
 "Classification": "core-site",
 "Properties": {
 "fs.s3.impl": "org.apache.hadoop.fs.s3a.S3AFileSystem",
 "fs.AbstractFileSystem.s3.impl": "org.apache.hadoop.fs.s3a.S3A"
 }
 }
]

To change the s3n scheme, specify the following cluster configurations:

[
 {

Prerequisites 62

https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-express-one-zone.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-express-one-zone.html

Amazon EMR Amazon EMR Serverless User Guide

 "Classification": "core-site",
 "Properties": {
 "fs.s3n.impl": "org.apache.hadoop.fs.s3a.S3AFileSystem",
 "fs.AbstractFileSystem.s3n.impl": "org.apache.hadoop.fs.s3a.S3A"
 }
 }
]

Getting started with S3 Express One Zone

Follow these steps to get started with S3 Express One Zone.

1. Create a VPC endpoint. Add the endpoint com.amazonaws.us-west-2.s3express to the
VPC endpoint.

2. Follow Getting started with Amazon EMR Serverless to create an application with Amazon
EMR release label 7.2.0 or higher.

3. Configure your application to use the newly created VPC endpoint, a private subnet group, and
a security group.

4. Add the CreateSession permission to your job execution role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Resource": "*",
 "Action": [
 "s3express:CreateSession"
]
 }
]
}

5. Run your job. Note that you must use the S3A scheme to access S3 Express One Zone buckets.

aws emr-serverless start-job-run \
--application-id <application-id> \
--execution-role-arn <job-role-arn> \
--name <job-run-name> \
--job-driver '{

Getting started with S3 Express One Zone 63

https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#create-interface-endpoint-aws
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/getting-started.html
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/vpc-access.html

Amazon EMR Amazon EMR Serverless User Guide

 "sparkSubmit": {

 "entryPoint": "s3a://<DOC-EXAMPLE-BUCKET>/scripts/wordcount.py",
 "entryPointArguments":["s3a://<DOC-EXAMPLE-BUCKET>/emr-serverless-spark/output"],
 "sparkSubmitParameters": "--conf spark.executor.cores=4
 --conf spark.executor.memory=8g --conf spark.driver.cores=4
 --conf spark.driver.memory=8g --conf spark.executor.instances=2
 --conf spark.hadoop.fs.s3a.change.detection.mode=none
 --conf spark.hadoop.fs.s3a.endpoint.region={<AWS_REGION>}
 --conf spark.hadoop.fs.s3a.select.enabled=false
 --conf spark.sql.sources.fastS3PartitionDiscovery.enabled=false
 }'

Getting started with S3 Express One Zone 64

Amazon EMR Amazon EMR Serverless User Guide

Running jobs

After you provision your application, you can submit jobs to the application. This section covers
how to use the AWS CLI to run these jobs. This section also identifies the default values for each
type of application that is available on EMR Serverless.

Topics

• Job run states

• Running jobs from the EMR Studio console

• Running jobs from the AWS CLI

• Using shuffle-optimized disks

• Streaming jobs for processing continuously streamed data

• Using Spark configurations when you run EMR Serverless jobs

• Using Hive configurations when you run EMR Serverless jobs

• EMR Serverless Job resiliency

• Metastore configuration for EMR Serverless

• Accessing S3 data in another AWS account from EMR Serverless

• Troubleshooting errors in EMR Serverless

Job run states

When you submit a job run to an Amazon EMR Serverless job queue, the job run enters the
SUBMITTED state. A job state's passes from SUBMITTED through RUNNING until it reaches FAILED,
SUCCESS, or CANCELLING.

Job runs can have the following states:

State Description

Submitted The initial job state when you submit a job
run to EMR Serverless. The job waits to be
scheduled for the application. EMR Serverless
begins to prioritize and schedule the job run.

Job run states 65

Amazon EMR Amazon EMR Serverless User Guide

State Description

Queued The job run waits in this state when applicati
on level job run concurrency is fully occupied.
For more information about queuing and
concurrency, see Job concurrency and queuing
for an EMR Serverless application.

Pending The scheduler is evaluating the job run
to prioritize and schedule the run for the
application.

Scheduled EMR Serverless has scheduled the job run for
the application, and is allocating resources to
execute the job.

Running EMR Serverless has allocated the resources
that the job initially needs, and the job is
running in the application. In Spark applicati
ons, this means that the Spark driver process
is in the running state.

Failed EMR Serverless failed to submit the job run to
the application, or it completed unsuccessfully.
See StateDetails for additional informati
on about this job failure.

Success The job run has completed successfully.

Cancelling The CancelJobRun API has requested job
run cancellation, or the job run has timed out.
EMR Serverless is trying to cancel the job in
the application and release the resources.

Cancelled The job run was cancelled successfully, and the
resources that it used have been released.

Job run states 66

Amazon EMR Amazon EMR Serverless User Guide

Running jobs from the EMR Studio console

You can submit job runs to EMR Serverless applications and view the jobs from the EMR Studio
console. To create or navigate to your EMR Serverless application on the EMR Studio console,
follow the instructions in Getting started from the console.

Submit a job

On the Submit job page, you can submit a job to an EMR Serverless application as follows.

Spark

1. In the Name field, enter a name for your job run.

2. In the Runtime role field, enter the name of the IAM role that your EMR Serverless
application can assume for the job run. To learn more about runtime roles, see Job runtime
roles for Amazon EMR Serverless.

3. In the Script location field, enter the Amazon S3 location for the script or JAR that you
want to run. For Spark jobs, the script can be a Python (.py) file or a JAR (.jar) file.

4. If your script location is a JAR file, enter the class name that is the entry point for the job in
the Main class field.

5. (Optional) Enter values for the remaining fields.

• Script arguments — Enter any arguments that you want to pass to your main JAR or
Python script. Your code reads these parameters. Separate each argument in the array by
a comma.

• Spark properties — Expand the Spark properties section and enter any Spark
configuration parameters in this field.

Note

If you specify Spark driver and executor sizes, you must take memory
overhead into account. Specify memory overhead values in the properties
spark.driver.memoryOverhead and spark.executor.memoryOverhead.
Memory overhead has a default value of 10% of container memory, with
a minimum of 384 MB. The executor memory and the memory overhead
together can't exceed the worker memory. For example, the maximum
spark.executor.memory on a 30 GB worker must be 27 GB.

Using the EMR Studio console 67

https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/getting-started.html#gs-console

Amazon EMR Amazon EMR Serverless User Guide

• Job configuration — Specify any job configuration in this field. You can use these job
configurations to override the default configurations for applications.

• Additional settings — Active or deactivate the AWS Glue Data Catalog as a metastore
and modify application log settings. To learn more about metastore configurations, see
Metastore configuration for EMR Serverless. To learn more about application logging
options, see Storing logs.

• Tags — Assign custom tags to the application.

6. Choose Submit job.

Hive

1. In the Name field, enter a name for your job run.

2. In the Runtime role field, enter the name of the IAM role that your EMR Serverless
application can assume for the job run.

3. In the Script location field, enter the Amazon S3 location for the script or JAR that you
want to run. For Hive jobs, the script must be a Hive (.sql) file.

4. (Optional) Enter values for the remaining fields.

• Initialization script location – Enter the location of the script that initializes tables
before the Hive script runs.

• Hive properties – Expand the Hive properties section and enter any Hive configuration
parameters in this field.

• Job configuration – Specify any job configuration. You can use these job
configurations to override the default configurations for applications. For Hive jobs,
hive.exec.scratchdir and hive.metastore.warehouse.dir are required
properties in the hive-site configuration.

{
 "applicationConfiguration": [
 {
 "classification": "hive-site",
 "configurations": [],
 "properties": {
 "hive.exec.scratchdir": "s3://DOC-EXAMPLE_BUCKET/hive/
scratch",
 "hive.metastore.warehouse.dir": "s3://DOC-EXAMPLE_BUCKET/hive/
warehouse"

Submit a job 68

Amazon EMR Amazon EMR Serverless User Guide

 }
 }
],
 "monitoringConfiguration": {}
}

• Additional settings — Activate or deactivate the AWS Glue Data Catalog as a metastore
and modify application log settings. To learn more about metastore configurations, see
Metastore configuration for EMR Serverless. To learn more about application logging
options, see Storing logs.

• Tags — Assign any custom tags to the application.

5. Choose Submit job.

View job runs

From the Job runs tab on an application’s Details page, you can view job runs and perform the
following actions for job runs.

Cancel job — To cancel a job run that is in the RUNNING state, choose this option. To learn more
about job run transitions, see Job run states.

Clone job — To clone a previous job run and resubmit it, choose this option.

Running jobs from the AWS CLI

You can create, describe, and delete individual jobs on the AWS CLI. You can also list all of your jobs
to view them at a glance.

To submit a new job, use start-job-run. Provide the ID of the application that you want to
run, along with job-specific properties. For Spark examples, see Using Spark configurations when
you run EMR Serverless jobs. For Hive examples, see Using Hive configurations when you run EMR
Serverless jobs. This command returns your application-id, ARN, and new job-id.

Each job run has a set timeout duration. If the job run exceeds this duration, EMR Serverless will
automatically cancel it. The default timeout is 12 hours. When you start your job run, you can
configure this timeout setting to a value that meets your job requirements. Configure the value
with the executionTimeoutMinutes property.

aws emr-serverless start-job-run \

View job runs 69

Amazon EMR Amazon EMR Serverless User Guide

 --application-id application-id \
 --execution-role-arn job-role-arn \
 --execution-timeout-minutes 15 \
 --job-driver '{
 "hive": {
 "query": "s3://amzn-s3-demo-bucket/scripts/create_table.sql",
 "parameters": "--hiveconf hive.exec.scratchdir=s3://amzn-s3-demo-bucket/
hive/scratch --hiveconf hive.metastore.warehouse.dir=s3://amzn-s3-demo-bucket/hive/
warehouse"
 }
 }' \
 --configuration-overrides '{
 "applicationConfiguration": [{
 "classification": "hive-site",
 "properties": {
 "hive.client.cores": "2",
 "hive.client.memory": "4GIB"
 }
 }]
}'

To describe a job, use get-job-run. This command returns job-specific configurations and the set
capacity for your new job.

aws emr-serverless get-job-run \
--job-run-id job-id \
--application-id application-id

To list your jobs, use list-job-runs. This command returns an abbreviated set of properties that
includes job type, state, and other high-level attributes. If you don't want to see all of your jobs,
you can specify the maximum number of jobs you want to see, up to 50. The following example
specifies that you want to see your two last job runs.

aws emr-serverless list-job-runs \
--max-results 2 \
--application-id application-id

To cancel a job, use cancel-job-run. Provide the application-id and the job-id of the job
that you want to cancel.

aws emr-serverless cancel-job-run \

Using the AWS CLI 70

Amazon EMR Amazon EMR Serverless User Guide

--job-run-id job-id \
--application-id application-id

For more information on how to run jobs from the AWS CLI, see the EMR Serverless API Reference.

Using shuffle-optimized disks

With Amazon EMR releases 7.1.0 and higher, you can use shuffle-optimized disks when you run
Apache Spark or Hive jobs to improve performance for I/O-intensive workloads. Compared to
standard disks, shuffle-optimized disks provide higher IOPS (I/O operations per second) for faster
data movement and reduced latency during shuffle operations. Shuffle-optimized disks let you
attach disk sizes of up to 2 TB per worker, so you can configure the appropriate capacity for your
workload requirements.

Key benefits

Shuffle-optimized disks provide the following benefits.

• High IOPS performance – shuffle-optimized disks provide higher IOPS than standard disks,
leading to more efficient and rapid data shuffling during Spark and Hive jobs and other shuffle-
intensive workloads.

• Larger disk size – Shuffle-optimized disks support disk sizes from 20GB to 2TB per worker, so
you can choose the appropriate capacity based on your workloads.

Getting started

See the following steps to use shuffle-optimized disks in your workflows.

Spark

1. Create an EMR Serverless release 7.1.0 application with the following command.

aws emr-serverless create-application \
 --type "SPARK" \
 --name my-application-name \
 --release-label emr-7.1.0 \
 --region <AWS_REGION>

Using shuffle-optimized disks 71

https://docs.aws.amazon.com/emr-serverless/latest/APIReference/Welcome.html

Amazon EMR Amazon EMR Serverless User Guide

2. Configure your Spark job to include the parameters spark.emr-
serverless.driver.disk.type and/or spark.emr-
serverless.executor.disk.type to run with shuffle-optimized disks. You can use
either one or both parameters, depending on your use case.

aws emr-serverless start-job-run \
 --application-id application-id \
 --execution-role-arn job-role-arn \
 --job-driver '{
 "sparkSubmit": {
 "entryPoint": "/usr/lib/spark/examples/jars/spark-examples.jar",
 "entryPointArguments": ["1"],
 "sparkSubmitParameters": "--class org.apache.spark.examples.SparkPi
 --conf spark.executor.cores=4
 --conf spark.executor.memory=20g
 --conf spark.driver.cores=4
 --conf spark.driver.memory=8g
 --conf spark.executor.instances=1
 --conf spark.emr-serverless.executor.disk.type=shuffle_optimized"
 }
 }'

For more information, see Spark job properties.

Hive

1. Create an EMR Serverless release 7.1.0 application with the following command.

aws emr-serverless create-application \
 --type "HIVE" \
 --name my-application-name \
 --release-label emr-7.1.0 \
 --region <AWS_REGION>

2. Configure your Hive job to include the parameters hive.driver.disk.type and/or
hive.tez.disk.type to run with shuffle-optimized disks. You can use either one or both
parameters, depending on your use case.

aws emr-serverless start-job-run \
 --application-id application-id \
 --execution-role-arn job-role-arn \

Getting started 72

https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/jobs-spark.html#spark-defaults

Amazon EMR Amazon EMR Serverless User Guide

 --job-driver '{
 "hive": {
 "query": "s3://<DOC-EXAMPLE-BUCKET>/emr-serverless-hive/query/hive-
query.ql",
 "parameters": "--hiveconf hive.log.explain.output=false"
 }
 }' \
 --configuration-overrides '{
 "applicationConfiguration": [{
 "classification": "hive-site",
 "properties": {
 "hive.exec.scratchdir": "s3://<DOC-EXAMPLE-BUCKET>/emr-
serverless-hive/hive/scratch",
 "hive.metastore.warehouse.dir": "s3://<DOC-EXAMPLE-BUCKET>/emr-
serverless-hive/hive/warehouse",
 "hive.driver.cores": "2",
 "hive.driver.memory": "4g",
 "hive.tez.container.size": "4096",
 "hive.tez.cpu.vcores": "1",
 "hive.driver.disk.type": "shuffle_optimized",
 "hive.tez.disk.type": "shuffle_optimized"
 }
 }]
 }'

For more information, Hive job properties.

Configuring an application with pre-initialized capacity

See the following examples to create applications based on Amazon EMR release 7.1.0. These
applications have the following properties:

• 5 pre-initialized Spark drivers, each with 2 vCPU, 4 GB of memory, and 50 GB of shuffle-
optimized disk.

• 50 pre-initialized executors, each with 4 vCPU, 8 GB of memory, and 500 GB of shuffle-optimized
disk.

When this application runs Spark jobs, it first consumes the pre-initialized workers and then scales
the on-demand workers up to the maximum capacity of 400 vCPU and 1024 GB of memory.
Optionally, you can omit capacity for either DRIVER or EXECUTOR.

Getting started 73

https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/jobs-hive.html#hive-defaults

Amazon EMR Amazon EMR Serverless User Guide

Spark

aws emr-serverless create-application \
 --type "SPARK" \
 --name <my-application-name> \
 --release-label emr-7.1.0 \
 --initial-capacity '{
 "DRIVER": {
 "workerCount": 5,
 "workerConfiguration": {
 "cpu": "2vCPU",
 "memory": "4GB",
 "disk": "50GB",
 "diskType": "SHUFFLE_OPTIMIZED"
 }
 },
 "EXECUTOR": {
 "workerCount": 50,
 "workerConfiguration": {
 "cpu": "4vCPU",
 "memory": "8GB",
 "disk": "500GB",
 "diskType": "SHUFFLE_OPTIMIZED"
 }
 }
 }' \
 --maximum-capacity '{
 "cpu": "400vCPU",
 "memory": "1024GB"
 }'

Hive

aws emr-serverless create-application \
 --type "HIVE" \
 --name <my-application-name> \
 --release-label emr-7.1.0 \
 --initial-capacity '{
 "DRIVER": {
 "workerCount": 5,
 "workerConfiguration": {
 "cpu": "2vCPU",
 "memory": "4GB",

Getting started 74

Amazon EMR Amazon EMR Serverless User Guide

 "disk": "50GB",
 "diskType": "SHUFFLE_OPTIMIZED"
 }
 },
 "EXECUTOR": {
 "workerCount": 50,
 "workerConfiguration": {
 "cpu": "4vCPU",
 "memory": "8GB",
 "disk": "500GB",
 "diskType": "SHUFFLE_OPTIMIZED"
 }
 }
 }' \
 --maximum-capacity '{
 "cpu": "400vCPU",
 "memory": "1024GB"
 }'

Streaming jobs for processing continuously streamed data

A streaming job in EMR Serverless is a job mode that lets you analyze and process streaming data
in near real-time. These long-running jobs poll streaming data and continuously process results as
data arrives. Streaming jobs are best suited for tasks that require real-time data processing, such as
near real-time analytics, fraud detection, and recommendations engines. EMR Serverless streaming
jobs provide optimizations, such as built-in job resiliency, real-time monitoring, enhanced log
management, and integration with streaming connectors.

The following are some use cases with streaming jobs:

• Near real-time analytics – streaming jobs in Amazon EMR Serverless let you process streaming
data in near real-time, so you can perform real-time analytics on continuous data streams, such
as log data, sensor data, or clickstream data to derive insights and make timely decisions based
on the latest information.

• Fraud detection – you can use streaming jobs to run near real-time fraud detection in financial
transactions, credit card operations, or online activities when you analyze data streams and
identify suspicious patterns or anomalies as they occur.

Streaming jobs for processing continuously streamed data 75

Amazon EMR Amazon EMR Serverless User Guide

• Recommendation engines – streaming jobs can process user-activity data and update
recommendations models. Doing so opens up possibilities for personalized and real-time
recommendations based on behaviors and preferences.

• Social media analytics – streaming jobs can process social media data, such as tweets,
comments, and posts, so organizations can monitor trends, sentiment analysis, and manage
brand reputation in near real-time.

• Internet of Things (IoT) analytics – streaming jobs can handle and analyze high-velocity
streams of data from IoT devices, sensors, and connected machinery, so you can run anomaly
detection, predictive maintenance, and other IoT analytics use cases.

• Clickstream analysis – streaming jobs can process and analyze clickstream data from websites
or mobile applications. Businesses that use such data can run analytics to learn more about user
behavior, personalize user experiences, and optimize marketing campaigns.

• Log monitoring and analysis – streaming jobs can also process log data from servers,
applications, and network devices. This provides you with anomaly detection, troubleshooting,
and system health and performance.

Key benefits

Streaming jobs in EMR Serverless automatically provide job-resiliency, which is a combination of
the following factors:

• Auto-retry – EMR Serverless automatically retries any jobs that failed without any manual input
from you.

• Availability Zone (AZ) resiliency – EMR Serverless automatically switches streaming jobs to a
healthy AZ if the original AZ experiences issues.

• Log management:

• Log rotation – for more efficient disk storage management, EMR Serverless periodically
rotates logs for long streaming jobs. Doing so prevents log accumulation that might consume
all of the disk space.

• Log compaction – helps you efficiently manage and optimize log files in managed-persistence.
Compaction also improves the debug experience when you use the managed spark history
server.

Supported data sources and data sinks

Streaming jobs for processing continuously streamed data 76

Amazon EMR Amazon EMR Serverless User Guide

EMR Serverless works with a number of input data sources and output data sinks:

• Supported input data sources – Amazon Kinesis Data Streams, Amazon Managed Streaming for
Apache Kafka, and self-managed Apache Kafka clusters. By default, Amazon EMR releases 7.1.0
and higher include the Amazon Kinesis Data Streams connector, so you don't need to build or
download any additional packages.

• Supported output data sinks – AWS Glue Data Catalog tables, Amazon S3, Amazon Redshift,
MySQL, PostgreSQL Oracle, Oracle, Microsoft SQL, Apache Iceberg, Delta Lake, and Apache Hudi.

Considerations and limitations

When you use streaming jobs, keep in mind the following considerations and limitations.

• Streaming jobs are supported with Amazon EMR releases 7.1.0 and higher.

• EMR Serverless expects streaming jobs to run for a long time, so you can't set execution timeout
to limit the runtime of the job.

• Streaming jobs are only compatible with the Spark engine, which is built on-top of the
structured streaming framework.

• EMR Serverless indefinitely retries streaming jobs, and you can't customize the number of
maximum attempts. Thrash prevention is automatically included to stop the job retry if the
amount of failed attempts has surpassed a threshold set over an hourly window. The default
threshold is five failed attempts over one hour. You can configure this threshold to be between 1
and 10 attempts. For more information, see Job resiliency.

• Streaming jobs have checkpoints to save runtime state and progress, so EMR Serverless can
resume the streaming job from the latest checkpoint. For more information, see Recovering
from failures with Checkpointing in the Apache Spark documentation.

Getting started streaming jobs

See the following instructions to learn how to get started with streaming jobs.

1. Follow Getting started with Amazon EMR Serverless to create an application. Note that your
application must run Amazon EMR release 7.1.0 or higher.

2. Once your application is ready, set the mode parameter to STREAMING to submit a streaming
job, similar to the following AWS CLI example.

Considerations and limitations 77

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-structured-streaming-kinesis.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-710-release.html
https://spark.apache.org/streaming/
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/SECTION-jobs-resiliency.xml.html
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#recovering-from-failures-with-checkpointing
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#recovering-from-failures-with-checkpointing
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/getting-started.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-710-release.html

Amazon EMR Amazon EMR Serverless User Guide

aws emr-serverless start-job-run \
--application-id <APPPLICATION_ID> \
--execution-role-arn <JOB_EXECUTION_ROLE> \
--mode 'STREAMING' \
--job-driver '{
 "sparkSubmit": {
 "entryPoint": "s3://<streaming script>",
 "entryPointArguments": ["s3://<DOC-EXAMPLE-BUCKET-OUTPUT>/output"],
 "sparkSubmitParameters": "--conf spark.executor.cores=4
 --conf spark.executor.memory=16g
 --conf spark.driver.cores=4
 --conf spark.driver.memory=16g
 --conf spark.executor.instances=3"
 }
}'

Supported streaming connectors

Streaming connectors facilitate reading data from a streaming source and can also write data to a
streaming sink.

The following are the supported streaming connectors:

Amazon Kinesis Data Streams connector

The Amazon Kinesis Data Streams connector for Apache Spark enables building streaming
applications and pipelines that consume data from and write data to Amazon Kinesis Data Streams.
The connector supports enhanced fan-out consumption with a dedicated read throughput rate
of up to 2MB/second per shard. By default, Amazon EMR Serverless 7.1.0 and higher includes the
connector, so you don't need to build or download any additional packages. For more information
about the connector, see the spark-sql-kinesis-connector page on GitHub.

The following is an example of how to start a job run with the Kinesis Data Streams connector
dependency.

aws emr-serverless start-job-run \
--application-id <APPLICATION_ID> \
--execution-role-arn <JOB_EXECUTION_ROLE> \
--mode 'STREAMING' \
--job-driver '{

Streaming connectors 78

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-structured-streaming-kinesis.html
https://github.com/awslabs/spark-sql-kinesis-connector/

Amazon EMR Amazon EMR Serverless User Guide

 "sparkSubmit": {
 "entryPoint": "s3://<Kinesis-streaming-script>",
 "entryPointArguments": ["s3://<DOC-EXAMPLE-BUCKET-OUTPUT>/output"],
 "sparkSubmitParameters": "--conf spark.executor.cores=4
 --conf spark.executor.memory=16g
 --conf spark.driver.cores=4
 --conf spark.driver.memory=16g
 --conf spark.executor.instances=3
 --jars /usr/share/aws/kinesis/spark-sql-kinesis/lib/spark-streaming-
sql-kinesis-connector.jar"
 }
}'

To connect to Kinesis Data Streams, you must configure the EMR Serverless application with
VPC access and use a VPC endpoint to allow private access. or use a NAT Gateway to get public
access. For more information, see Configuring VPC access. You must also make sure that your job
runtime role has the necessary read and write permissions to access the required data streams.
To learn more about how to configure a job runtime role, see Job runtime roles for Amazon EMR
Serverless. For a full list of all of the required permissions, see the spark-sql-kinesis-connector page
on GitHub.

Apache Kafka connector

The Apache Kafka connector for Spark structured streaming is an open-source connector from
the Spark community and is available in a Maven repository. This connector facilitates Spark
structured streaming applications to read data from and write data to self-managed Apache Kafka
and Amazon Managed Streaming for Apache Kafka. For more information about the connector, see
the Structured Streaming + Kafka Integration Guide in the Apache Spark documentation.

The following example demonstrates how to include the Kafka connector in your job run request.

aws emr-serverless start-job-run \
--application-id <APPLICATION_ID> \
--execution-role-arn <JOB_EXECUTION_ROLE> \
--mode 'STREAMING' \
--job-driver '{
 "sparkSubmit": {
 "entryPoint": "s3://<Kafka-streaming-script>",
 "entryPointArguments": ["s3://<DOC-EXAMPLE-BUCKET-OUTPUT>/output"],
 "sparkSubmitParameters": "--conf spark.executor.cores=4
 --conf spark.executor.memory=16g

Streaming connectors 79

https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/vpc-access.html
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/security-iam-runtime-role.html
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/security-iam-runtime-role.html
https://github.com/awslabs/spark-sql-kinesis-connector/?tab=readme-ov-file#how-to-use-it
https://github.com/awslabs/spark-sql-kinesis-connector/?tab=readme-ov-file#how-to-use-it
https://spark.apache.org/docs/latest/structured-streaming-kafka-integration.html

Amazon EMR Amazon EMR Serverless User Guide

 --conf spark.driver.cores=4
 --conf spark.driver.memory=16g
 --conf spark.executor.instances=3
 --packages org.apache.spark:spark-sql-
kafka-0-10_2.12:<KAFKA_CONNECTOR_VERSION>"
 }
}'

The Apache Kafka connector version depends on your EMR Serverless release version and
corresponding Spark version. To find the correct Kafka version, see the see the Structured
Streaming + Kafka Integration Guide.

To use Amazon Managed Streaming for Apache Kafka with IAM authentication, you must include
another dependency to enable the Kafka connector to connect to Amazon MSK with IAM. For more
information, see the aws-msk-iam-auth repository on GitHub. You must also make sure that the job
runtime role has the necessary IAM permissions. The following example demonstrates how to use
the connector with IAM authentication.

aws emr-serverless start-job-run \
--application-id <APPLICATION_ID> \
--execution-role-arn <JOB_EXECUTION_ROLE> \
--mode 'STREAMING' \
--job-driver '{
 "sparkSubmit": {
 "entryPoint": "s3://<Kafka-streaming-script>",
 "entryPointArguments": ["s3://<DOC-EXAMPLE-BUCKET-OUTPUT>/output"],
 "sparkSubmitParameters": "--conf spark.executor.cores=4
 --conf spark.executor.memory=16g
 --conf spark.driver.cores=4
 --conf spark.driver.memory=16g
 --conf spark.executor.instances=3
 --packages org.apache.spark:spark-sql-
kafka-0-10_2.12:<KAFKA_CONNECTOR_VERSION>,software.amazon.msk:aws-msk-iam-
auth:<MSK_IAM_LIB_VERSION>"
 }
}'

To use the Kafka connector and the IAM authentication library from Amazon MSK you must
configure the EMR Serverless application with VPC access. Your subnets must have Internet
access and use a NAT Gateway to access the the Maven dependencies. For more information,
see Configuring VPC access. The subnets must have network connectivity to access the Kafka

Streaming connectors 80

https://spark.apache.org/docs/latest/structured-streaming-kafka-integration.html
https://spark.apache.org/docs/latest/structured-streaming-kafka-integration.html
https://github.com/aws/aws-msk-iam-auth
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/vpc-access.html

Amazon EMR Amazon EMR Serverless User Guide

cluster. This is true regardless of whether your Kafka cluster is self-managed or if you use Amazon
Managed Streaming for Apache Kafka.

Streaming job log management

Streaming jobs support log rotation for Spark application logs and event logs, and log compaction
for Spark event logs. This helps you manage your resources effectively.

Log rotation

Streaming jobs support log rotation for Spark application logs and event logs. Log rotation
prevents long streaming jobs from generating large log files that might take up all of your
available disk space. Log rotation helps you save disk storage and prevents job failures because of
low disk space. For more information, see Rotating logs.

Log compaction

Streaming jobs also support log compaction for Spark event logs whenever managed logging is
available. For more details about managed logging, see Logging with managed storage. Streaming
jobs can run for a long time, and the amount of event data can build up over time and significantly
increase log file sizes. The Spark History Server reads and loads these events into memory for the
Spark application UI. This process can cause high latencies and costs, especially if event logs stored
in Amazon S3 are very large.

Log compaction reduces the event log size, so the Spark History Server doesn't have to load more
than 1 GB of event logs at any time. For more information, see Monitoring and Instrumentation in
the Apache Spark documentation.

Using Spark configurations when you run EMR Serverless jobs

You can run Spark jobs on an application with the type parameter set to SPARK. Jobs must be
compatible with the Spark version compatible with the Amazon EMR release version. For example,
when you run jobs with Amazon EMR release 6.6.0, your job must be compatible with Apache Spark
3.2.0. For information on the application versions for each release, see Amazon EMR Serverless
release versions.

Spark job parameters

When you use the StartJobRun API to run a Spark job, you can specify the following parameters.

Log management 81

https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/rotating-logs.html
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/logging.html#jobs-log-storage-managed-storage
https://spark.apache.org/docs/latest/monitoring.html
https://docs.aws.amazon.com/emr-serverless/latest/APIReference/API_StartJobRun.html

Amazon EMR Amazon EMR Serverless User Guide

Required parameters

• Spark job runtime role

• Spark job driver parameter

• Spark configuration override parameter

• Spark dynamic resource allocation optimization

Spark job runtime role

Use executionRoleArn to specify the ARN for the IAM role that your application uses to execute
Spark jobs. This role must contain the following permissions:

• Read from S3 buckets or other data sources where your data resides

• Read from S3 buckets or prefixes where your PySpark script or JAR file resides

• Write to S3 buckets where you intend to write your final output

• Write logs to a S3 bucket or prefix that S3MonitoringConfigurationspecifies

• Access to KMS keys if you use KMS keys to encrypt data in your S3 bucket

• Access to the AWS Glue Data Catalog if you use SparkSQL

If your Spark job reads or writes data to or from other data sources, specify the appropriate
permissions in this IAM role. If you don't provide these permissions to the IAM role, the job might
fail. For more information, see Job runtime roles for Amazon EMR Serverless and Storing logs.

Spark job driver parameter

Use jobDriver to provide input to the job. The job driver parameter accepts only one value for
the job type that you want to run. For a Spark job, the parameter value is sparkSubmit. You can
use this job type to run Scala, Java, PySpark, SparkR, and any other supported jobs through Spark
submit. Spark jobs have the following parameters:

• sparkSubmitParameters – These are the additional Spark parameters that you want to send
to the job. Use this parameter to override default Spark properties such as driver memory or
number of executors, like those defined in the --conf or --class arguments.

• entryPointArguments – This is an array of arguments that you want to pass to your main JAR
or Python file. You should handle reading these parameters using your entrypoint code. Separate
each argument in the array by a comma.

Spark parameters 82

Amazon EMR Amazon EMR Serverless User Guide

• entryPoint – This is the reference in Amazon S3 to the main JAR or Python file that you
want to run. If you are running a Scala or Java JAR, specify the main entry class in the
SparkSubmitParameters using the --class argument.

For additional information, see Launching Applications with spark-submit.

Spark configuration override parameter

Use configurationOverrides to override monitoring-level and application-level configuration
properties. This parameter accepts a JSON object with the following two fields:

• monitoringConfiguration ‐ Use this field to specify the Amazon S3 URL
(s3MonitoringConfiguration) where you want the EMR Serverless job to store logs of your
Spark job. Make sure you've created this bucket with the same AWS account that hosts your
application, and in the same AWS Region where your job is running.

• applicationConfiguration – To override the default configurations for applications, you
can provide a configuration object in this field. You can use a shorthand syntax to provide the
configuration, or you can reference the configuration object in a JSON file. Configuration objects
consist of a classification, properties, and optional nested configurations. Properties consist of
the settings that you want to override in that file. You can specify multiple classifications for
multiple applications in a single JSON object.

Note

Available configuration classifications vary by specific EMR Serverless release. For
example, classifications for custom Log4j spark-driver-log4j2 and spark-
executor-log4j2 are only available with releases 6.8.0 and higher.

If you use the same configuration in an application override and in Spark submit parameters, the
Spark submit parameters take priority. Configurations rank in priority as follows, from highest to
lowest:

• Configuration that EMR Serverless provides when it creates SparkSession.

• Configuration that you provide as part of sparkSubmitParameters with the --conf
argument.

• Configuration that you provide as part of your application overrides when you start a job.

Spark parameters 83

https://spark.apache.org/docs/latest/submitting-applications.html#launching-applications-with-spark-submit

Amazon EMR Amazon EMR Serverless User Guide

• Configuration that you provide as part of your runtimeConfiguration when you create an
application.

• Optimized configurations that Amazon EMR uses for the release.

• Default open source configurations for the application.

For more information on declaring configurations at the application level, and overriding
configurations during job run, see Default application configuration for EMR Serverless.

Spark dynamic resource allocation optimization

Use dynamicAllocationOptimization to optimize resource usage in EMR Serverless. Setting
this property to true in your Spark configuration classification indicates to EMR Serverless to
optimize executor resource allocation to better align the rate at which Spark requests and cancels
executors with the rate at which EMR Serverless creates and releases workers. By doing so, EMR
Serverless more optimally reuses workers across stages, resulting in lower cost when running jobs
with multiple stages while maintaining the same performance.

This property is available in all Amazon EMR release versions.

The following is a sample configuration classification with dynamicAllocationOptimization.

[
 {
 "Classification": "spark",
 "Properties": {
 "dynamicAllocationOptimization": "true"
 }
 }
]

Consider the following if you're using dynamic allocation optimization:

• This optimization is available for the Spark jobs for which you enabled dynamic resource
allocation.

• To achieve the best cost efficiency, we recommend configuring an upper scaling bound on
workers using either the job-level setting spark.dynamicAllocation.maxExecutors or the
application-level maxium capacity setting based on your workload.

Spark parameters 84

https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/app-behavior.html#max-capacity

Amazon EMR Amazon EMR Serverless User Guide

• You might not see cost improvement in simpler jobs. For example, if your job runs on a small
dataset or finishes running in one stage, Spark might not need a larger number of executors or
multiple scaling events.

• Jobs with a sequence of a large stage, smaller stages, and then a large stage again might
experience regression in job runtime. As EMR Serverless uses resources more efficiently, it might
lead to fewer available workers for larger stages, leading to longer runtime.

Spark job properties

The following table lists optional Spark properties and their default values that you can override
when you submit a Spark job.

Key Description Default value

spark.archives A comma-separated list
of archives that Spark
extracts into each executor's
working directory. Supported
file types include .jar,
.tar.gz, .tgz and .zip. To
specify the directory name
to extract, add # after the
file name that you want
to extract. For example,
file.zip#directory .

NULL

spark.authenticate Option that turns on
authentication of Spark's
internal connections.

TRUE

spark.driver.cores The number of cores that the
driver uses.

4

spark.driver.extra
JavaOptions

Extra Java options for the
Spark driver.

NULL

Spark properties 85

Amazon EMR Amazon EMR Serverless User Guide

Key Description Default value

spark.driver.memory The amount of memory that
the driver uses.

14G

spark.dynamicAlloc
ation.enabled

Option that turns on dynamic
resource allocation. This
option scales up or down the
number of executors registere
d with the application, based
on the workload.

TRUE

spark.dynamicAlloc
ation.executorIdle
Timeout

The length of time that an
executor can remain idle
before Spark removes it. This
only applies if you turn on
dynamic allocation.

60s

spark.dynamicAlloc
ation.initialExecu
tors

The initial number of
executors to run if you turn
on dynamic allocation.

3

spark.dynamicAlloc
ation.maxExecutors

The upper bound for the
number of executors if you
turn on dynamic allocation.

For 6.10.0 and higher,
infinity

For 6.9.0 and lower, 100

spark.dynamicAlloc
ation.minExecutors

The lower bound for the
number of executors if you
turn on dynamic allocation.

0

spark.emr-serverle
ss.allocation.batc
h.size

The number of containers
to request in each cycle of
executor allocation. There is
a one-second gap between
each allocation cycle.

20

Spark properties 86

Amazon EMR Amazon EMR Serverless User Guide

Key Description Default value

spark.emr-serverle
ss.driver.disk

The Spark driver disk. 20G

spark.emr-serverle
ss.driverEnv. [KEY]

Option that adds environme
nt variables to the Spark
driver.

NULL

spark.emr-serverle
ss.executor.disk

The Spark executor disk. 20G

spark.emr-serverle
ss.memoryOverheadF
actor

Sets the memory overhead to
add to the driver and executor
container memory.

0.1

spark.emr-serverle
ss.driver.disk.type

The disk type attached to
Spark driver.

Standard

spark.emr-serverle
ss.executor.disk.t
ype

The disk type attached to
Spark executors.

Standard

spark.executor.cores The number of cores that
each executor uses.

4

spark.executor.ext
raJavaOptions

Extra Java options for the
Spark executor.

NULL

spark.executor.ins
tances

The number of Spark
executor containers to
allocate.

3

spark.executor.mem
ory

The amount of memory that
each executor uses.

14G

spark.executorEnv.
[KEY]

Option that adds environme
nt variables to the Spark
executors.

NULL

Spark properties 87

Amazon EMR Amazon EMR Serverless User Guide

Key Description Default value

spark.files A comma-separated list of
files to go in the working
directory of each executor.
You can access the file
paths of these files in the
executor with SparkFile
s.get(fileName).

NULL

spark.hadoop.hive.
metastore.client.f
actory.class

The Hive metastore
implementation class.

NULL

spark.jars Additional jars to add to the
runtime classpath of the
driver and executors.

NULL

spark.network.cryp
to.enabled

Option that turns on AES-
based RPC encryption. This
includes the authentication
protocol added in Spark 2.2.0.

FALSE

spark.sql.warehous
e.dir

The default location for
managed databases and
tables.

The value of $PWD/spark-
warehouse

spark.submit.pyFiles A comma-separated list of
.zip, .egg, or .py files to
place in the PYTHONPATH for
Python apps.

NULL

The following table lists the default Spark submit parameters.

Spark properties 88

Amazon EMR Amazon EMR Serverless User Guide

Key Description Default value

archives A comma-separated list of
archives that Spark extracts
into each executor's working
directory.

NULL

class The application's main class
(for Java and Scala apps).

NULL

conf An arbitrary Spark configura
tion property.

NULL

driver-cores The number of cores that the
driver uses.

4

driver-memory The amount of memory that
the driver uses.

14G

executor-cores The number of cores that
each executor uses.

4

executor-memory The amount of memory that
the executor uses.

14G

files A comma-separated list of
files to place in the working
directory of each executor.
You can access the file
paths of these files in the
executor with SparkFile
s.get(fileName).

NULL

jars A comma-separated list of
jars to include on the driver
and executor classpaths.

NULL

num-executors The number of executors to
launch.

3

Spark properties 89

Amazon EMR Amazon EMR Serverless User Guide

Key Description Default value

py-files A comma-separated list of
.zip, .egg, or .py files to
place on the PYTHONPATH
for Python apps.

NULL

verbose Option that turns on
additional debug output.

NULL

Spark examples

The following example shows how to use the StartJobRun API to run a Python script. For an end-
to-end tutorial that uses this example, see Getting started with Amazon EMR Serverless. You can
find additional examples of how to run PySpark jobs and add Python dependencies in the EMR
Serverless Samples GitHub repository.

aws emr-serverless start-job-run \
 --application-id application-id \
 --execution-role-arn job-role-arn \
 --job-driver '{
 "sparkSubmit": {
 "entryPoint": "s3://us-east-1.elasticmapreduce/emr-containers/samples/
wordcount/scripts/wordcount.py",
 "entryPointArguments": ["s3://amzn-s3-demo-destination-bucket/
wordcount_output"],
 "sparkSubmitParameters": "--conf spark.executor.cores=1 --conf
 spark.executor.memory=4g --conf spark.driver.cores=1 --conf spark.driver.memory=4g --
conf spark.executor.instances=1"
 }
 }'

The following example shows how to use the StartJobRun API to run a Spark JAR.

aws emr-serverless start-job-run \
 --application-id application-id \
 --execution-role-arn job-role-arn \
 --job-driver '{
 "sparkSubmit": {
 "entryPoint": "/usr/lib/spark/examples/jars/spark-examples.jar",

Spark examples 90

https://github.com/aws-samples/emr-serverless-samples/tree/main/examples/pyspark
https://github.com/aws-samples/emr-serverless-samples/tree/main/examples/pyspark

Amazon EMR Amazon EMR Serverless User Guide

 "entryPointArguments": ["1"],
 "sparkSubmitParameters": "--class org.apache.spark.examples.SparkPi --conf
 spark.executor.cores=4 --conf spark.executor.memory=20g --conf spark.driver.cores=4 --
conf spark.driver.memory=8g --conf spark.executor.instances=1"
 }
 }'

Using Hive configurations when you run EMR Serverless jobs

You can run Hive jobs on an application with the type parameter set to HIVE. Jobs must be
compatible with the Hive version compatible with the Amazon EMR release version. For example,
when you run jobs on an application with Amazon EMR release 6.6.0, your job must be compatible
with Apache Hive 3.1.2. For information on the application versions for each release, see Amazon
EMR Serverless release versions.

Hive job parameters

When you use the StartJobRun API to run a Hive job, you must specify the following parameters.

Required parameters

• Hive job runtime role

• Hive job driver parameter

• Hive configuration override parameter

Hive job runtime role

Use executionRoleArn to specify the ARN for the IAM role that your application uses to execute
Hive jobs. This role must contain the following permissions:

• Read from S3 buckets or other data sources where your data resides

• Read from S3 buckets or prefixes where your Hive query file and init query file reside

• Read and write to S3 buckets where your Hive Scratch directory and Hive Metastore warehouse
directory reside

• Write to S3 buckets where you intend to write your final output

• Write logs to an S3 bucket or prefix that S3MonitoringConfiguration specifies

• Access to KMS keys if you use KMS keys to encrypt data in your S3 bucket

Using Hive configurations when you run EMR Serverless jobs 91

https://docs.aws.amazon.com/emr-serverless/latest/APIReference/API_StartJobRun.html

Amazon EMR Amazon EMR Serverless User Guide

• Access to the AWS Glue Data Catalog

If your Hive job reads or writes data to or from other data sources, specify the appropriate
permissions in this IAM role. If you don't provide these permissions to the IAM role, your job might
fail. For more information, see Job runtime roles for Amazon EMR Serverless.

Hive job driver parameter

Use jobDriver to provide input to the job. The job driver parameter accepts only one value for
the job type that you want to run. When you specify hive as the job type, EMR Serverless passes a
Hive query to the jobDriver parameter. Hive jobs have the following parameters:

• query – This is the reference in Amazon S3 to the Hive query file that you want to run.

• parameters – These are the additional Hive configuration properties that you want to override.
To override properties, pass them to this parameter as --hiveconf property=value. To
override variables, pass them to this parameter as --hivevar key=value.

• initQueryFile – This is the init Hive query file. Hive runs this file prior to your query and can
use it to initialize tables.

Hive configuration override parameter

Use configurationOverrides to override monitoring-level and application-level configuration
properties. This parameters accepts a JSON object with the following two fields:

• monitoringConfiguration – Use this field to specify the Amazon S3 URL
(s3MonitoringConfiguration) where you want the EMR Serverless job to store logs of your
Hive job. Make sure that you create this bucket with the same AWS account that hosts your
application, and in the same AWS Region where your job is running.

• applicationConfiguration – You can provide a configuration object in this field to override
the default configurations for applications. You can use a shorthand syntax to provide the
configuration, or you can reference the configuration object in a JSON file. Configuration objects
consist of a classification, properties, and optional nested configurations. Properties consist of
the settings that you want to override in that file. You can specify multiple classifications for
multiple applications in a single JSON object.

Hive parameters 92

Amazon EMR Amazon EMR Serverless User Guide

Note

Available configuration classifications vary by specific EMR Serverless release. For
example, classifications for custom Log4j spark-driver-log4j2 and spark-
executor-log4j2 are only available with releases 6.8.0 and higher.

If you pass the same configuration in an application override and in Hive parameters, the Hive
parameters take priority. The following list ranks configurations from highest priority to lowest
priority.

• Configuration that you provide as part of Hive parameters with --hiveconf
property=value.

• Configuration that you provide as part of your application overrides when you start a job.

• Configuration that you provide as part of your runtimeConfiguration when you create an
application.

• Optimized configurations that Amazon EMR assigns for the release.

• Default open-source configurations for the application.

For more information on declaring configurations at the application level, and overriding
configurations during job run, see Default application configuration for EMR Serverless.

Hive job properties

The following table lists the mandatory properties that you must configure when you submit a
Hive job.

Setting Description

hive.exec.scratchdir The Amazon S3 location where EMR Serverles
s creates temporary files during the Hive job
execution.

hive.metastore.warehouse.dir The Amazon S3 location of databases for
managed tables in Hive.

Hive properties 93

Amazon EMR Amazon EMR Serverless User Guide

The following table lists the optional Hive properties and their default values that you can override
when you submit a Hive job.

Setting Description Default value

fs.s3.customAWSCre
dentialsProvider

The AWS Credentials provider
you want to use.

com.amazonaws.auth
.DefaultAWSCredentialsProvi
derChain

fs.s3a.aws.credent
ials.provider

The AWS Credentials provider
you want to use with a S3A
file system.

com.amazonaws.auth
.DefaultAWSCredentialsProvi
derChain

hive.auto.convert.
join

Option that turns on auto-
conversion of common joins
into mapjoins, based on the
input file size.

TRUE

hive.auto.convert.
join.noconditional
task

Option that turns on
optimization when Hive
converts a common join into
a mapjoin based on the input
file size.

TRUE

hive.auto.convert.
join.noconditional
task.size

A join converts directly to a
mapjoin below this size.

Optimal value is calculated
based on Tez task memory

hive.cbo.enable Option that turns on cost-
based optimizations with the
Calcite framework.

TRUE

hive.cli.tez.sessi
on.async

Option to start a backgroun
d Tez session while your Hive
query compiles. When set to
false, Tez AM launches after
your Hive query compiles.

TRUE

Hive properties 94

Amazon EMR Amazon EMR Serverless User Guide

Setting Description Default value

hive.compute.query
.using.stats

Option that activates Hive
to answer certain queries
with statistics stored in
the metastore. For basic
statistics, set hive.stat
s.autogather to TRUE.
For a more advanced collectio
n of queries, run analyze
table queries.

TRUE

hive.default.filef
ormat

The default file format for
CREATE TABLE statement
s. You can explicitly override
this if you specify STORED AS
[FORMAT] in your CREATE
TABLE command.

TEXTFILE

hive.driver.cores The number of cores to use
for the Hive driver process.

2

hive.driver.disk The disk size for the Hive
driver.

20G

hive.driver.disk.t
ype

The disk type for the Hive
driver.

Standard

hive.tez.disk.type The disk size for the tez
workers.

Standard

hive.driver.memory The amount of memory
to use per Hive driver
process. The Hive CLI and Tez
Application Master share this
memory equally with 20% of
headroom.

6G

Hive properties 95

Amazon EMR Amazon EMR Serverless User Guide

Setting Description Default value

hive.emr-serverles
s.launch.env.[KEY]

Option to set the KEY
environment variable in all
Hive-specific processes, such
as your Hive driver, Tez AM,
and Tez task.

hive.exec.dynamic.
partition

Options that turns on
dynamic partitions in DML/
DDL.

TRUE

hive.exec.dynamic.
partition.mode

Option that specifies whether
you want to use strict mode
or non-strict mode. In strict
mode, you must specify at
least one static partition
in case you accidentally
overwrite all partitions. In
non-strict mode, all partitions
are allowed to be dynamic.

strict

hive.exec.max.dyna
mic.partitions

The maximum number of
dynamic partitions that Hive
creates in total.

1000

hive.exec.max.dyna
mic.partitions.per
node

Maximum number of dynamic
partitions that Hive creates
in each mapper and reducer
node.

100

Hive properties 96

Amazon EMR Amazon EMR Serverless User Guide

Setting Description Default value

hive.exec.orc.spli
t.strategy

Expects one of the following
values: BI, ETL, or HYBRID.
This isn’t a user-level
configuration. BI specifies
that you want to spend less
time in split generation as
opposed to query execution
. ETL specifies that you
want to spend more time
in split generation. HYBRID
specifies a choice of the
above strategies based on
heuristics.

HYBRID

hive.exec.reducers
.bytes.per.reducer

The size per reducer. The
default is 256 MB. If the input
size is 1G, the job uses 4
reducers.

256000000

hive.exec.reducers
.max

The maximum number of
reducers.

256

hive.exec.stagingdir The name of the directory
that stores temporary files
that Hive creates inside table
locations and in the scratch
directory location specified in
the hive.exec.scratchd
ir property.

.hive-staging

hive.fetch.task.co
nversion

Expects one of the following
values: NONE, MINIMAL, or
MORE. Hive can convert select
queries to a single FETCH
task. This minimizes latency.

MORE

Hive properties 97

Amazon EMR Amazon EMR Serverless User Guide

Setting Description Default value

hive.groupby.posit
ion.alias

Option that causes Hive to
use a column position alias in
GROUP BY statements.

FALSE

hive.input.format The default input format.
Set to HiveInputFormat
if you encounter problems
with CombineHiveInputFo
rmat .

org.apache.hadoop.
hive.ql.io.Combine
HiveInputFormat

hive.log.explain.o
utput

Option that turns on
explanations of extended
output for any query in your
Hive log.

FALSE

hive.log.level The Hive logging level. INFO

hive.mapred.reduce
.tasks.speculative
.execution

Option that turns on speculati
ve launch for reducers. Only
supported with Amazon EMR
6.10.x and lower.

TRUE

hive.max-task-cont
ainers

The maximum number of
concurrent containers. The
configured mapper memory
is multiplied by this value to
determine available memory
that split computation and
task preemption use.

1000

hive.merge.mapfiles Option that causes small files
to merge at the end of a map-
only job.

TRUE

hive.merge.size.pe
r.task

The size of merged files at the
end of the job.

256000000

Hive properties 98

Amazon EMR Amazon EMR Serverless User Guide

Setting Description Default value

hive.merge.tezfiles Option that turns on a merge
of small files at the end of a
Tez DAG.

FALSE

hive.metastore.cli
ent.factory.class

The name of the factory class
that produces objects that
implement the IMetaStor
eClient interface.

com.amazonaws.glue
.catalog.metastore
.AWSGlueDataCatalo
gHiveClientFactory

hive.metastore.glu
e.catalogid

If the AWS Glue Data Catalog
acts as a metastore but runs
in a different AWS account
than the jobs, the ID of the
AWS account where the jobs
are running.

NULL

hive.metastore.uris The thrift URI that the
metastore client uses to
connect to remote metastore.

NULL

hive.optimize.ppd Option that turns on
predicate pushdown.

TRUE

hive.optimize.ppd.
storage

Option that turns on
predicate pushdown to
storage handlers.

TRUE

hive.orderby.posit
ion.alias

Option that causes Hive to
use a column position alias in
ORDER BY statements.

TRUE

hive.prewarm.enabled Option that turns on
container prewarm for Tez.

FALSE

hive.prewarm.numco
ntainers

The number of containers to
pre-warm for Tez.

10

Hive properties 99

Amazon EMR Amazon EMR Serverless User Guide

Setting Description Default value

hive.stats.autogat
her

Option that causes Hive
to gather basic statistics
automatically during the
INSERT OVERWRITE
command.

TRUE

hive.stats.fetch.c
olumn.stats

Option that turns off the
fetch of column statistics
from the metastore. A fetch
of column statistics can be
expensive when the number
of columns is high.

FALSE

hive.stats.gather.
num.threads

The number of threads that
the partialscan and
noscan analyze commands
use for partitioned tables.
This only applies to file
formats that implement
StatsProvidingReco
rdReader (like ORC).

10

hive.strict.checks
.cartesian.product

Options that turns on strict
Cartesian join checks. These
checks disallow a Cartesian
product (a cross join).

FALSE

hive.strict.checks
.type.safety

Option that turns on strict
type safety checks and turns
off comparison of bigint
with both string and
double.

TRUE

Hive properties 100

Amazon EMR Amazon EMR Serverless User Guide

Setting Description Default value

hive.support.quote
d.identifiers

Expects value of NONE or
COLUMN. NONE implies only
alphanumeric and underscor
e characters are valid in
identifiers. COLUMN implies
column names can contain
any character.

COLUMN

hive.tez.auto.redu
cer.parallelism

Option that turns on the
Tez auto-reducer parallelism
feature. Hive still estimates
data sizes and sets paralleli
sm estimates. Tez samples the
output sizes of source vertices
and adjusts the estimates at
runtime as necessary.

TRUE

hive.tez.container
.size

The amount of memory to
use per Tez task process.

6144

hive.tez.cpu.vcores The number of cores to use
for each Tez task.

2

hive.tez.disk.size The disk size for each task
container.

20G

hive.tez.input.for
mat

The input format for splits
generation in the Tez AM.

org.apache.hadoop.
hive.ql.io.HiveInp
utFormat

hive.tez.min.parti
tion.factor

Lower limit of reducers that
Tez specifies when you turn
on auto-reducer parallelism.

0.25

Hive properties 101

Amazon EMR Amazon EMR Serverless User Guide

Setting Description Default value

hive.vectorized.ex
ecution.enabled

Option that turns on
vectorized mode of query
execution.

TRUE

hive.vectorized.ex
ecution.reduce.ena
bled

Option that turns on
vectorized mode of a query
execution's reduce-side.

TRUE

javax.jdo.option.C
onnectionDriverName

The driver class name for a
JDBC metastore.

org.apache.derby.j
dbc.EmbeddedDriver

javax.jdo.option.C
onnectionPassword

The password associated with
a metastore database.

NULL

javax.jdo.option.C
onnectionURL

The JDBC connect string for a
JDBC metastore.

jdbc:derby:;databa
seName=metastore_d
b;create=true

javax.jdo.option.C
onnectionUserName

The user name associated
with a metastore database.

NULL

mapreduce.input.fi
leinputformat.spli
t.maxsize

The maximum size of a split
during split computation
when your input format is
org.apache.hadoop.
hive.ql.io.Combine
HiveInputFormat . A
value of 0 indicates no limit.

0

tez.am.dag.cleanup
.on.completion

Option that turns on cleanup
of shuffle data when DAG
completes.

TRUE

Hive properties 102

Amazon EMR Amazon EMR Serverless User Guide

Setting Description Default value

tez.am.emr-serverl
ess.launch.env.[KEY]

Option to set the KEY
environment variable in
the Tez AM process. For Tez
AM, this value overrides the
hive.emr-serverles
s.launch.env.[KEY]
value.

tez.am.log.level The root logging level that
EMR Serverless passes to the
Tez app master.

INFO

tez.am.sleep.time.
before.exit.millis

EMR Serverless should
push ATS events after this
period of time following AM
shutdown request.

0

tez.am.speculation
.enabled

Option that causes speculati
ve launch of slower tasks. This
can help reduce job latency
when some tasks are running
slower due bad or slow
machines. Only supported
with Amazon EMR 6.10.x and
lower.

FALSE

tez.am.task.max.fa
iled.attempts

The maximum number of
attempts that can fail for a
particular task before the task
fails. This number doesn't
count manually terminated
attempts.

3

Hive properties 103

Amazon EMR Amazon EMR Serverless User Guide

Setting Description Default value

tez.am.vertex.clea
nup.height

A distance at which, if all
dependent vertices are
complete, Tez AM will delete
vertex shuffle data. This
feature is turned off when
the value is 0. Amazon EMR
versions 6.8.0 and later
support this feature.

0

tez.client.asynchr
onous-stop

Option that causes EMR
Serverless to push ATS events
before it ends the Hive driver.

FALSE

tez.grouping.max-s
ize

The upper size limit (in bytes)
of a grouped split. This limit
prevents excessively large
splits.

1073741824

tez.grouping.min-s
ize

The lower size limit (in bytes)
of a grouped split. This limit
prevents too many small
splits.

16777216

tez.runtime.io.sor
t.mb

The size of the soft buffer
when Tez sorts the output is
sorted.

Optimal value is calculated
based on Tez task memory

tez.runtime.unorde
red.output.buffer.
size-mb

The size of the buffer to use
if Tez doesn't write directly to
disk.

Optimal value is calculated
based on Tez task memory

Hive properties 104

Amazon EMR Amazon EMR Serverless User Guide

Setting Description Default value

tez.shuffle-vertex
-manager.max-src-f
raction

The fraction of source tasks
that must complete before
EMR Serverless schedules all
tasks for the current vertex (in
case of a ScatterGather
connection). The number of
tasks ready for scheduling
on the current vertex scales
linearly between min-fract
ion and max-fraction .
This defaults the default
value or tez.shuffle-
vertex-manager.min-
src-fraction , whichever
is greater.

0.75

tez.shuffle-vertex
-manager.min-src-f
raction

The fraction of source tasks
that must complete before
EMR Serverless schedules
tasks for the current vertex (in
case of a ScatterGather
connection).

0.25

tez.task.emr-serve
rless.launch.env.[
KEY]

Option to set the KEY
environment variable in the
Tez task process. For Tez
tasks, this value overrides
the hive.emr-serverles
s.launch.env.[KEY]
value.

tez.task.log.level The root logging level that
EMR Serverless passes to the
Tez tasks.

INFO

Hive properties 105

Amazon EMR Amazon EMR Serverless User Guide

Setting Description Default value

tez.yarn.ats.event
.flush.timeout.mil
lis

The maximum amount of
time that AM should wait for
events to be flushed before
shutting down.

300000

Hive job examples

The following code example shows how to run a Hive query with the StartJobRun API.

aws emr-serverless start-job-run \
 --application-id application-id \
 --execution-role-arn job-role-arn \
 --job-driver '{
 "hive": {
 "query": "s3://amzn-s3-demo-bucket/emr-serverless-hive/query/hive-
query.ql",
 "parameters": "--hiveconf hive.log.explain.output=false"
 }
 }' \
 --configuration-overrides '{
 "applicationConfiguration": [{
 "classification": "hive-site",
 "properties": {
 "hive.exec.scratchdir": "s3://amzn-s3-demo-bucket/emr-serverless-hive/
hive/scratch",
 "hive.metastore.warehouse.dir": "s3://amzn-s3-demo-bucket/emr-
serverless-hive/hive/warehouse",
 "hive.driver.cores": "2",
 "hive.driver.memory": "4g",
 "hive.tez.container.size": "4096",
 "hive.tez.cpu.vcores": "1"
 }
 }]
 }'

You can find additional examples of how to run Hive jobs in the EMR Serverless Samples GitHub
repository.

Hive examples 106

https://github.com/aws-samples/emr-serverless-samples/tree/main/examples/hive

Amazon EMR Amazon EMR Serverless User Guide

EMR Serverless Job resiliency

EMR Serverless releases 7.1.0 and higher include support for job resiliency, so it automatically
retries any failed jobs without any manual input from you. Another benefit of job resiliency is that
EMR Serverless moves job runs to different Availability Zone (AZ) should an AZ experience any
issues.

To enable job resiliency for a job, set the retry policy for your job. A retry policy makes sure that
EMR Serverless automatically restarts a job if it fails at any point. Retry policies are supported for
both batch and streaming jobs, so you can customize job resiliency according to your use case.
The following table compares the behaviors and differences of job resiliency across batch and
streaming jobs.

 Batch jobs Streaming jobs

Default behavior Doesn't rerun the job. Always retries running the
job as the application creates
checkpoints while running the
job.

Retry point Batch jobs don't have
checkpoints, so EMR Serverles
s always re-runs the job from
the beginning.

Streaming jobs support
checkpoints, so you can
configure the streaming
query to save runtime state
and progress to a checkpoin
t location in Amazon S3. EMR
Serverless resumes the job
run from the checkpoint.
For more information, see
Recovering from failures with
Checkpointing in the Apache
Spark documentation.

Maximum of retry attempts Allows for a maximum of 10
retries.

Streaming jobs have built-in
thrash prevention control, so
the application stops retrying
jobs if they continue failing
after one hour. The default

Job resiliency 107

https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#recovering-from-failures-with-checkpointing
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#recovering-from-failures-with-checkpointing
https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#recovering-from-failures-with-checkpointing

Amazon EMR Amazon EMR Serverless User Guide

 Batch jobs Streaming jobs

number of retries within one
hour is five attempts. You
can configure this number
of retries to be between 1
or 10. You can't customize
the number of maximum
attempts. A value of 1
indicates no retries.

When EMR Serverless attempts to rerun a job, it also indexes the job with an attempt number, so
you can track the lifecycle of a job across its attempts.

You can use the EMR Serverless API operations or the AWS CLI to change job resiliency or see
information related to job resiliency. For more information, see the EMR Serverless API guide.

By default, EMR Serverless doesn't rerun batch jobs. To enable retries for batch jobs, configure
the maxAttempts parameter when starting a batch job run. The maxAttempts parameter is
applicable only to batch jobs. The default is 1, which means to not rerun the job. Accepted values
are 1 to 10, inclusive.

The following example demonstrates how to specify a max number of 10 attempts when starting a
job run.

aws emr-serverless start-job-run
 --application-id <APPLICATION_ID> \
 --execution-role-arn <JOB_EXECUTION_ROLE> \
 --mode 'BATCH' \
 --retry-policy '{
 "maxAttempts": 10
 }' \
 --job-driver '{
 "sparkSubmit": {
 "entryPoint": "/usr/lib/spark/examples/jars/spark-examples-does-not-
exist.jar",
 "entryPointArguments": ["1"],
 "sparkSubmitParameters": "--class org.apache.spark.examples.SparkPi"
 }
}'

Job resiliency 108

https://docs.aws.amazon.com/emr-serverless/latest/APIReference/Welcome.html

Amazon EMR Amazon EMR Serverless User Guide

EMR Serverless indefinitely retries streaming jobs if they fail. To prevent thrashing because of
repeated unrecoverable failures, use the maxFailedAttemptsPerHour to configure thrash
prevention control for streaming job retries. This parameter lets you specify the maximum number
of failed attempts allowed with an hour before EMR Serverless stops retrying. The default is five.
Accepted values are 1 to 10, inclusive.

aws emr-serverless start-job-run
 --application-id <APPPLICATION_ID> \
 --execution-role-arn <JOB_EXECUTION_ROLE> \
 --mode 'STREAMING' \
 --retry-policy '{
 "maxFailedAttemptsPerHour": 7
 }' \
 --job-driver '{
 "sparkSubmit": {
 "entryPoint": "/usr/lib/spark/examples/jars/spark-examples-does-not-
exist.jar",
 "entryPointArguments": ["1"],
 "sparkSubmitParameters": "--class org.apache.spark.examples.SparkPi"
 }
}'

You can also use the other job run API operations get information about jobs. For example, you
can use the attempt parameter with the GetJobRun operation to get details about a specific job
attempt. If you don't include the attempt parameter, the operation returns information about the
latest attempt.

aws emr-serverless get-job-run \
 --job-run-id job-run-id \
 --application-id application-id \
 --attempt 1

The ListJobRunAttempts operation returns information about all attempts related to a job run.

aws emr-serverless list-job-run-attempts \
 --application-id application-id \
 --job-run-id job-run-id

The GetDashboardForJobRun operation creates and returns a URL that you can use to access
the application UIs for a job run. The attempt parameter lets you get a URL for a specific attempt.

Job resiliency 109

Amazon EMR Amazon EMR Serverless User Guide

If you don't include the attempt parameter, the operation returns information about the latest
attempt.

aws emr-serverless get-dashboard-for-job-run \
 --application-id application-id \
 --job-run-id job-run-id \
 --attempt 1

Monitoring a job with a retry policy

Job resiliency support also adds the new event EMR Serverless job run retry. EMR Serverless
publishes this event on every retry of the job. You can use this notification to track retries of the
job. For more information about events, see Amazon EventBridge events.

Logging with retry policy

Every time EMR Serverless retries a job, the attempt generates its own set of logs. To ensure that
EMR Serverless can successfully deliver these logs to Amazon S3 and Amazon CloudWatch without
overwriting any, EMR Serverless adds a prefix to the format of the S3 log path and CloudWatch log
stream name to include the attempt number of the job.

The following is an example of what the format looks like.

'/applications/<applicationId>/jobs/<jobId>/attempts/<attemptNumber>/'.

This format ensures EMR Serverless publishes all of the logs for each attempt of the job to its own
designated location in Amazon S3 and CloudWatch. For more details, see Storing logs.

Note

EMR Serverless only uses this prefix format with all streaming jobs and any batch jobs that
have retry enabled.

Metastore configuration for EMR Serverless

A Hive metastore is a centralized location that stores structural information about your tables,
including schemas, partition names, and data types. With EMR Serverless, you can persist this table
metadata in a metastore that has access to your jobs.

Monitoring a job with a retry policy 110

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-events.html
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/logging.html

Amazon EMR Amazon EMR Serverless User Guide

You have two options for a Hive metastore:

• The AWS Glue Data Catalog

• An external Apache Hive metastore

Using the AWS Glue Data Catalog as a metastore

You can configure your Spark and Hive jobs to use the AWS Glue Data Catalog as its metastore. We
recommend this configuration when you require a persistent metastore or a metastore shared by
different applications, services, or AWS accounts. For more information about the Data Catalog,
see Populating the AWS Glue Data Catalog. For information about AWS Glue pricing, see AWS Glue
pricing.

You can configure your EMR Serverless job to use the AWS Glue Data Catalog either in the same
AWS account as your application, or in a different AWS account.

Configure the AWS Glue Data Catalog

To configure the Data Catalog, choose which type of EMR Serverless application that you want to
use.

Spark

When you use EMR Studio to run your jobs with EMR Serverless Spark applications, the AWS
Glue Data Catalog is the default metastore.

When you use SDKs or AWS CLI, you can set the
spark.hadoop.hive.metastore.client.factory.class configuration to
com.amazonaws.glue.catalog.metastore.AWSGlueDataCatalogHiveClientFactory
in the sparkSubmit parameters of your job run. The following example shows how to
configure the Data Catalog with the AWS CLI.

aws emr-serverless start-job-run \
 --application-id application-id \
 --execution-role-arn job-role-arn \
 --job-driver '{
 "sparkSubmit": {
 "entryPoint": "s3://amzn-s3-demo-bucket/code/pyspark/
extreme_weather.py",

Using the AWS Glue Data Catalog as a metastore 111

https://docs.aws.amazon.com/glue/latest/dg/populate-data-catalog.html
https://aws.amazon.com/glue/pricing
https://aws.amazon.com/glue/pricing

Amazon EMR Amazon EMR Serverless User Guide

 "sparkSubmitParameters": "--conf
 spark.hadoop.hive.metastore.client.factory.class=com.amazonaws.glue.catalog.metastore.AWSGlueDataCatalogHiveClientFactory
 --conf spark.driver.cores=1 --conf spark.driver.memory=3g --conf
 spark.executor.cores=4 --conf spark.executor.memory=3g"
 }
 }'

Alternatively, you can set this configuration when you create a new SparkSession in your
Spark code.

from pyspark.sql import SparkSession

spark = (
 SparkSession.builder.appName("SparkSQL")
 .config(
 "spark.hadoop.hive.metastore.client.factory.class",
 "com.amazonaws.glue.catalog.metastore.AWSGlueDataCatalogHiveClientFactory",
)
 .enableHiveSupport()
 .getOrCreate()
)

we can query tables with SparkSQL
spark.sql("SHOW TABLES").show()

we can also them with native Spark
print(spark.catalog.listTables())

Hive

For EMR Serverless Hive applications, the Data Catalog is the default metastore. That is, when
you run jobs on a EMR Serverless Hive application, Hive records metastore information in the
Data Catalog in the same AWS account as your application. You don't need a virtual private
cloud (VPC) to use the Data Catalog as your metastore.

To access the Hive metastore tables, add the required AWS Glue policies outlined in Setting up
IAM Permissions for AWS Glue.

Using the AWS Glue Data Catalog as a metastore 112

https://docs.aws.amazon.com/glue/latest/dg/getting-started-access.html
https://docs.aws.amazon.com/glue/latest/dg/getting-started-access.html

Amazon EMR Amazon EMR Serverless User Guide

Configure cross-account access for EMR Serverless and AWS Glue Data Catalog

To set up cross-account access for EMR Serverless, you must first sign in to the following AWS
accounts:

• AccountA – An AWS account where you have created an EMR Serverless application.

• AccountB – An AWS account that contains a AWS Glue Data Catalog that you want your EMR
Serverless job runs to access.

1. Make sure an administrator or other authorized identity in AccountB attaches a resource
policy to the Data Catalog in AccountB. This policy grants AccountA specific cross-account
permissions to perform operations on resources in the AccountB catalog.

{
 "Version" : "2012-10-17",
 "Statement" : [{
 "Effect" : "Allow",
 "Principal": {
 "AWS": [
 "arn:aws:iam::accountA:role/job-runtime-role-A"
]},
 "Action" : [
 "glue:GetDatabase",
 "glue:CreateDatabase",
 "glue:GetDataBases",
 "glue:CreateTable",
 "glue:GetTable",
 "glue:UpdateTable",
 "glue:DeleteTable",
 "glue:GetTables",
 "glue:GetPartition",
 "glue:GetPartitions",
 "glue:CreatePartition",
 "glue:BatchCreatePartition",
 "glue:GetUserDefinedFunctions"
],
 "Resource": ["arn:aws:glue:region:AccountB:catalog"]
 }]
}

Using the AWS Glue Data Catalog as a metastore 113

Amazon EMR Amazon EMR Serverless User Guide

2. Add an IAM policy to the EMR Serverless job runtime role in AccountA so that role can access
Data Catalog resources in AccountB.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "glue:GetDatabase",
 "glue:CreateDatabase",
 "glue:GetDataBases",
 "glue:CreateTable",
 "glue:GetTable",
 "glue:UpdateTable",
 "glue:DeleteTable",
 "glue:GetTables",
 "glue:GetPartition",
 "glue:GetPartitions",
 "glue:CreatePartition",
 "glue:BatchCreatePartition",
 "glue:GetUserDefinedFunctions"
],
 "Resource": ["arn:aws:glue:region:AccountB:catalog"]
 }
]
}

3. Start your job run. This step is slightly different depending on AccountA's EMR Serverless
application type.

Spark

Set the spark.hadoop.hive.metastore.glue.catalogid property in the hive-site
classification as shown in the following example. Replace AccountB-catalog-id with the
ID of the Data Catalog in AccountB.

aws emr-serverless start-job-run \
--application-id "application-id" \
--execution-role-arn "job-role-arn" \
--job-driver '{
 "sparkSubmit": {

Using the AWS Glue Data Catalog as a metastore 114

Amazon EMR Amazon EMR Serverless User Guide

 "query": "s3://amzn-s3-demo-bucket/hive/scripts/create_table.sql",
 "parameters": "--hiveconf hive.exec.scratchdir=s3://amzn-s3-demo-bucket/
hive/scratch --hiveconf hive.metastore.warehouse.dir=s3://amzn-s3-demo-bucket/
hive/warehouse"
 }
 }' \
--configuration-overrides '{
 "applicationConfiguration": [{
 "classification": "hive-site",
 "properties": {
 "spark.hadoop.hive.metastore.glue.catalogid": "AccountB-catalog-id"
 }
 }]
}'

Hive

Set the hive.metastore.glue.catalogid property in the hive-site classification as
shown in the following example. Replace AccountB-catalog-id with the ID of the Data
Catalog in AccountB.

aws emr-serverless start-job-run \
--application-id "application-id" \
--execution-role-arn "job-role-arn" \
--job-driver '{
 "hive": {
 "query": "s3://amzn-s3-demo-bucket/hive/scripts/create_table.sql",
 "parameters": "--hiveconf hive.exec.scratchdir=s3://amzn-s3-demo-bucket/
hive/scratch --hiveconf hive.metastore.warehouse.dir=s3://amzn-s3-demo-bucket/
hive/warehouse"
 }
}' \
--configuration-overrides '{
 "applicationConfiguration": [{
 "classification": "hive-site",
 "properties": {
 "hive.metastore.glue.catalogid": "AccountB-catalog-id"
 }
 }]
}'

Using the AWS Glue Data Catalog as a metastore 115

Amazon EMR Amazon EMR Serverless User Guide

Considerations when using the AWS Glue Data Catalog

You can add auxiliary JARs with ADD JAR in your Hive scripts. For additional considerations, see
Considerations when using AWS Glue Data Catalog.

Using an external Hive metastore

You can configure your EMR Serverless Spark and Hive jobs to connect to an external Hive
metastore, such as Amazon Aurora or Amazon RDS for MySQL. This section describes how to set up
an Amazon RDS Hive metastore, configure your VPC, and configure your EMR Serverless jobs to use
an external metastore.

Create an external Hive metastore

1. Create an Amazon Virtual Private Cloud (Amazon VPC) with private subnets by following the
instructions in Create a VPC.

2. Create your EMR Serverless application with your new Amazon VPC and private subnets. When
you configure your EMR Serverless application with a VPC, it first provisions an elastic network
interface for each subnet that you specify. It then attaches your specified security group to
that network interface. This gives your application access control. For more details about how
to set up your VPC, see Configuring VPC access for EMR Serverless applications to connect to
data.

3. Create a MySQL or Aurora PostgreSQL database in a private subnet in your Amazon VPC. For
information about how to create an Amazon RDS database, see Creating an Amazon RDS DB
instance.

4. Modify the security group of your MySQL or Aurora database to allow JDBC connections
from your EMR Serverless security group by following the steps in Modifying an Amazon RDS
DB instance. Add a rule for inbound traffic to the RDS security group from one of your EMR
Serverless security groups.

Type Protocol Port range Source

All TCP TCP 3306 emr-serve
rless-sec
urity-group

Using an external Hive metastore 116

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hive-metastore-glue.html#emr-hive-glue-considerations-hive
https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#Create-VPC
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CreateDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CreateDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.DBInstance.Modifying.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.DBInstance.Modifying.html

Amazon EMR Amazon EMR Serverless User Guide

Configure Spark options

Using JDBC

To configure your EMR Serverless Spark application to connect to a Hive metastore based on an
Amazon RDS for MySQL or Amazon Aurora MySQL instance, use a JDBC connection. Pass the
mariadb-connector-java.jar with --jars in the spark-submit parameters of your job run.

aws emr-serverless start-job-run \
 --application-id "application-id" \
 --execution-role-arn "job-role-arn" \
 --job-driver '{
 "sparkSubmit": {
 "entryPoint": "s3://amzn-s3-demo-bucket/scripts/spark-jdbc.py",
 "sparkSubmitParameters": "--jars s3://amzn-s3-demo-bucket/mariadb-
connector-java.jar
 --conf
 spark.hadoop.javax.jdo.option.ConnectionDriverName=org.mariadb.jdbc.Driver
 --conf spark.hadoop.javax.jdo.option.ConnectionUserName=<connection-user-
name>
 --conf spark.hadoop.javax.jdo.option.ConnectionPassword=<connection-
password>
 --conf spark.hadoop.javax.jdo.option.ConnectionURL=<JDBC-Connection-
string>
 --conf spark.driver.cores=2
 --conf spark.executor.memory=10G
 --conf spark.driver.memory=6G
 --conf spark.executor.cores=4"
 }
 }' \
 --configuration-overrides '{
 "monitoringConfiguration": {
 "s3MonitoringConfiguration": {
 "logUri": "s3://amzn-s3-demo-bucket/spark/logs/"
 }
 }
}'

The following code example is a Spark entrypoint script that interacts with a Hive metastore on
Amazon RDS.

from os.path import expanduser, join, abspath

Using an external Hive metastore 117

Amazon EMR Amazon EMR Serverless User Guide

from pyspark.sql import SparkSession
from pyspark.sql import Row
warehouse_location points to the default location for managed databases and tables
warehouse_location = abspath('spark-warehouse')
spark = SparkSession \
 .builder \
 .config("spark.sql.warehouse.dir", warehouse_location) \
 .enableHiveSupport() \
 .getOrCreate()
spark.sql("SHOW DATABASES").show()
spark.sql("CREATE EXTERNAL TABLE `sampledb`.`sparknyctaxi`(`dispatching_base_num`
 string, `pickup_datetime` string, `dropoff_datetime` string, `pulocationid` bigint,
 `dolocationid` bigint, `sr_flag` bigint) STORED AS PARQUET LOCATION 's3://<s3 prefix>/
nyctaxi_parquet/'")
spark.sql("SELECT count(*) FROM sampledb.sparknyctaxi").show()
spark.stop()

Using the thrift service

You can configure your EMR Serverless Hive application to connect to a Hive metastore based on
an Amazon RDS for MySQL or Amazon Aurora MySQL instance. To do this, run a thrift server on
the master node of an existing Amazon EMR cluster. This option is ideal if you already have an
Amazon EMR cluster with a thrift server that you want to use to simplify your EMR Serverless job
configurations.

aws emr-serverless start-job-run \
 --application-id "application-id" \
 --execution-role-arn "job-role-arn" \
 --job-driver '{
 "sparkSubmit": {
 "entryPoint": "s3://amzn-s3-demo-bucket/thriftscript.py",
 "sparkSubmitParameters": "--jars s3://amzn-s3-demo-bucket/mariadb-
connector-java.jar
 --conf spark.driver.cores=2
 --conf spark.executor.memory=10G
 --conf spark.driver.memory=6G
 --conf spark.executor.cores=4"
 }
 }' \
 --configuration-overrides '{
 "monitoringConfiguration": {
 "s3MonitoringConfiguration": {
 "logUri": "s3://amzn-s3-demo-bucket/spark/logs/"

Using an external Hive metastore 118

Amazon EMR Amazon EMR Serverless User Guide

 }
 }
}'

The following code example is an entrypoint script (thriftscript.py) that uses thrift protocol
to connect to a Hive metastore. Note that the hive.metastore.uris property needs to be set to
read from an external Hive metastore.

from os.path import expanduser, join, abspath
from pyspark.sql import SparkSession
from pyspark.sql import Row
warehouse_location points to the default location for managed databases and tables
warehouse_location = abspath('spark-warehouse')
spark = SparkSession \
 .builder \
 .config("spark.sql.warehouse.dir", warehouse_location) \
 .config("hive.metastore.uris","thrift://thrift-server-host:thift-server-port") \
 .enableHiveSupport() \
 .getOrCreate()
spark.sql("SHOW DATABASES").show()
spark.sql("CREATE EXTERNAL TABLE sampledb.`sparknyctaxi`(`dispatching_base_num`
 string, `pickup_datetime` string, `dropoff_datetime` string, `pulocationid` bigint,
 `dolocationid` bigint, `sr_flag` bigint) STORED AS PARQUET LOCATION 's3://<s3 prefix>/
nyctaxi_parquet/'")
spark.sql("SELECT * FROM sampledb.sparknyctaxi").show()
spark.stop()

Configure Hive options

Using JDBC

If you want to specify an external Hive database location on either an Amazon RDS MySQL or
Amazon Aurora instance, you can override the default metastore configuration.

Note

In Hive, you can perform multiple writes to metastore tables at the same time. If you
share metastore information between two jobs, make sure that you don't write to the
same metastore table simultaneously unless you write to different partitions of the same
metastore table.

Using an external Hive metastore 119

Amazon EMR Amazon EMR Serverless User Guide

Set the following configurations in the hive-site classification to activate the external Hive
metastore.

{
 "classification": "hive-site",
 "properties": {
 "hive.metastore.client.factory.class":
 "org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClientFactory",
 "javax.jdo.option.ConnectionDriverName": "org.mariadb.jdbc.Driver",
 "javax.jdo.option.ConnectionURL": "jdbc:mysql://db-host:db-port/db-name",
 "javax.jdo.option.ConnectionUserName": "username",
 "javax.jdo.option.ConnectionPassword": "password"
 }
}

Using a thrift server

You can configure your EMR Serverless Hive application to connect to a Hive metastore based on
an Amazon RDS for MySQL or Amazon Aurora MySQLinstance. To do this, run a thrift server on the
main node of an existing Amazon EMR cluster. This option is ideal if you already have an Amazon
EMR cluster that runs a thrift server and you want to use your EMR Serverless job configurations.

Set the following configurations in the hive-site classification so that EMR Serverless can access
the remote thrift metastore. Note that you must set the hive.metastore.uris property to read
from an external Hive metastore.

{
 "classification": "hive-site",
 "properties": {
 "hive.metastore.client.factory.class":
 "org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClientFactory",
 "hive.metastore.uris": "thrift://thrift-server-host:thirft-server-port"
 }
}

Working with AWS Glue multi-catalog hierarchy on EMR Serverless

You can configure your EMR Serverless applications to work with the AWS Glue multi-catalog
hierarchy. The following example shows how to use EMR-S Spark with the AWS Glue multi-catalog
hierarchy.

Working with AWS Glue multi-catalog hierarchy on EMR Serverless 120

Amazon EMR Amazon EMR Serverless User Guide

To learn more about multi-catalog hierarchy, see Working with a multi-catalog hierarchy in AWS
Glue Data Catalog with Spark on Amazon EMR.

Using Redshift Managed Storage (RMS) with Iceberg and AWS Glue Data Catalog

The following shows how to configure Spark for integration with an AWS Glue Data Catalog with
Iceberg:

aws emr-serverless start-job-run \
 --application-id application-id \
 --execution-role-arn job-role-arn \
 --job-driver '{
 "sparkSubmit": {
 "entryPoint": "s3://amzn-s3-demo-bucket/myscript.py",
 "sparkSubmitParameters": "--conf spark.sql.catalog.nfgac_rms =
 org.apache.iceberg.spark.SparkCatalog
 --conf spark.sql.catalog.rms.type=glue
 --conf spark.sql.catalog.rms.glue.id=Glue RMS catalog ID
 --conf spark.sql.defaultCatalog=rms
 --conf
 spark.sql.extensions=org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions"
 }
 }'

A sample query from a table in the catalog, following integration:

SELECT * FROM my_rms_schema.my_table

Using Redshift Managed Storage (RMS) with Iceberg REST API and AWS Glue Data
Catalog

The following shows how to configure Spark to work with Iceberg REST catalog:

aws emr-serverless start-job-run \
--application-id application-id \
--execution-role-arn job-role-arn \
--job-driver '{
"sparkSubmit": {
"entryPoint": "s3://amzn-s3-demo-bucket/myscript.py",
 "sparkSubmitParameters": "
 --conf spark.sql.catalog.rms=org.apache.iceberg.spark.SparkCatalog

Working with AWS Glue multi-catalog hierarchy on EMR Serverless 121

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-multi-catalog.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-multi-catalog.html

Amazon EMR Amazon EMR Serverless User Guide

 --conf spark.sql.catalog.rms.type=rest
 --conf spark.sql.catalog.rms.warehouse=Glue RMS catalog ID
 --conf spark.sql.catalog.rms.uri=Glue endpoint URI/iceberg
 --conf spark.sql.catalog.rms.rest.sigv4-enabled=true
 --conf spark.sql.catalog.rms.rest.signing-name=glue
 --conf
 spark.sql.extensions=org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions"
 }
 }'

A sample query from a table in the catalog:

SELECT * FROM my_rms_schema.my_table

Considerations when using an external metastore

• You can configure databases that are compatible with MariaDB JDBC as your metastore.
Examples of these databases are RDS for MariaDB, MySQL, and Amazon Aurora.

• Metastores aren't auto-initialized. If your metastore isn't initialized with a schema for your Hive
version, use the Hive Schema Tool.

• EMR Serverless doesn't support Kerberos authentication. You can't use a thrift metastore server
with Kerberos authentication with EMR Serverless Spark or Hive jobs.

• You must configure VPC access to use the multi-catalog hierarchy.

Accessing S3 data in another AWS account from EMR Serverless

You can run Amazon EMR Serverless jobs from one AWS account and configure them to access data
in Amazon S3 buckets that belong to another AWS account. This page describes how to configure
cross-account access to S3 from EMR Serverless.

Jobs that run on EMR Serverless can use an S3 bucket policy or an assumed role to access data in
Amazon S3 from a different AWS account.

Prerequisites

To set up cross-account access for Amazon EMR Serverless, you must complete tasks while signed
in to two AWS accounts:

Considerations when using an external metastore 122

https://cwiki.apache.org/confluence/display/Hive/Hive+Schema+Tool

Amazon EMR Amazon EMR Serverless User Guide

• AccountA – This is the AWS account where you have created an Amazon EMR Serverless
application. Before you set up cross-account access, you must have the following ready in this
account:

• An Amazon EMR Serverless application where you want to run jobs.

• A job execution role that has the required permissions to run jobs in the application. For more
information, see Job runtime roles for Amazon EMR Serverless.

• AccountB – This is the AWS account that contains the S3 bucket that you want your Amazon
EMR Serverless jobs to access.

Use an S3 bucket policy to access cross-account S3 data

To access the S3 bucket in account B from account A, attach the following policy to the S3 bucket
in account B.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Example permissions 1",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::AccountA:root"
 },
 "Action": [
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::bucket_name_in_AccountB"
]
 },
 {
 "Sid": "Example permissions 2",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::AccountA:root"
 },
 "Action": [
 "s3:PutObject",
 "s3:GetObject",
 "s3:DeleteObject"

Use an S3 bucket policy 123

Amazon EMR Amazon EMR Serverless User Guide

],
 "Resource": [
 "arn:aws:s3:::bucket_name_in_AccountB/*"
]
 }
]
}

For more information about S3 cross-account access with S3 bucket policies, see Example 2: Bucket
owner granting cross-account bucket permissions in the Amazon Simple Storage Service User Guide.

Use an assumed role to access cross-account S3 data

Another way to set up cross-account access for Amazon EMR Serverless is with the AssumeRole
action from the AWS Security Token Service (AWS STS). AWS STS is a global web service that
lets you request temporary, limited-privilege credentials for users. You can make API calls to
EMR Serverless and Amazon S3 with the temporary security credentials that you create with
AssumeRole.

The following steps illustrate how to use an assumed role to access cross-account S3 data from
EMR Serverless:

1. Create an Amazon S3 bucket, cross-account-bucket, in AccountB. For more information,
see Creating a bucket in the Amazon Simple Storage Service User Guide. If you want to have
cross-account access to DynamoDB, you can also create a DynamoDB table in AccountB. For
more information, see Creating a DynamoDB table in the Amazon DynamoDB Developer Guide.

2. Create a Cross-Account-Role-B IAM role in AccountB that can access the cross-account-
bucket.

a. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

b. Choose Roles and create a new role: Cross-Account-Role-B. For more information about
how to create IAM roles, see Creating IAM roles in the IAM User Guide.

c. Create an IAM policy that specifies the permissions for Cross-Account-Role-B to access
the cross-account-bucket S3 bucket, as the following policy statement demonstrates.
Then attach the IAM policy to Cross-Account-Role-B. For more information, see Creating
IAM policies in the IAM User Guide.

{

Use an assumed role 124

https://docs.aws.amazon.com/AmazonS3/latest/userguide/example-walkthroughs-managing-access-example2.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/example-walkthroughs-managing-access-example2.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/getting-started-step-1.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html

Amazon EMR Amazon EMR Serverless User Guide

"Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::cross-account-bucket",
 "arn:aws:s3:::cross-account-bucket/*"
]
 }
]
}

If you require DynamoDB access, create an IAM policy that specifies permissions to access the
cross-account DynamoDB table. Then attach the IAM policy to Cross-Account-Role-B. For
more information, see Amazon DynamoDB: Allows access to a specific table in the IAM User
Guide.

The following is a policy to allow access to the DynamoDB table CrossAccountTable.

{
"Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "dynamodb:*",
 "Resource": "arn:aws:dynamodb:MyRegion:AccountB:table/CrossAccountTable"
 }
]
}

3. Edit the trust relationship for the Cross-Account-Role-B role.

a. To configure the trust relationship for the role, choose the Trust Relationships tab in the IAM
console for the role Cross-Account-Role-B that you created in Step 2.

b. Select Edit Trust Relationship.

c. Add the following policy document. This allows Job-Execution-Role-A in AccountA to
assume the Cross-Account-Role-B role.

{
"Version": "2012-10-17",

Use an assumed role 125

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_examples_dynamodb_specific-table.html

Amazon EMR Amazon EMR Serverless User Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::AccountA:role/Job-Execution-Role-A"
 },
 "Action": "sts:AssumeRole"
 }
]
}

4. Grant Job-Execution-Role-A in AccountA the AWS STS AssumeRole permission to assume
Cross-Account-Role-B.

a. In the IAM console for AWS account AccountA, select Job-Execution-Role-A.

b. Add the following policy statement to the Job-Execution-Role-A to allow the
AssumeRole action on the Cross-Account-Role-B role.

{
"Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::AccountB:role/Cross-Account-Role-B"
 }
]
}

Assumed role examples

You can use a single assumed role to access all S3 resources in an account, or with Amazon EMR
6.11 and higher, you can configure multiple IAM roles to assume when you access different cross-
account S3 buckets.

Topics

• Access S3 resources with one assumed role

• Access S3 resources with multiple assumed roles

Assumed role examples 126

Amazon EMR Amazon EMR Serverless User Guide

Access S3 resources with one assumed role

Note

When you configure a job to use a single assumed role, all S3 resources throughout the job
use that role, including the entryPoint script.

If you want to use a single assumed role to access all S3 resources in account B, specify the
following configurations:

1. Specify EMRFS configuration fs.s3.customAWSCredentialsProvider to
spark.hadoop.fs.s3.customAWSCredentialsProvider=com.amazonaws.emr.AssumeRoleAWSCredentialsProvider.

2. For Spark, use spark.emr-
serverless.driverEnv.ASSUME_ROLE_CREDENTIALS_ROLE_ARN and
spark.executorEnv.ASSUME_ROLE_CREDENTIALS_ROLE_ARN to specify the environment
variables on driver and executors.

3. For Hive, use hive.emr-
serverless.launch.env.ASSUME_ROLE_CREDENTIALS_ROLE_ARN, tez.am.emr-
serverless.launch.env.ASSUME_ROLE_CREDENTIALS_ROLE_ARN, and tez.task.emr-
serverless.launch.env.ASSUME_ROLE_CREDENTIALS_ROLE_ARN to specify the
environment variables on Hive driver, Tez application master, and Tez task containers.

The following examples show how to use an assumed role to start an EMR Serverless job run with
cross-account access.

Spark

The following example shows how to use an assumed role to start an EMR Serverless Spark job
run with cross-account access to S3.

aws emr-serverless start-job-run \
 --application-id application-id \
 --execution-role-arn job-role-arn \
 --job-driver '{
 "sparkSubmit": {
 "entryPoint": "entrypoint_location",
 "entryPointArguments": [":argument_1:", ":argument_2:"],

Assumed role examples 127

Amazon EMR Amazon EMR Serverless User Guide

 "sparkSubmitParameters": "--conf spark.executor.cores=4 --conf
 spark.executor.memory=20g --conf spark.driver.cores=4 --conf spark.driver.memory=8g
 --conf spark.executor.instances=1"
 }
 }' \
 --configuration-overrides '{
 "applicationConfiguration": [{
 "classification": "spark-defaults",
 "properties": {
 "spark.hadoop.fs.s3.customAWSCredentialsProvider":
 "spark.hadoop.fs.s3.customAWSCredentialsProvider=com.amazonaws.emr.AssumeRoleAWSCredentialsProvider",
 "spark.emr-serverless.driverEnv.ASSUME_ROLE_CREDENTIALS_ROLE_ARN":
 "arn:aws:iam::AccountB:role/Cross-Account-Role-B",
 "spark.executorEnv.ASSUME_ROLE_CREDENTIALS_ROLE_ARN":
 "arn:aws:iam::AccountB:role/Cross-Account-Role-B"
 }
 }]
 }'

Hive

The following example shows how to use an assumed role to start an EMR Serverless Hive job
run with cross-account access to S3.

aws emr-serverless start-job-run \
 --application-id application-id \
 --execution-role-arn job-role-arn \
 --job-driver '{
 "hive": {
 "query": "query_location",
 "parameters": "hive_parameters"
 }
 }' \
 --configuration-overrides '{
 "applicationConfiguration": [{
 "classification": "hive-site",
 "properties": {
 "fs.s3.customAWSCredentialsProvider":
 "com.amazonaws.emr.serverless.credentialsprovider.AssumeRoleAWSCredentialsProvider",
 "hive.emr-serverless.launch.env.ASSUME_ROLE_CREDENTIALS_ROLE_ARN":
 "arn:aws:iam::AccountB:role/Cross-Account-Role-B",
 "tez.am.emr-serverless.launch.env.ASSUME_ROLE_CREDENTIALS_ROLE_ARN":
 "arn:aws:iam::AccountB:role/Cross-Account-Role-B",

Assumed role examples 128

Amazon EMR Amazon EMR Serverless User Guide

 "tez.task.emr-
serverless.launch.env.ASSUME_ROLE_CREDENTIALS_ROLE_ARN":
 "arn:aws:iam::AccountB:role/Cross-Account-Role-B"
 }
 }]
 }'

Access S3 resources with multiple assumed roles

With EMR Serverless releases 6.11.0 and higher, you can configure multiple IAM roles to assume
when you access different cross-account buckets. If you want to access different S3 resources with
different assumed roles in account B, use following configurations when you start the job run:

1. Specify EMRFS configuration fs.s3.customAWSCredentialsProvider to
com.amazonaws.emr.serverless.credentialsprovider.BucketLevelAssumeRoleCredentialsProvider.

2. Specify EMRFS configuration fs.s3.bucketLevelAssumeRoleMapping to define the
mapping from S3 bucket name to the IAM role in account B to assume. The value should be in
format of bucket1->role1;bucket2->role2.

For example, you can use arn:aws:iam::AccountB:role/Cross-Account-Role-B-1 to
access bucket bucket1, and use arn:aws:iam::AccountB:role/Cross-Account-Role-B-2
to access bucket bucket2. The following examples show how to start an EMR Serverless job run
with cross-account access through multiple assumed roles.

Spark

The following example shows how to use multiple assumed roles to create an EMR Serverless
Spark job run.

aws emr-serverless start-job-run \
 --application-id application-id \
 --execution-role-arn job-role-arn \
 --job-driver '{
 "sparkSubmit": {
 "entryPoint": "entrypoint_location",
 "entryPointArguments": [":argument_1:", ":argument_2:"],
 "sparkSubmitParameters": "--conf spark.executor.cores=4 --conf
 spark.executor.memory=20g --conf spark.driver.cores=4 --conf spark.driver.memory=8g
 --conf spark.executor.instances=1"

Assumed role examples 129

Amazon EMR Amazon EMR Serverless User Guide

 }
 }' \
 --configuration-overrides '{
 "applicationConfiguration": [{
 "classification": "spark-defaults",
 "properties": {
 "spark.hadoop.fs.s3.customAWSCredentialsProvider":
 "com.amazonaws.emr.serverless.credentialsprovider.BucketLevelAssumeRoleCredentialsProvider",
 "spark.hadoop.fs.s3.bucketLevelAssumeRoleMapping":
 "bucket1->arn:aws:iam::AccountB:role/Cross-Account-Role-B-1;bucket2-
>arn:aws:iam::AccountB:role/Cross-Account-Role-B-2"
 }
 }]
 }'

Hive

The following examples show how to use multiple assumed roles to create an EMR Serverless
Hive job run.

aws emr-serverless start-job-run \
 --application-id application-id \
 --execution-role-arn job-role-arn \
 --job-driver '{
 "hive": {
 "query": "query_location",
 "parameters": "hive_parameters"
 }
 }' \
 --configuration-overrides '{
 "applicationConfiguration": [{
 "classification": "hive-site",
 "properties": {
 "fs.s3.customAWSCredentialsProvider":
 "com.amazonaws.emr.serverless.credentialsprovider.AssumeRoleAWSCredentialsProvider",
 "fs.s3.bucketLevelAssumeRoleMapping": "bucket1-
>arn:aws:iam::AccountB:role/Cross-Account-Role-B-1;bucket2-
>arn:aws:iam::AccountB:role/Cross-Account-Role-B-2"
 }
 }]
 }'

Assumed role examples 130

Amazon EMR Amazon EMR Serverless User Guide

Troubleshooting errors in EMR Serverless

Use the following information to help diagnose and fix common issues you might encounter when
working with Amazon EMR Serverless.

Topics

• Error: Job failed as account has reached the service limit on the maximum vCPU it can use
concurrently.

• Error: Job failed as application has exceeded maximumCapacity settings.

• Error: Job failed due to Worker could not be allocated as the application has exceeded
maximumCapacity.

• Error: S3 access is denied. Please check S3 access permissions of the job runtime role on the
required S3 resources.

• Error: ModuleNotFoundError: No module named <module>. Please refer to the user guide on
how to use python libraries with EMR Serverless.

• Error: Could not assume execution role <role name> because it does not exist or is not set up
with the required trust relationship.

Error: Job failed as account has reached the service limit on the
maximum vCPU it can use concurrently.

This error indicates that EMR Serverless couldn't submit the job as the account has exceeded the
maximum capacity. Increase the maximum capacity for the account. Check your service limits at
EMR Serverless service quotas.

Error: Job failed as application has exceeded maximumCapacity
settings.

This error indicates that EMR Serverless couldn't submit the job as the application has exceeded the
configured maximum capacity. Increase the maximum capacity for the application.

Error: Job failed due to Worker could not be allocated as the
application has exceeded maximumCapacity.

This error indicates that the job couldn't complete. Workers couldn't be allocated because the
application has exceeded maximumCapacity settings.

Troubleshooting errors 131

https://console.aws.amazon.com/servicequotas/home/services/emr-serverless/quotas

Amazon EMR Amazon EMR Serverless User Guide

Error: S3 access is denied. Please check S3 access permissions of the job
runtime role on the required S3 resources.

This error indicates that your job doesn't have access to your S3 resources. Verify that the job
runtime role has permission to access the S3 resources that the job needs to use. To learn more
about runtime roles, see Job runtime roles for Amazon EMR Serverless.

Error: ModuleNotFoundError: No module named <module>. Please
refer to the user guide on how to use python libraries with EMR
Serverless.

This error indicates that a Python module wasn't available for the Spark job. Check that the
dependent Python libraries are available to the job. For more information on how to package
Python libraries, see Using Python libraries with EMR Serverless.

Error: Could not assume execution role <role name> because it does not
exist or is not set up with the required trust relationship.

This error indicates that the job runtime role that you specified for the job doesn't exist, or that the
role doesn't have a trust relationship for EMR Serverless permissions. To verify that the IAM role
exists and validate that you have set up the role’s trust policy properly, see the instructions in Job
runtime roles for Amazon EMR Serverless.

Error: S3 access is denied. Please check S3 access permissions of the job runtime role on the required S3
resources.

132

Amazon EMR Amazon EMR Serverless User Guide

Run interactive workloads with EMR Serverless through
EMR Studio

With EMR Serverless interactive applications, you can run interactive workloads for Spark with EMR
Serverless using notebooks that are hosted in EMR Studio.

Overview

An interactive application is an EMR Serverless application that has interactive capabilities enabled.
With Amazon EMR Serverless interactive applications, you can execute interactive workloads with
Jupyter notebooks that are managed in Amazon EMR Studio. This helps data engineers, data
scientists, and data analysts use EMR Studio to run interactive analytics with datasets in data stores
such as Amazon S3 and Amazon DynamoDB.

Use cases for interactive applications in EMR Serverless include the following:

• Data engineers use the IDE experience in EMR Studio to create an ETL script. The script ingests
data from on-premises, transforms the data for analysis, and stores the data in Amazon S3.

• Data scientists use notebooks to explore datasets and train machine-learning (ML) models to
detect anomalies in the datasets.

• Data analysts explore datasets and create scripts that generate daily reports to update
applications like business dashboards.

Prerequisites

To use interactive workloads with EMR Serverless, you must meet the following requirements:

• EMR Serverless interactive applications are supported with Amazon EMR 6.14.0 and higher.

• To access your interactive application, execute the workloads that you submit, and run
interactive notebooks from EMR Studio, you need specific permissions and roles. For more
information, see Required permissions for interactive workloads.

Overview 133

Amazon EMR Amazon EMR Serverless User Guide

Required permissions for interactive workloads

In addition to the basic permissions that are required to access EMR Serverless, you must configure
additional permissions for your IAM identity or role:

To access your interactive application

Set up user and Workspace permissions for EMR Studio. For more information, see Configure
EMR Studio user permissions in the Amazon EMR Management Guide.

To execute the workloads that you submit with EMR Serverless

Set up a job runtime role. For more information, see Create a job runtime role.

To run the interactive notebooks from EMR Studio

Add the following additional permissions to the IAM policy for the Studio users:

• emr-serverless:AccessInteractiveEndpoints - Grants permission to access and
connect to the interactive application that you specify as Resource. This permission is
required to attach to an EMR Serverless application from an EMR Studio Workspace.

• iam:PassRole - Grants permission to access the IAM execution role that you plan to use
when you attach to an application. The appropriate PassRolepermission is required to
attach to an EMR Serverless application from an EMR Studio Workspace.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "EMRServerlessInteractiveAccess",
 "Effect": "Allow",
 "Action": "emr-serverless:AccessInteractiveEndpoints",
 "Resource": "arn:aws:emr-serverless:Region:account:/applications/*"
 },
 {
 "Sid": "EMRServerlessRuntimeRoleAccess",
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "interactive-execution-role-ARN",
 "Condition": {
 "StringLike": {
 "iam:PassedToService": "emr-serverless.amazonaws.com"
 }
 }

Permissions 134

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-studio-user-permissions.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-studio-user-permissions.html

Amazon EMR Amazon EMR Serverless User Guide

 }
]
}

Configuring interactive applications

Use the following high-level steps to create an EMR Serverless application with interactive
capabilities from Amazon EMR Studio in the AWS Management Console.

1. Follow the steps in Getting started with Amazon EMR Serverless to create an application.

2. Then, launch a workspace from EMR Studio and attach to an EMR Serverless application as a
compute option. For more information, see the Interactive workload tab in Step 2 of the EMR
Serverless Getting Started documentation.

When you attach an application to a Studio Workspace, the application start triggers automatically
if it's not already running. You can also pre-start the application and keep it ready before you
attach it to the Workspace.

Considerations with interactive applications

• EMR Serverless interactive applications are supported with Amazon EMR 6.14.0 and higher.

• EMR Studio is the only client that is integrated with EMR Serverless interactive applications. The
following EMR Studio capabilities aren't supported with EMR Serverless interactive applications:
Workspace collaboration, SQL Explorer, and programmatic execution of notebooks.

• Interactive applications are only supported for Spark engine.

• Interactive applications support Python 3, PySpark and Spark Scala kernels.

• You can run up to 25 concurrent notebooks on a single interactive application.

• There isn't an endpoint or API interface that supports self-hosted Jupyter notebooks with
interactive applications.

• For an optimized startup experience, we recommend that you configure pre-initialized capacity
for drivers and executors, and that you pre-start your application. When you pre-start the
application, you ensure that it's ready when you want to attach it to your Workspace.

aws emr-serverless start-application \
--application-id your-application-id

Configuration 135

https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/getting-started.html#gs-job-run-console
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/getting-started.html#gs-job-run-console

Amazon EMR Amazon EMR Serverless User Guide

• By default, autoStopConfig is enabled for applications. This shuts down the application
after 30 minutes of idle time. You can change this configuration as part of your create-
application or update-application request.

• When using an interactive application, we recommend that you configure a pre-intialized
capacity of kernels, drivers, and executors to run your notebooks. Each Spark interactive session
requires one kernel and one driver, so EMR Serverless maintains a pre-initialized kernel worker
for every pre-initialized driver. By default, EMR Serverless maintains a pre-initialized capacity of
one kernel worker throughout the entire application even if you don't specify any pre-initialized
capacity for drivers. Each kernel worker uses 4 vCPU and 16 GB of memory. For current pricing
information, see the Amazon EMR Pricing page.

• You must have sufficient vCPU service quota in your AWS account to run interactive workloads. If
you don't run Lake Formation-enabled workloads, we recommend at least 24 vCPU. If you do, we
recommend at least 28 vCPU.

• EMR Serverless automatically terminates the kernels from the notebooks if they have been idle
for more than 60 minutes. EMR Serverless calculates the kernel idle time from the last activity
completed during the notebook session. You can't currently modify the kernel idle timeout
setting.

• To enable Lake Formation with interactive workloads, set the configuration spark.emr-
serverless.lakeformation.enabled to true under the spark-defaults classification in
the runtime-configuration object when you create an EMR Serverless application. To learn
more about enabling Lake Formation in EMR Serverless, see Enabling Lake Formation in Amazon
EMR.

Run interactive workloads with EMR Serverless through an
Apache Livy endpoint

With Amazon EMR releases 6.14.0 and higher, you can create and enable an Apache Livy endpoint
while creating an EMR Serverless application and run interactive workloads through your self-
hosted notebooks or with a custom client. An Apache Livy endpoint offers the following benefits:

• You can securely connect to an Apache Livy endpoint through Jupyter notebooks and manage
Apache Spark workloads with Apache Livy's REST interface.

• Use the Apache Livy REST API operations for interactive web applications that use data from
Apache Spark workloads.

Running interactive workloads through Apache Livy endpoint 136

https://aws.amazon.com/emr/pricing/
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/getting-started.html
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/emr-serverless-lf-enable.html#emr-serverless-lf-enable-config
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/emr-serverless-lf-enable.html#emr-serverless-lf-enable-config

Amazon EMR Amazon EMR Serverless User Guide

Prerequisites

To use an Apache Livy endpoint with EMR Serverless, you must meet the following requirements:

• Complete the steps in Getting started with Amazon EMR Serverless.

• To run interactive workloads through Apache Livy endpoints, you need certain permissions and
roles. For more information, see Required permissions for interactive workloads.

Required permissions

In addition to the required permissions to access EMR Serverless, you must also add the following
permissions to your IAM role to access an Apache Livy endpoint and run applications:

• emr-serverless:AccessLivyEndpoints – grants permission to access and connect to the
Livy-enabled application that you specify as Resource. You need this permission to run the
REST API operations available from the Apache Livy endpoint.

• iam:PassRole – grants permission to access the IAM execution role while creating the Apache
Livy session. EMR Serverless will use this role to execute your workloads.

• emr-serverless:GetDashboardForJobRun – grants permission to generate the Spark Live
UI and driver log links and provides access to the logs as part of the Apache Livy session results.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "EMRServerlessInteractiveAccess",
 "Effect": "Allow",
 "Action": "emr-serverless:AccessLivyEndpoints",
 "Resource": "arn:aws:emr-serverless:<AWS_REGION>:account:/applications/*"
 },
 {
 "Sid": "EMRServerlessRuntimeRoleAccess",
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "execution-role-ARN",
 "Condition": {
 "StringLike": {
 "iam:PassedToService": "emr-serverless.amazonaws.com"
 }
 }

Prerequisites 137

https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/getting-started.html
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/interactive-workloads.html#interactive-permissions

Amazon EMR Amazon EMR Serverless User Guide

 },
 {
 "Sid": "EMRServerlessDashboardAccess",
 "Effect": "Allow",
 "Action": "emr-serverless:GetDashboardForJobRun",
 "Resource": "arn:aws:emr-serverless:<AWS_REGION>:account:/applications/*"
 }
]
}

Getting started

To create an Apache Livy-enabled application and run it, follow these steps.

1. To create an Apache Livy-enabled application, run the following command.

 aws emr-serverless create-application \
--name my-application-name \
--type 'application-type' \
 --release-label <Amazon EMR-release-version>
--interactive-configuration '{"livyEndpointEnabled": true}'

2. After EMR Serverless creates your application, start the application to make the Apache Livy
endpoint available.

 aws emr-serverless start-application \
 --application-id application-id

Use the following command to check whether the status of your application. Once the status
becomes STARTED, you can access the Apache Livy endpoint.

aws emr-serverless get-application \
--region <AWS_REGION> --application-id >application_id>

3. Use the following URL to access the endpoint:

https://_<application-id>_.livy.emr-serverless-
services._<AWS_REGION>_.amazonaws.com

Getting started 138

Amazon EMR Amazon EMR Serverless User Guide

Once the endpoint is ready, you can submit workloads based on your use case. You must sign every
request to the endpoint with the SIGv4 protocol and pass in an authorization header. You can use
the following methods to run workloads:

• HTTP client – you must submit your Apache Livy endpoint API operations with a custom HTTP
client.

• Sparkmagic kernel – you must locally run the sparkmagic kernel and submit interactive queries
with Jupyter notebooks.

HTTP clients

To create an Apache Livy session, you must submit emr-
serverless.session.executionRoleArn in the conf parameter of your request body. The
following example is a sample POST /sessions request.

{
 "kind": "pyspark",
 "heartbeatTimeoutInSecond": 60,
 "conf": {
 "emr-serverless.session.executionRoleArn": "<executionRoleArn>"
 }
}

The following table describes all of the available Apache Livy API operations.

API operation Description

GET /sessions Returns a list of all of the active interactive
sessions.

POST /sessions Creates a new interactive session via spark or
pyspark.

GET /sessions/<sessionId > Returns the session information.

GET /sessions/<sessionId >/state Returns the state of session.

DELETE /sessions/<sessionId > Stops and deletes the session.

Getting started 139

https://docs.aws.amazon.com/IAM/latest/UserGuide/create-signed-request.html

Amazon EMR Amazon EMR Serverless User Guide

API operation Description

GET /sessions/<sessionId >/statements Returns all the statements in a session.

POST /sessions/<sessionId >/statements Runs a statement in a session.

GET /sessions/<sessionId >/statements/
<statementId >

Returns the details of the specified statement
in a session.

POST /sessions/<sessionId >/statements/
<statementId >/cancel

Cancels the specified statement in this session.

Sending requests to the Apache Livy endpoint

You can also send requests directly to the Apache Livy endpoint from an HTTP client. Doing so lets
you remotely run code for your use cases outside of a notebook.

Before you can start sending requests to the endpoint, make sure that you've installed the
following libraries:

pip3 install botocore awscrt requests

The following is a sample Python script to send HTTP requests directly to an endpoint:

from botocore import crt
import requests
from botocore.awsrequest import AWSRequest
from botocore.credentials import Credentials
import botocore.session
import json, pprint, textwrap

endpoint = 'https://<application_id>.livy.emr-serverless-
services-<AWS_REGION>.amazonaws.com'
headers = {'Content-Type': 'application/json'}

session = botocore.session.Session()
signer = crt.auth.CrtS3SigV4Auth(session.get_credentials(), 'emr-serverless',
 '<AWS_REGION>')

Create session request

Getting started 140

Amazon EMR Amazon EMR Serverless User Guide

data = {'kind': 'pyspark', 'heartbeatTimeoutInSecond': 60, 'conf': { 'emr-
serverless.session.executionRoleArn': 'arn:aws:iam::123456789012:role/role1'}}

request = AWSRequest(method='POST', url=endpoint + "/sessions", data=json.dumps(data),
 headers=headers)

request.context["payload_signing_enabled"] = False

signer.add_auth(request)

prepped = request.prepare()

r = requests.post(prepped.url, headers=prepped.headers, data=json.dumps(data))

pprint.pprint(r.json())

List Sessions Request

request = AWSRequest(method='GET', url=endpoint + "/sessions", headers=headers)

request.context["payload_signing_enabled"] = False

signer.add_auth(request)

prepped = request.prepare()

r2 = requests.get(prepped.url, headers=prepped.headers)
pprint.pprint(r2.json())

Get session state

session_url = endpoint + r.headers['location']

request = AWSRequest(method='GET', url=session_url, headers=headers)

request.context["payload_signing_enabled"] = False

signer.add_auth(request)

prepped = request.prepare()

Getting started 141

Amazon EMR Amazon EMR Serverless User Guide

r3 = requests.get(prepped.url, headers=prepped.headers)

pprint.pprint(r3.json())

Submit Statement

data = {
 'code': "1 + 1"
}

statements_url = endpoint + r.headers['location'] + "/statements"

request = AWSRequest(method='POST', url=statements_url, data=json.dumps(data),
 headers=headers)

request.context["payload_signing_enabled"] = False

signer.add_auth(request)

prepped = request.prepare()

r4 = requests.post(prepped.url, headers=prepped.headers, data=json.dumps(data))

pprint.pprint(r4.json())

Check statements results

specific_statement_url = endpoint + r4.headers['location']

request = AWSRequest(method='GET', url=specific_statement_url, headers=headers)

request.context["payload_signing_enabled"] = False

signer.add_auth(request)

prepped = request.prepare()

r5 = requests.get(prepped.url, headers=prepped.headers)

pprint.pprint(r5.json())

Delete session

Getting started 142

Amazon EMR Amazon EMR Serverless User Guide

session_url = endpoint + r.headers['location']

request = AWSRequest(method='DELETE', url=session_url, headers=headers)

request.context["payload_signing_enabled"] = False

signer.add_auth(request)

prepped = request.prepare()

r6 = requests.delete(prepped.url, headers=prepped.headers)

pprint.pprint(r6.json())

Sparkmagic kernel

Before you install sparkmagic, make sure that you have configured AWS credentials in the instance
in which you want to install sparkmagic

1. Install sparkmagic by following the installation steps. Note that you only need to perform the
first four steps.

2. The sparkmagic kernel supports custom authenticators, so you can integrate an authenticator
with the sparkmagic kernel so that every request is SIGv4 signed.

3. Install the EMR Serverless custom authenticator.

pip install emr-serverless-customauth

4. Now provide the path to the custom authenticator and the Apache Livy endpoint URL in the
sparkmagic configuration json file. Use the following command to open the configuration file.

vim ~/.sparkmagic/config.json

The following is a sample config.json file.

{
"kernel_python_credentials" : {
 "username": "",
 "password": "",

Getting started 143

https://github.com/jupyter-incubator/sparkmagic?tab=readme-ov-file#installation

Amazon EMR Amazon EMR Serverless User Guide

 "url": "https://<application-id>.livy.emr-serverless-
services.<AWS_REGION>.amazonaws.com",
 "auth": "Custom_Auth"
 },

 "kernel_scala_credentials" : {
 "username": "",
 "password": "",
 "url": "https://<application-id>.livy.emr-serverless-
services.<AWS_REGION>.amazonaws.com",
 "auth": "Custom_Auth"
 },
 "authenticators": {
 "None": "sparkmagic.auth.customauth.Authenticator",
 "Basic_Access": "sparkmagic.auth.basic.Basic",
 "Custom_Auth":
 "emr_serverless_customauth.customauthenticator.EMRServerlessCustomSigV4Signer"
 },
 "livy_session_startup_timeout_seconds": 600,
 "ignore_ssl_errors": false
}

5. Start Jupyter lab. It should use the custom authentication that you set up in the last step.

6. You can then run the following notebook commands and your code to get started.

%%info //Returns the information about the current sessions.

%%configure -f //Configure information specific to a session. We supply
 executionRoleArn in this example. Change it for your use case.
{
 "driverMemory": "4g",
 "conf": {
 "emr-serverless.session.executionRoleArn":
 "arn:aws:iam::123456789012:role/JobExecutionRole"
 }
}

<your code>//Run your code to start the session

Getting started 144

Amazon EMR Amazon EMR Serverless User Guide

Internally, each instruction calls each of the Apache Livy API operations through the configured
Apache Livy endpoint URL. You can then write your instructions according to your use case.

Considerations

Consider the following considerations when running interactive workloads through Apache Livy
endpoints.

• EMR Serverless maintains session-level isolation using the caller principal. The caller principal
that creates the session is the only one that can access that session. For more granular isolation,
you can configure a source identity when you assume credentials. In this case, EMR Serverless
enforces session-level isolation based on both the caller principal and the source identity. For
more information about source identity, see Monitor and control actions taken with assumed
roles.

• Apache Livy endpoints are supported with EMR Serverless releases 6.14.0 and higher.

• Apache Livy endpoints are supported only for the Apache Spark engine.

• Apache Livy endpoints support Scala Spark and PySpark.

• By default, autoStopConfig is enabled in your applications. This means that applications shut
down after 15 minutes of being idle. You can change this configuration as part of your create-
application or update-application request.

• You can run up to 25 concurrent sessions on a single Apache Livy endpoint-enabled application.

• For the best startup experience, we recommend that you configure pre-initialized capacity for
drivers and executors.

• You must manually start your application before connecting to the Apache Livy endpoint.

• You must have sufficient vCPU service quota in your AWS account to run interactive workloads
with the Apache Livy endpoint. We recommend at least 24 vCPU.

• The default Apache Livy session timeout is 1 hour. If you don't run statements one hour, then
Apache Livy deletes the session and releases the driver and executors. You can't change this
configuration.

• Only active sessions can interact with an Apache Livy endpoint. Once the session finishes,
cancels, or terminates, you can't access it through the Apache Livy endpoint.

Considerations 145

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_control-access_monitor.html#id_credentials_temp_control-access_monitor-specify-sourceid
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_control-access_monitor.html#id_credentials_temp_control-access_monitor-specify-sourceid

Amazon EMR Amazon EMR Serverless User Guide

Logging and monitoring

Monitoring is an important part of maintaining the reliability, availability, and performance of EMR
Serverless applications and jobs. You should collect monitoring data from all of the parts of your
EMR Serverless solutions so that you can more easily debug a multipoint failure if one occurs.

Topics

• Storing logs

• Rotating logs

• Encrypting logs

• Configure Apache Log4j2 properties for Amazon EMR Serverless

• Monitoring EMR Serverless

• Automating EMR Serverless with Amazon EventBridge

Storing logs

To monitor your job progress on EMR Serverless and troubleshoot job failures, you can choose how
EMR Serverless stores and serves application logs. When you submit a job run, you can specify
managed storage, Amazon S3, and Amazon CloudWatch as your logging options.

With CloudWatch, you can specify the log types and log locations that you want to use, or accept
the default types and locations. For more information on CloudWatch logs, see the section called
“Amazon CloudWatch”. With managed storage and S3 logging, the following table shows the
log locations and UI availability that you can expect if you choose managed storage, Amazon S3
buckets, or both.

Option Event logs Container logs Application UI

Managed storage Stored in managed
storage

Stored in managed
storage

Supported

Both managed
storage and S3
bucket

Stored in both places Stored in S3 bucket Supported

Storing logs 146

Amazon EMR Amazon EMR Serverless User Guide

Option Event logs Container logs Application UI

Amazon S3 bucket Stored in S3 bucket Stored in S3 bucket Not supported1

1 We recommend that you keep the Managed storage option selected. Otherwise, you can't use the
built-in application UIs.

Logging for EMR Serverless with managed storage

By default, EMR Serverless stores application logs securely in Amazon EMR managed storage for a
maximum of 30 days.

Note

If you turn off the default option, Amazon EMR can't troubleshoot your jobs on your behalf.

To turn off this option from EMR Studio, deselect the Allow AWS to retain logs for 30 days check
box in the Additional settings section of the Submit job page.

To turn off this option from the AWS CLI, use the
managedPersistenceMonitoringConfiguration configuration when you submit a job run.

{
 "monitoringConfiguration": {
 "managedPersistenceMonitoringConfiguration": {
 "enabled": false
 }
 }
}

Logging for EMR Serverless with Amazon S3 buckets

Before your jobs can send log data to Amazon S3, you must include the following permissions in
the permissions policy for the job runtime role. Replace amzn-s3-demo-logging-bucket with
the name of your logging bucket.

{

Managed storage 147

Amazon EMR Amazon EMR Serverless User Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-logging-bucket/*"
]
 }
]
}

To set up an Amazon S3 bucket to store logs from the AWS CLI, use the
s3MonitoringConfiguration configuration when you start a job run. To do this, provide the
following --configuration-overrides in the configuration.

{
 "monitoringConfiguration": {
 "s3MonitoringConfiguration": {
 "logUri": "s3://amzn-s3-demo-logging-bucket/logs/"
 }
 }
}

For batch jobs that don't have retries enabled, EMR Serverless sends the logs to the following path:

'/applications/<applicationId>/jobs/<jobId>'

EMR Serverless releases 7.1.0 and higher support retry attempts for streaming jobs and batch jobs.
If you run a job with retries enabled, EMR Serverless automatically adds an attempt number to the
log path prefix, so you can better distinguish and track logs.

'/applications/<applicationId>/jobs/<jobId>/attempts/<attemptNumber>/'

Logging for EMR Serverless with Amazon CloudWatch

When you submit a job to an EMR Serverless application, you can choose Amazon CloudWatch as
an option to store your application logs. This allows you to use CloudWatch log analysis features

Amazon CloudWatch 148

Amazon EMR Amazon EMR Serverless User Guide

such as CloudWatch Logs Insights and Live Tail. You can also stream logs from CloudWatch to other
systems such as OpenSearch for further analysis.

EMR Serverless provides real-time logging for driver logs. You can view the logs in real time with
the CloudWatch live tail capability, or through CloudWatch CLI tail commands.

By default, CloudWatch logging is disabled for EMR Serverless. To enable it, see the configuration
in AWS CLI.

Note

Amazon CloudWatch publishes logs in real time, so it incurs more resources from workers.
If you choose a low worker capacity, the impact to your job run time might increase. If you
enable CloudWatch logging, we recommend that you choose a greater worker capacity.
It's also possible that log publication could throttle if the transactions per second (TPS)
rate is too low for PutLogEvents. The CloudWatch throttling configuration is global to all
services, including EMR Serverless. For more information, see How do I determine throttling
in my CloudWatch logs? on AWS re:post.

Required permissions for logging with CloudWatch

Before your jobs can send log data to Amazon CloudWatch, you must include the following
permissions in the permissions policy for the job runtime role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:DescribeLogGroups"
],
 "Resource": [
 "arn:aws:logs:AWS Region:111122223333:*"
]
 },
 {
 "Effect": "Allow",
 "Action": [

Amazon CloudWatch 149

https://repost.aws/knowledge-center/cloudwatch-logs-throttling
https://repost.aws/knowledge-center/cloudwatch-logs-throttling

Amazon EMR Amazon EMR Serverless User Guide

 "logs:PutLogEvents",
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:DescribeLogStreams"
],
 "Resource": [
 "arn:aws:logs:AWS Region:111122223333:log-group:my-log-group-name:*"
]
 }
]
}

AWS CLI

To set up Amazon CloudWatch to store logs for EMR Serverless from the AWS CLI, use the
cloudWatchLoggingConfiguration configuration when you start a job run. To do this, provide
the following configuration overrides. Optionally, you can also provide a log group name, log
stream prefix name, log types, and an encryption key ARN.

If you don’t specify the optional values, then CloudWatch publishes the logs to a default log
group /aws/emr-serverless, with the default log stream /applications/applicationId/
jobs/jobId/worker-type.

EMR Serverless releases 7.1.0 and higher support retry attempts for streaming jobs and batch jobs.
If you enabled retries for a job, EMR Serverless automatically adds an attempt number to the log
path prefix, so you can better distinguish and track logs.

'/applications/<applicationId>/jobs/<jobId>/attempts/<attemptNumber>/worker-type'

The following shows the minimum configuration that is required to turn on Amazon CloudWatch
logging with the default settings for EMR Serverless:

{
 "monitoringConfiguration": {
 "cloudWatchLoggingConfiguration": {
 "enabled": true
 }
 }
}

Amazon CloudWatch 150

Amazon EMR Amazon EMR Serverless User Guide

The following example shows all of the required and optional configurations that you can specify
when you turn on Amazon CloudWatch logging for EMR Serverless. The supported logTypes
values are also listed below this example.

{
 "monitoringConfiguration": {
 "cloudWatchLoggingConfiguration": {
 "enabled": true, // Required
 "logGroupName": "Example_logGroup", // Optional
 "logStreamNamePrefix": "Example_logStream", // Optional
 "encryptionKeyArn": "key-arn", // Optional
 "logTypes": {
 "SPARK_DRIVER": ["stdout", "stderr"] //List of values
 }
 }
 }
}

By default, EMR Serverless publishes only the driver stdout and stderr logs to CloudWatch. If
you want other logs, then you can specify a container role and corresponding log types with the
logTypes field.

The following list shows the supported worker types that you can specify for the logTypes
configuration:

Spark

• SPARK_DRIVER : ["STDERR", "STDOUT"]

• SPARK_EXECUTOR : ["STDERR", "STDOUT"]

Hive

• HIVE_DRIVER : ["STDERR", "STDOUT", "HIVE_LOG", "TEZ_AM"]

• TEZ_TASK : ["STDERR", "STDOUT", "SYSTEM_LOGS"]

Rotating logs

Amazon EMR Serverless can rotate Spark application logs and event logs. Log rotation helps with
the issue of long running jobs generating large log files that can take up all of your disk space.
Rotating logs helps you save disk storage and reduces the amount of job failures because you have
no more space left on your disk.

Rotating logs 151

Amazon EMR Amazon EMR Serverless User Guide

Log rotation is enabled by default and is available only for Spark jobs.

Spark event logs

Note

Spark event log rotation is available across all Amazon EMR release labels.

Instead of generating a single event log file, EMR Serverless rotates the event log at a regular time
interval and removes the older event log files. Rotating logs doesn't affect the logs uploaded to the
S3 bucket.

Spark application logs

Note

Spark application log rotation is available across all Amazon EMR release labels.

EMR Serverless also rotates the spark application logs for drivers and executors, such as stdout
and stderr files. You can access the latest log files by choosing the log links in Studio by using the
Spark History Server and Live UI links. Log files are the truncated versions of the latest logs. To see
the older rotated logs, you must specify an Amazon S3 location when storing logs. See Logging for
EMR Serverless with Amazon S3 buckets for more information.

You can find the latest log files at the following location. EMR Serverless refreshes the files every
15 seconds. These files can range from 0 MB to 128 MB.

<example-S3-logUri>/applications/<application-id>/jobs/<job-id>/SPARK_DRIVER/stderr.gz

The following location contains the older rotated files. Each file is 128 MB.

<example-S3-logUri>/applications/<application-id>/jobs/<job-id>/SPARK_DRIVER/archived/
stderr_<index>.gz

The same behavior applies to Spark executors as well. This change is only applicable to S3 logging.
Log rotation doesn't introduce any changes to log streams uploaded to Amazon CloudWatch.

Rotating logs 152

https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/logging.html#jobs-log-storage-s3-buckets
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/logging.html#jobs-log-storage-s3-buckets

Amazon EMR Amazon EMR Serverless User Guide

EMR Serverless releases 7.1.0 and higher support retry attempts for streaming and batch jobs. If
you enabled retry attempts with your job, EMR Serverless adds a prefix to the log path for such
jobs so you can better track and distinguish the logs from one another. This path contains all
rotated logs.

'/applications/<applicationId>/jobs/<jobId>/attempts/<attemptNumber>/'.

Encrypting logs

Encrypting EMR Serverless logs with managed storage

To encrypt logs in managed storage with your own KMS key, use the
managedPersistenceMonitoringConfiguration configuration when you submit a job run.

{
 "monitoringConfiguration": {
 "managedPersistenceMonitoringConfiguration" : {
 "encryptionKeyArn": "key-arn"
 }
 }
}

Encrypting EMR Serverless logs with Amazon S3 buckets

To encrypt logs in your Amazon S3 bucket with your own KMS key, use the
s3MonitoringConfiguration configuration when you submit a job run.

{
 "monitoringConfiguration": {
 "s3MonitoringConfiguration": {
 "logUri": "s3://amzn-s3-demo-logging-bucket/logs/",
 "encryptionKeyArn": "key-arn"
 }
 }
}

Encrypting EMR Serverless logs with Amazon CloudWatch

To encrypt logs in Amazon CloudWatch with your own KMS key, use the
cloudWatchLoggingConfiguration configuration when you submit a job run.

Encrypting logs 153

Amazon EMR Amazon EMR Serverless User Guide

{
 "monitoringConfiguration": {
 "cloudWatchLoggingConfiguration": {
 "enabled": true,
 "encryptionKeyArn": "key-arn"
 }
 }
}

Required permissions for log encryption

In this section

• Required user permissions

• Encryption key permissions for Amazon S3 and managed storage

• Encryption key permissions for Amazon CloudWatch

Required user permissions

The user who submits the job or views the logs or the application UIs must have permissions to
use the key. You can specify the permissions in either the KMS key policy or the IAM policy for the
user, group, or role. If the user who submits the job lacks the KMS key permissions, EMR Serverless
rejects the job run submission.

Example key policy

The following key policy provides the permissions to kms:GenerateDataKey and kms:Decrypt:

{
 "Effect": "Allow",
 "Principal":{
 "AWS": "arn:aws:iam::111122223333:user/user-name"
 },
 "Action": [
 "kms:GenerateDataKey",
 "kms:Decrypt"
],
 "Resource": "*"
 }

Example IAM policy

Required permissions 154

Amazon EMR Amazon EMR Serverless User Guide

The following IAM policy provides the permissions to kms:GenerateDataKey and kms:Decrypt:

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "kms:GenerateDataKey",
 "kms:Decrypt"
],
 "Resource": "key-arn"
 }
}

To launch the Spark or Tez UI, you must give your users, groups, or roles permissions to access the
emr-serverless:GetDashboardForJobRun API as follows:

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "emr-serverless:GetDashboardForJobRun"
]
 }
}

Encryption key permissions for Amazon S3 and managed storage

When you encrypt logs with your own encryption key either in managed storage or in your S3
buckets, you must configure KMS key permissions as follows.

The emr-serverless.amazonaws.com principal must have the following permissions in the
policy for the KMS key:

{
 "Effect": "Allow",
 "Principal":{
 "Service": "emr-serverless.amazonaws.com"
 },
 "Action": [
 "kms:Decrypt",

Required permissions 155

Amazon EMR Amazon EMR Serverless User Guide

 "kms:GenerateDataKey"
],
 "Resource": "*"
 "Condition": {
 "StringLike": {
 "aws:SourceArn": "arn:aws:emr-serverless:region:aws-account-id:/
applications/application-id"
 }
 }
 }

As a security best practice, we recommend that you add an aws:SourceArn condition key to the
KMS key policy. The IAM global condition key aws:SourceArn helps ensure that EMR Serverless
uses the KMS key only for an application ARN.

The job runtime role must have the following permissions in its IAM policy:

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "kms:GenerateDataKey",
 "kms:Decrypt"
],
 "Resource": "key-arn"
 }
}

Encryption key permissions for Amazon CloudWatch

To associate the KMS key ARN to your log group, use the following IAM policy for the job runtime
role.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "logs:AssociateKmsKey"
],
 "Resource": [

Required permissions 156

Amazon EMR Amazon EMR Serverless User Guide

 "arn:aws:logs:AWS Region:111122223333:log-group:my-log-group-name:*"
]
 }
}

Configure the KMS key policy to grant KMS permissions to Amazon CloudWatch:

{
 "Version": "2012-10-17",
 "Id": "key-default-1",
 "Statement":
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "logs.AWS Region.amazonaws.com"
 },
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKey",
],
 "Resource": "*",
 "Condition": {
 "ArnLike": {
 "kms:EncryptionContext:aws:logs:arn": "arn:aws:logs:AWS
 Region:111122223333:*"
 }
 }
 }
}

Configure Apache Log4j2 properties for Amazon EMR
Serverless

This page describes how to configure custom Apache Log4j 2.x properties for EMR Serverless jobs
at StartJobRun. If you want to configure Log4j classifications at the application level, see Default
application configuration for EMR Serverless.

Configure Spark Log4j2 properties for Amazon EMR Serverless

With Amazon EMR releases 6.8.0 and higher, you can customize Apache Log4j 2.x properties to
specify fine-grained log configurations. This simplifies troubleshooting of your Spark jobs on

Configuring Log4j2 157

https://logging.apache.org/log4j/2.x/
https://logging.apache.org/log4j/2.x/

Amazon EMR Amazon EMR Serverless User Guide

EMR Serverless. To configure these properties, use the spark-driver-log4j2 and spark-
executor-log4j2 classifications.

Topics

• Log4j2 classifications for Spark

• Log4j2 configuration example for Spark

• Log4j2 in sample Spark jobs

• Log4j2 considerations for Spark

Log4j2 classifications for Spark

To customize the Spark log configurations, use the following classifications with
applicationConfiguration. To configure the Log4j 2.x properties, use the following
properties.

spark-driver-log4j2

This classification sets the values in the log4j2.properties file for the driver.

spark-executor-log4j2

This classification sets the values in the log4j2.properties file for the executor.

Log4j2 configuration example for Spark

The following example shows how to submit a Spark job with applicationConfiguration to
customize Log4j2 configurations for the Spark driver and executor.

To configure Log4j classifications at the application level instead of when you submit the job, see
Default application configuration for EMR Serverless.

aws emr-serverless start-job-run \
 --application-id application-id \
 --execution-role-arn job-role-arn \
 --job-driver '{
 "sparkSubmit": {
 "entryPoint": "/usr/lib/spark/examples/jars/spark-examples.jar",
 "entryPointArguments": ["1"],

Log4j2 and Spark 158

https://docs.aws.amazon.com/emr-serverless/latest/APIReference/API_ConfigurationOverrides.html#emrserverless-Type-ConfigurationOverrides-applicationConfiguration
https://docs.aws.amazon.com/emr-serverless/latest/APIReference/API_Configuration.html#emrserverless-Type-Configuration-properties

Amazon EMR Amazon EMR Serverless User Guide

 "sparkSubmitParameters": "--class org.apache.spark.examples.SparkPi --conf
 spark.executor.cores=4 --conf spark.executor.memory=20g --conf spark.driver.cores=4 --
conf spark.driver.memory=8g --conf spark.executor.instances=1"
 }
 }'
 --configuration-overrides '{
 "applicationConfiguration": [
 {
 "classification": "spark-driver-log4j2",
 "properties": {
 "rootLogger.level":"error", // will only display Spark error logs
 "logger.IdentifierForClass.name": "classpath for setting logger",
 "logger.IdentifierForClass.level": "info"

 }
 },
 {
 "classification": "spark-executor-log4j2",
 "properties": {
 "rootLogger.level":"error", // will only display Spark error logs
 "logger.IdentifierForClass.name": "classpath for setting logger",
 "logger.IdentifierForClass.level": "info"
 }
 }
]
 }'

Log4j2 in sample Spark jobs

The following code samples demonstrate how to create a Spark application while you initialize a
custom Log4j2 configuration for the application.

Python

Example - Using Log4j2 for a Spark job with Python

import os
import sys

from pyspark import SparkConf, SparkContext
from pyspark.sql import SparkSession

app_name = "PySparkApp"

Log4j2 and Spark 159

Amazon EMR Amazon EMR Serverless User Guide

if __name__ == "__main__":
 spark = SparkSession\
 .builder\
 .appName(app_name)\
 .getOrCreate()

 spark.sparkContext._conf.getAll()
 sc = spark.sparkContext
 log4jLogger = sc._jvm.org.apache.log4j
 LOGGER = log4jLogger.LogManager.getLogger(app_name)

 LOGGER.info("pyspark script logger info")
 LOGGER.warn("pyspark script logger warn")
 LOGGER.error("pyspark script logger error")

 // your code here

 spark.stop()

To customize Log4j2 for the driver when you execute a Spark job, you can use the following
configuration:

{
 "classification": "spark-driver-log4j2",
 "properties": {
 "rootLogger.level":"error", // only display Spark error logs
 "logger.PySparkApp.level": "info",
 "logger.PySparkApp.name": "PySparkApp"
 }
}

Scala

Example - Using Log4j2 for a Spark job with Scala

import org.apache.log4j.Logger
import org.apache.spark.sql.SparkSession

object ExampleClass {
 def main(args: Array[String]): Unit = {
 val spark = SparkSession
 .builder

Log4j2 and Spark 160

Amazon EMR Amazon EMR Serverless User Guide

 .appName(this.getClass.getName)
 .getOrCreate()

 val logger = Logger.getLogger(this.getClass);
 logger.info("script logging info logs")
 logger.warn("script logging warn logs")
 logger.error("script logging error logs")

// your code here
 spark.stop()
 }
}

To customize Log4j2 for the driver when you execute a Spark job, you can use the following
configuration:

{
 "classification": "spark-driver-log4j2",
 "properties": {
 "rootLogger.level":"error", // only display Spark error logs
 "logger.ExampleClass.level": "info",
 "logger.ExampleClass.name": "ExampleClass"
 }
}

Log4j2 considerations for Spark

The following Log4j2.x properties are not configurable for Spark processes:

• rootLogger.appenderRef.stdout.ref

• appender.console.type

• appender.console.name

• appender.console.target

• appender.console.layout.type

• appender.console.layout.pattern

For detailed information about the Log4j2.x properties that you can configure, see the
log4j2.properties.template file on GitHub.

Log4j2 and Spark 161

https://github.com/apache/spark/blob/v3.3.0/conf/log4j2.properties.template

Amazon EMR Amazon EMR Serverless User Guide

Monitoring EMR Serverless

This section covers the ways that you can monitor your Amazon EMR Serverless applications and
jobs.

Topics

• Monitoring EMR Serverless applications and jobs

• Monitor Spark metrics with Amazon Managed Service for Prometheus

• EMR Serverless usage metrics

Monitoring EMR Serverless applications and jobs

With Amazon CloudWatch metrics for EMR Serverless, you can receive 1-minute CloudWatch
metrics and access CloudWatch dashboards to view near-real-time operations and performance of
your EMR Serverless applications.

EMR Serverless sends metrics to CloudWatch every minute. EMR Serverless emits these metrics at
the application level as well as the job, worker-type, and capacity-allocation-type levels.

To get started, use the EMR Serverless CloudWatch dashboard template provided in the EMR
Serverless GitHub repository and deploy it.

Note

EMR Serverless interactive workloads have only application-level monitoring enabled,
and have a new worker type dimension, Spark_Kernel. To monitor and debug your
interactive workloads, you can view the logs and Apache Spark UI from within your EMR
Studio Workspace.

The table below describes the EMR Serverless dimensions available within the AWS/
EMRServerless namespace.

Monitoring 162

https://github.com/aws-samples/emr-serverless-samples/tree/main/cloudformation/emr-serverless-cloudwatch-dashboard/
https://github.com/aws-samples/emr-serverless-samples/tree/main/cloudformation/emr-serverless-cloudwatch-dashboard/
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-studio-debug.html#emr-studio-debug-serverless
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-studio-debug.html#emr-studio-debug-serverless

Amazon EMR Amazon EMR Serverless User Guide

Dimensions for EMR Serverless metrics

Dimension Description

ApplicationId Filters for all metrics of an
EMR Serverless application.

JobId Filters for all metrics of an
EMR Serverless job run.

WorkerType Filters for all metrics of
a given worker type. For
example, you can filter
for SPARK_DRIVER and
SPARK_EXECUTORS for
Spark jobs.

CapacityAllocation
Type

Filters for all metrics of a
given capacity allocation
type. For example, you can
filter for PreInitCapacity
for pre-initialized capacity
and OnDemandCapacity
for everything else.

Application-level monitoring

You can monitor capacity usage at the EMR Serverless application level with Amazon CloudWatch
metrics. You can also set up a single view to monitor application capacity usage in a CloudWatch
dashboard.

EMR Serverless application metrics

Metric Description Primary dimension Secondary
dimension

CPUAllocated The total numbers of
vCPUs allocated.

ApplicationId Applicati
onId , WorkerTyp

Applications and jobs 163

Amazon EMR Amazon EMR Serverless User Guide

Metric Description Primary dimension Secondary
dimension

e , CapacityA
llocationType

IdleWorkerCount The number of total
workers idle.

ApplicationId Applicati
onId , WorkerTyp
e , CapacityA
llocationType

MaxCPUAllowed The maximum CPU
allowed for the
application.

ApplicationId N/A

MaxMemory
Allowed

The maximum
memory in GB
allowed for the
application.

ApplicationId N/A

MaxStorag
eAllowed

The maximum
storage in GB allowed
for the application.

ApplicationId N/A

MemoryAllocated The total memory in
GB allocated.

ApplicationId Applicati
onId , WorkerTyp
e , CapacityA
llocationType

PendingCr
eationWor
kerCount

The number of total
workers pending
creation.

ApplicationId Applicati
onId , WorkerTyp
e , CapacityA
llocationType

RunningWo
rkerCount

The number of total
workers in use by the
application.

ApplicationId Applicati
onId , WorkerTyp
e , CapacityA
llocationType

Applications and jobs 164

Amazon EMR Amazon EMR Serverless User Guide

Metric Description Primary dimension Secondary
dimension

StorageAl
located

The total disk storage
in GB allocated.

ApplicationId Applicati
onId , WorkerTyp
e , CapacityA
llocationType

TotalWork
erCount

The number of total
workers available.

ApplicationId Applicati
onId , WorkerTyp
e , CapacityA
llocationType

Job-level monitoring

Amazon EMR Serverless sends the following job-level metrics to Amazon CloudWatch every one
minute. You can view the metric values for aggregate job runs by job run state. The unit for each of
the metrics is count.

EMR Serverless job-level metrics

Metric Description Primary dimension

SubmittedJobs The number of jobs in a
Submitted state.

ApplicationId

PendingJobs The number of jobs in a
Pending state.

ApplicationId

ScheduledJobs The number of jobs in a
Scheduled state.

ApplicationId

RunningJobs The number of jobs in a
Running state.

ApplicationId

SuccessJobs The number of jobs in a
Success state.

ApplicationId

Applications and jobs 165

Amazon EMR Amazon EMR Serverless User Guide

Metric Description Primary dimension

FailedJobs The number of jobs in a Failed
state.

ApplicationId

CancellingJobs The number of jobs in a
Cancelling state.

ApplicationId

CancelledJobs The number of jobs in a
Cancelled state.

ApplicationId

You can monitor engine-specific metrics for both running and completed EMR Serverless jobs with
engine-specific application UIs. When you view the UI for a running job, you see the live application
UI with real-time updates. When you view the UI for a completed job, you see the persistent app UI.

Running jobs

For your running EMR Serverless jobs, you can view a real-time interface that provides engine-
specific metrics. You can use either the Apache Spark UI or the Hive Tez UI to monitor and debug
your jobs. To access these UIs, use the EMR Studio console or request a secure URL endpoint with
the AWS Command Line Interface.

Completed jobs

For your completed EMR Serverless jobs, you can use the Spark History Server or the Persistent
Hive Tez UI to view jobs details, stages, tasks, and metrics for Spark or Hive jobs runs. To access
these UIs, use the EMR Studio console, or request a secure URL endpoint with the AWS Command
Line Interface.

Job worker-level monitoring

Amazon EMR Serverless sends the following job worker level metrics that are available in the AWS/
EMRServerless namespace and Job Worker Metrics metric group to Amazon CloudWatch.
EMR Serverless collects data points from individual workers during job runs at the job level,
worker-type, and the capacity-allocation-type level. You can use ApplicationId as a dimension
to monitor multiple jobs that belong to the same application.

Applications and jobs 166

Amazon EMR Amazon EMR Serverless User Guide

EMR Serverless job worker-level metrics

Metric Description Unit Primary
dimension

Secondary
dimension

WorkerCpu
Allocated

The total
numbers of
vCPU cores
allocated for
workers in a job
run.

None JobId Applicati
onId ,
WorkerType ,
and CapacityA
llocation
Type

WorkerCpu
Used

The total
numbers of
vCPU cores
utilized by
workers in a job
run.

None JobId Applicati
onId ,
WorkerType ,
and CapacityA
llocation
Type

WorkerMem
oryAlloca
ted

The total
memory in GB
allocated for
workers in a job
run.

Gigabytes (GB) JobId Applicati
onId ,
WorkerType ,
and CapacityA
llocation
Type

WorkerMem
oryUsed

The total
memory in
GB utilized by
workers in a job
run.

Gigabytes (GB) JobId Applicati
onId ,
WorkerType ,
and CapacityA
llocation
Type

WorkerEph
emeralSto
rageAlloc
ated

The number
of bytes of
ephemeral
storage
allocated for

Gigabytes (GB) JobId Applicati
onId ,
WorkerType ,
and CapacityA

Applications and jobs 167

Amazon EMR Amazon EMR Serverless User Guide

Metric Description Unit Primary
dimension

Secondary
dimension

workers in a job
run.

llocation
Type

WorkerEph
emeralSto
rageUsed

The number
of bytes of
ephemeral
storage used by
workers in a job
run.

Gigabytes (GB) JobId Applicati
onId ,
WorkerType ,
and CapacityA
llocation
Type

WorkerSto
rageReadB
ytes

The number
of bytes read
from storage by
workers in a job
run.

Bytes JobId Applicati
onId ,
WorkerType ,
and CapacityA
llocation
Type

WorkerSto
rageWrite
Bytes

The number of
bytes written
to storage from
workers in a job
run.

Bytes JobId Applicati
onId ,
WorkerType ,
and CapacityA
llocation
Type

The steps below describe how to view the various types of metrics.

Console

To access your application UI with the console

1. Navigate to your EMR Serverless application on the EMR Studio with the instructions in
Getting started from the console.

2. To view engine-specific application UIs and logs for a running job:

a. Choose a job with a RUNNING status.

Applications and jobs 168

https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/getting-started.html#gs-console

Amazon EMR Amazon EMR Serverless User Guide

b. Select the job on the Application details page, or navigate to the Job details page for
your job.

c. Under the Display UI dropdown menu, choose either Spark UI or Hive Tez UI to
navigate to the application UI for your job type.

d. To view Spark engine logs, navigate to the Executors tab in the Spark UI, and choose
the Logs link for the driver. To view Hive engine logs, choose the Logs link for the
appropriate DAG in the Hive Tez UI.

3. To view engine-specific application UIs and logs for a completed job:

a. Choose a job with a SUCCESS status.

b. Select the job on your application's Application details page or navigate to the job's
Job details page.

c. Under the Display UI dropdown menu, choose either Spark History Server or
Persistent Hive Tez UI to navigate to the application UI for your job type.

d. To view Spark engine logs, navigate to the Executors tab in the Spark UI, and choose
the Logs link for the driver. To view Hive engine logs, choose the Logs link for the
appropriate DAG in the Hive Tez UI.

AWS CLI

To access your application UI with the AWS CLI

• To generate a URL that you can use to access your application UI for both running and
completed jobs, call the GetDashboardForJobRun API.

aws emr-serverless get-dashboard-for-job-run /
--application-id <application-id> /
--job-run-id <job-id>

The URL that you generate is valid for one hour.

Monitor Spark metrics with Amazon Managed Service for Prometheus

With Amazon EMR releases 7.1.0 and higher, you can integrate EMR Serverless with Amazon
Managed Service for Prometheus to collect Apache Spark metrics for EMR Serverless jobs and

Spark engine metrics 169

Amazon EMR Amazon EMR Serverless User Guide

applications. This integration is available when you submit a job or create an application using
either the AWS console, the EMR Serverless API, or the AWS CLI.

Prerequisites

Before you can deliver your Spark metrics to Amazon Managed Service for Prometheus, you must
complete the following prerequisites.

• Create an Amazon Managed Service for Prometheus workspace. This workspace serves as an
ingestion endpoint. Make a note of the URL displayed for Endpoint - remote write URL. You'll
need to specify the URL when you create your EMR Serverless application.

• To grant access of your jobs to Amazon Managed Service for Prometheus for monitoring
purposes, add the following policy to your job execution role.

{
 "Sid": "AccessToPrometheus",
 "Effect": "Allow",
 "Action": ["aps:RemoteWrite"],
 "Resource": "arn:aws:aps:<AWS_REGION>:<AWS_ACCOUNT_ID>:workspace/<WORKSPACE_ID>"
}

Setup

To use the AWS console to create an application that's integrated with Amazon Managed
Service for Prometheus

1. See Getting started with Amazon EMR Serverless to create an application.

2. While you're creating an application, choose Use custom settings, and then configure your
application by specifying the information into the fields you want to configure.

3. Under Application logs and metrics, choose Deliver engine metrics to Amazon Managed
Service for Prometheus, and then specify your remote write URL.

4. Specify any other configuration settings you want, and then choose Create and start
application.

Use the AWS CLI or EMR Serverless API

Spark engine metrics 170

https://docs.aws.amazon.com/prometheus/latest/userguide/AMP-onboard-create-workspace.html
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/getting-started.html

Amazon EMR Amazon EMR Serverless User Guide

You can also use the AWS CLI or EMR Serverless API to integrate your EMR Serverless application
with Amazon Managed Service for Prometheus when you're running the create-application or
the start-job-run commands.

create-application

aws emr-serverless create-application \
--release-label emr-7.1.0 \
--type "SPARK" \
--monitoring-configuration '{
 "prometheusMonitoringConfiguration": {
 "remoteWriteUrl": "https://aps-workspaces.<AWS_REGION>.amazonaws.com/
workspaces/<WORKSPACE_ID>/api/v1/remote_write"
 }
}'

start-job-run

aws emr-serverless start-job-run \
--application-id <APPPLICATION_ID> \
--execution-role-arn <JOB_EXECUTION_ROLE> \
--job-driver '{
 "sparkSubmit": {
 "entryPoint": "local:///usr/lib/spark/examples/src/main/python/pi.py",
 "entryPointArguments": ["10000"],
 "sparkSubmitParameters": "--conf spark.dynamicAllocation.maxExecutors=10"
 }
}' \
--configuration-overrides '{
 "monitoringConfiguration": {
 "prometheusMonitoringConfiguration": {
 "remoteWriteUrl": "https://aps-workspaces.<AWS_REGION>.amazonaws.com/
workspaces/<WORKSPACE_ID>/api/v1/remote_write"
 }
 }
}'

Including prometheusMonitoringConfiguration in your command indicates that EMR
Serverless must run the Spark job with an agent that collects the Spark metrics and writes them
to your remoteWriteUrl endpoint for Amazon Managed Service for Prometheus. You can then

Spark engine metrics 171

Amazon EMR Amazon EMR Serverless User Guide

use the Spark metrics in Amazon Managed Service for Prometheus for visualization, alerts, and
analysis.

Advanced configuration properties

EMR Serverless uses a component within Spark named PrometheusServlet to collect Spark
metrics and translates performance data into data that's compatible with Amazon Managed
Service for Prometheus. By default, EMR Serverless sets default values in Spark and parses driver
and executor metrics when you submit a job using PrometheusMonitoringConfiguration.

The following table describes all of the properties you can configure when submitting a Spark job
that sends metrics to Amazon Managed Service for Prometheus.

Spark property Default value Description

spark.metrics.conf
.*.sink.prometheus
Servlet.class

org.apache.spark.metrics.si
nk.PrometheusServlet

The class that Spark uses
to send metrics to Amazon
Managed Service for
Prometheus. To override the
default behavior, specify your
own custom class.

spark.metrics.conf
.*.source.jvm.class

org.apache.spark.metrics.so
urce.JvmSource

The class Spark uses to collect
and send crucial metrics from
the underlying Java virtual
machine. To stop collectin
g JVM metrics, disable this
property by setting it to an
empty string, such as "". To
override the default behavior,
specify your own custom
class.

spark.metrics.conf
.driver.sink.prome
theusServlet.path

/metrics/prometheus The distinct URL that
Amazon Managed Service for
Prometheus uses to collect
metrics from the driver. To
override the default behavior,

Spark engine metrics 172

Amazon EMR Amazon EMR Serverless User Guide

Spark property Default value Description

 specify your own path. To
stop collecting driver metrics,
disable this property by
setting it to an empty string,
such as "".

spark.metrics.conf
.executor.sink.pro
metheusServlet.path

/metrics/executor/prometheu
s

The distinct URL that
Amazon Managed Service for
Prometheus uses to collect
metrics from the executor. To
override the default behavior,
 specify your own path. To
stop collecting executor
metrics, disable this property
by setting it to an empty
string, such as "".

For more information about the Spark metrics, see Apache Spark metrics.

Considerations and limitations

When using Amazon Managed Service for Prometheus to collect metrics from EMR Serverless,
consider the following considerations and limitations.

• Support for using Amazon Managed Service for Prometheus with EMR Serverless is available
only in the AWS Regions where Amazon Managed Service for Prometheus is generally available.

• Running the agent to collect Spark metrics on Amazon Managed Service for Prometheus requires
more resources from workers. If you choose a smaller worker size, such as one vCPU worker, your
job run time might increase.

• Support for using Amazon Managed Service for Prometheus with EMR Serverless is available
only for Amazon EMR releases 7.1.0 and higher.

• Amazon Managed Service for Prometheus must be deployed in the same account where you run
EMR Serverless in order to collect metrics.

Spark engine metrics 173

https://spark.apache.org/docs/3.5.0/monitoring.html#metrics
https://docs.aws.amazon.com/general/latest/gr/prometheus-service.html

Amazon EMR Amazon EMR Serverless User Guide

EMR Serverless usage metrics

You can use Amazon CloudWatch usage metrics to provide visibility into the resources that
your account uses. Use these metrics to visualize your service usage on CloudWatch graphs and
dashboards.

EMR Serverless usage metrics correspond to Service Quotas. You can configure alarms that alert
you when your usage approaches a service quota. For more information, see Service Quotas and
Amazon CloudWatch alarms in the Service Quotas User Guide.

For more information about EMR Serverless service quotas, see Endpoints and quotas for EMR
Serverless.

Service quota usage metrics for EMR Serverless

EMR Serverless publishes the following service quota usage metrics in the AWS/Usage namespace.

Metric Description

ResourceCount The total number of the specified resource
that is running on your account. The resource
is defined by the dimensions that are associate
d with the metric.

Dimensions for EMR Serverless service quota usage metrics

You can use the following dimensions to refine the usage metrics that EMR Serverless publishes.

Dimension Value Description

Service EMR Serverless The name of the AWS service
that contains the resource.

Type Resource The type of entity that EMR
Serverless is reporting.

Resource vCPU The type of resource that EMR
Serverless is tracking.

Usage metrics 174

https://docs.aws.amazon.com/servicequotas/latest/userguide/configure-cloudwatch.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/configure-cloudwatch.html

Amazon EMR Amazon EMR Serverless User Guide

Dimension Value Description

Class None The class of resource that
EMR Serverless is tracking.

Automating EMR Serverless with Amazon EventBridge

You can use Amazon EventBridge to automate your AWS services and respond automatically to
system events, such as application availability issues or resource changes. EventBridge delivers a
near real-time stream of system events that describe changes in your AWS resources. You can write
simple rules to indicate which events are of interest to you, and what automated actions to take
when an event matches a rule. With EventBridge, you can automatically:

• Invoke an AWS Lambda function

• Relay an event to Amazon Kinesis Data Streams

• Activate an AWS Step Functions state machine

• Notify an Amazon SNS topic or an Amazon SQS queue

For example, when you use EventBridge with EMR Serverless, you can activate an AWS Lambda
function when an ETL job succeed or notify an Amazon SNS topic when an ETL job fails.

EMR Serverless emits four kinds of events:

• Application state change events – Events that emit every state change of an application. For
more information about application states, see Application states.

• Job run state change events – Events that emit every state change of a job run. For more
information about, see Job run states.

• Job run retry events – Events that emit every retry of a job run from Amazon EMR Serverless
releases 7.1.0 and higher.

• Job resource utilization update events – Events that emit resource utilization updates for a job
run at close to 30-minute intervals.

Automating with EventBridge 175

Amazon EMR Amazon EMR Serverless User Guide

Sample EMR Serverless EventBridge events

Events reported by EMR Serverless have a value of aws.emr-serverless assigned to source, as
in the following examples.

Application state change event

The following example event shows an application in the CREATING state.

{
 "version": "0",
 "id": "9fd3cf79-1ff1-b633-4dd9-34508dc1e660",
 "detail-type": "EMR Serverless Application State Change",
 "source": "aws.emr-serverless",
 "account": "123456789012",
 "time": "2022-05-31T21:16:31Z",
 "region": "us-east-1",
 "resources": [],
 "detail": {
 "applicationId": "00f1cbsc6anuij25",
 "applicationName": "3965ad00-8fba-4932-a6c8-ded32786fd42",
 "arn": "arn:aws:emr-serverless:us-east-1:111122223333:/
applications/00f1cbsc6anuij25",
 "releaseLabel": "emr-6.6.0",
 "state": "CREATING",
 "type": "HIVE",
 "createdAt": "2022-05-31T21:16:31.547953Z",
 "updatedAt": "2022-05-31T21:16:31.547970Z",
 "autoStopConfig": {
 "enabled": true,
 "idleTimeout": 15
 },
 "autoStartConfig": {
 "enabled": true
 }
 }
}

Job run state change event

The following example event shows a job run that moves from the SCHEDULED state to the
RUNNING state.

Sample EMR Serverless EventBridge events 176

Amazon EMR Amazon EMR Serverless User Guide

{
 "version": "0",
 "id": "00df3ec6-5da1-36e6-ab71-20f0de68f8a0",
 "detail-type": "EMR Serverless Job Run State Change",
 "source": "aws.emr-serverless",
 "account": "123456789012",
 "time": "2022-05-31T21:07:42Z",
 "region": "us-east-1",
 "resources": [],
 "detail": {
 "jobRunId": "00f1cbn5g4bb0c01",
 "applicationId": "00f1982r1uukb925",
 "arn": "arn:aws:emr-serverless:us-east-1:123456789012:/
applications/00f1982r1uukb925/jobruns/00f1cbn5g4bb0c01",
 "releaseLabel": "emr-6.6.0",
 "state": "RUNNING",
 "previousState": "SCHEDULED",
 "createdBy": "arn:aws:sts::123456789012:assumed-role/
TestRole-402dcef3ad14993c15d28263f64381e4cda34775/6622b6233b6d42f59c25dd2637346242",
 "updatedAt": "2022-05-31T21:07:42.299487Z",
 "createdAt": "2022-05-31T21:07:25.325900Z"
 }
}

Job run retry event

The following is an example of a job run retry event.

{
 "version": "0",
 "id": "00df3ec6-5da1-36e6-ab71-20f0de68f8a0",
 "detail-type": "EMR Serverless Job Run Retry",
 "source": "aws.emr-serverless",
 "account": "123456789012",
 "time": "2022-05-31T21:07:42Z",
 "region": "us-east-1",
 "resources": [],
 "detail": {
 "jobRunId": "00f1cbn5g4bb0c01",
 "applicationId": "00f1982r1uukb925",
 "arn": "arn:aws:emr-serverless:us-east-1:123456789012:/
applications/00f1982r1uukb925/jobruns/00f1cbn5g4bb0c01",
 "releaseLabel": "emr-6.6.0",

Sample EMR Serverless EventBridge events 177

Amazon EMR Amazon EMR Serverless User Guide

 "createdBy": "arn:aws:sts::123456789012:assumed-role/
TestRole-402dcef3ad14993c15d28263f64381e4cda34775/6622b6233b6d42f59c25dd2637346242",
 "updatedAt": "2022-05-31T21:07:42.299487Z",
 "createdAt": "2022-05-31T21:07:25.325900Z",
 //Attempt Details
 "previousAttempt": 1,
 "previousAttemptState": "FAILED",
 "previousAttemptCreatedAt": "2022-05-31T21:07:25.325900Z",
 "previousAttemptEndedAt": "2022-05-31T21:07:30.325900Z",
 "newAttempt": 2,
 "newAttemptCreatedAt": "2022-05-31T21:07:30.325900Z"
 }
}

Job Resource Utilization Update

The following example event shows the final resource utilization update for a job that moved to a
terminal state after running.

{
 "version": "0",
 "id": "00df3ec6-5da1-36e6-ab71-20f0de68f8a0",
 "detail-type": "EMR Serverless Job Resource Utilization Update",
 "source": "aws.emr-serverless",
 "account": "123456789012",
 "time": "2022-05-31T21:07:42Z",
 "region": "us-east-1",
 "resources": [
 "arn:aws:emr-serverless:us-east-1:123456789012:/applications/00f1982r1uukb925/
jobruns/00f1cbn5g4bb0c01"
],
 "detail": {
 "applicationId": "00f1982r1uukb925",
 "jobRunId": "00f1cbn5g4bb0c01",
 "attempt": 1,
 "mode": "BATCH",
 "createdAt": "2022-05-31T21:07:25.325900Z",
 "startedAt": "2022-05-31T21:07:26.123Z",
 "calculatedFrom": "2022-05-31T21:07:42.299487Z",
 "calculatedTo": "2022-05-31T21:07:30.325900Z",
 "resourceUtilizationFinal": true,
 "resourceUtilizationForInterval": {
 "vCPUHour": 0.023,

Sample EMR Serverless EventBridge events 178

Amazon EMR Amazon EMR Serverless User Guide

 "memoryGBHour": 0.114,
 "storageGBHour": 0.228
 },
 "billedResourceUtilizationForInterval": {
 "vCPUHour": 0.067,
 "memoryGBHour": 0.333,
 "storageGBHour": 0
 },
 "totalResourceUtilization": {
 "vCPUHour": 0.023,
 "memoryGBHour": 0.114,
 "storageGBHour": 0.228
 },
 "totalBilledResourceUtilization": {
 "vCPUHour": 0.067,
 "memoryGBHour": 0.333,
 "storageGBHour": 0
 }
 }
}

The startedAt field will only be present in the event if the job had moved to a running state.

Sample EMR Serverless EventBridge events 179

Amazon EMR Amazon EMR Serverless User Guide

Tagging resources

You can assign your own metadata to each resource using tags to help you manage your EMR
Serverless resources. This section provides an overview of the tag functions and shows you how to
create tags.

Topics

• What is a tag?

• Tagging your resources

• Tagging limitations

• Working with tags using the AWS CLI and the Amazon EMR Serverless API

What is a tag?

A tag is a label that you assign to an AWS resource. Each tag consists of a key and a value, both of
which you define. Tags enable you to categorize your AWS resources by attributes such as purpose,
owner, and environment. When you have many resources of the same type, you can quickly identify
a specific resource based on the tags you've assigned to it. For example, you can define a set of tags
for your Amazon EMR Serverless applications to help you track each application's owner and stack
level. We recommend that you devise a consistent set of tag keys for each resource type.

Tags are not automatically assigned to your resources. After you add a tag to a resource, you
can modify a tag’s value or remove the tag from the resource at any time. Tags do not have any
semantic meaning to Amazon EMR Serverless and are interpreted strictly as strings of characters. If
you add a tag that has the same key as an existing tag on that resource, the new value overwrites
the earlier value.

If you use IAM, you can control which users in your AWS account have permission to manage tags.
For tag-based access control policy examples, see Policies for tag-based access control.

Tagging your resources

You can tag new or existing applications and job runs. If you're using the Amazon EMR Serverless
API, the AWS CLI, or an AWS SDK, you can apply tags to new resources using the tags parameter
on the relevant API action. You can apply tags to existing resources using the TagResource API
action.

What is a tag? 180

Amazon EMR Amazon EMR Serverless User Guide

You can use some resource-creating actions to specify tags for a resource when the resource is
created. In this case, if tags cannot be applied while the resource is being created, the resource fails
to be created. This mechanism ensures that resources you intended to tag on creation are either
created with specified tags or not created at all. If you tag resources at the time of creation, you do
not need to run custom tagging scripts after creating a resource.

The following table describes the Amazon EMR Serverless resources that can be tagged.

Resource Supports tags Supports tag
propagation

Supports
tagging on
creation
(Amazon EMR
Serverless API,
AWS CLI, and
AWS SDK)

API for creation
(tags can be
added during
creation)

Application Yes No. Tags
associated with
an applicati
on do not
propagate to job
runs submitted
to that applicati
on.

Yes CreateApp
lication

Job run Yes No Yes StartJobRun

Tagging limitations

The following basic limitations apply to tags:

• Each resource can have a maximum of 50 user-created tags.

• For each resource, each tag key must be unique, and each tag key can have only one value.

• The maximum key length is 128 Unicode characters in UTF-8.

• The maximum value length is 256 Unicode characters in UTF-8.

Tagging limitations 181

Amazon EMR Amazon EMR Serverless User Guide

• Allowed characters are letters, numbers, spaces representable in UTF-8, and the following
characters: _ . : / = + - @.

• A tag key cannot be an empty string. A tag value can be an empty string, but not null.

• Tag keys and values are case sensitive.

• Do not use AWS: or any upper or lowercase combination of such as a prefix for either keys or
values. These are reserved only for AWS use.

Working with tags using the AWS CLI and the Amazon EMR
Serverless API

Use the following AWS CLI commands or Amazon EMR Serverless API operations to add, update,
list, and delete the tags for your resources.

Resource Supports tags Supports tag propagation

Add or overwrite one or more
tags

tag-resource TagResource

List tags for a resource list-tags-for-reso
urce

ListTagsForResource

Delete one or more tags untag-resource UntagResource

The following examples show how to tag or untag resources using the AWS CLI.

Tag an existing application

The following command tags an existing application.

aws emr-serverless tag-resource --resource-arn resource_ARN --tags team=devs

Untag an existing application

The following command deletes a tag from an existing application.

aws emr-serverless untag-resource --resource-arn resource_ARN --tag-keys tag_key

Working with tags 182

Amazon EMR Amazon EMR Serverless User Guide

List tags for a resource

The following command lists the tags associated with an existing resource.

aws emr-serverless list-tags-for-resource --resource-arn resource_ARN

Working with tags 183

Amazon EMR Amazon EMR Serverless User Guide

Tutorials for EMR Serverless

This section describes common use cases when you work with EMR Serverless applications. This
includes a variety of tools including Hudi and Iceberg for working on large data sets and using
Python and Python libraries to submit Spark jobs.

Topics

• Using Java 17 with Amazon EMR Serverless

• Using Apache Hudi with EMR Serverless

• Using Apache Iceberg with EMR Serverless

• Using Python libraries with EMR Serverless

• Using different Python versions with EMR Serverless

• Using Delta Lake OSS with EMR Serverless

• Submitting EMR Serverless jobs from Airflow

• Using Hive user-defined functions with EMR Serverless

• Using custom images with EMR Serverless

• Using Amazon Redshift integration for Apache Spark on Amazon EMR Serverless

• Connecting to DynamoDB with Amazon EMR Serverless

Using Java 17 with Amazon EMR Serverless

With Amazon EMR releases 6.11.0 and higher, you can configure EMR Serverless Spark jobs to use
Java 17 runtime for the Java Virtual Machine (JVM). Use one of the following methods to configure
Spark with Java 17.

JAVA_HOME

To override the JVM setting for EMR Serverless 6.11.0 and higher, you can supply the JAVA_HOME
setting to its spark.emr-serverless.driverEnv and spark.executorEnv environment
classifications.

x86_64

Set the required properties to specify Java 17 as the JAVA_HOME configuration for the Spark
driver and executors:

Using Java 17 184

Amazon EMR Amazon EMR Serverless User Guide

--conf spark.emr-serverless.driverEnv.JAVA_HOME=/usr/lib/jvm/java-17-amazon-
corretto.x86_64/
--conf spark.executorEnv.JAVA_HOME=/usr/lib/jvm/java-17-amazon-corretto.x86_64/

arm_64

Set the required properties to specify Java 17 as the JAVA_HOME configuration for the Spark
driver and executors:

--conf spark.emr-serverless.driverEnv.JAVA_HOME=/usr/lib/jvm/java-17-amazon-
corretto.aarch64/
--conf spark.executorEnv.JAVA_HOME=/usr/lib/jvm/java-17-amazon-corretto.aarch64/

spark-defaults

Alternatively, you can specify Java 17 in the spark-defaults classification to override the JVM
setting for EMR Serverless 6.11.0 and higher.

x86_64

Specify Java 17 in the spark-defaults classification:

{
"applicationConfiguration": [
 {
 "classification": "spark-defaults",
 "properties": {
 "spark.emr-serverless.driverEnv.JAVA_HOME" : "/usr/lib/jvm/java-17-
amazon-corretto.x86_64/",
 "spark.executorEnv.JAVA_HOME": "/usr/lib/jvm/java-17-amazon-
corretto.x86_64/"
 }
 }
]
}

arm_64

Specify Java 17 in the spark-defaults classification:

{

spark-defaults 185

Amazon EMR Amazon EMR Serverless User Guide

"applicationConfiguration": [
 {
 "classification": "spark-defaults",
 "properties": {
 "spark.emr-serverless.driverEnv.JAVA_HOME" : "/usr/lib/jvm/java-17-
amazon-corretto.aarch64/",
 "spark.executorEnv.JAVA_HOME": "/usr/lib/jvm/java-17-amazon-
corretto.aarch64/"
 }
 }
]
}

Using Apache Hudi with EMR Serverless

This section describes using Apache Hudi with EMR Serverless applications. Hudi is a data-
management framework that makes data processing more simple.

To use Apache Hudi with EMR Serverless applications

1. Set the required Spark properties in the corresponding Spark job run.

spark.jars=/usr/lib/hudi/hudi-spark-bundle.jar
spark.serializer=org.apache.spark.serializer.KryoSerializer

2. To sync a Hudi table to the configured catalog, designate either the AWS Glue Data Catalog
as your metastore, or configure an external metastore. EMR Serverless supports hms as the
sync mode for Hive tables for Hudi workloads. EMR Serverless activates this property as a
default. To learn more about how to set up your metastore, see Metastore configuration for
EMR Serverless.

Important

EMR Serverless doesn't support HIVEQL or JDBC as sync mode options for Hive tables
to handle Hudi workloads. To learn more, see Sync modes.

When you use the AWS Glue Data Catalog as your metastore, you can specify the following
configuration properties for your Hudi job.

Using Hudi 186

https://hudi.apache.org/docs/next/syncing_metastore/#sync-modes

Amazon EMR Amazon EMR Serverless User Guide

--conf spark.jars=/usr/lib/hudi/hudi-spark-bundle.jar,
--conf spark.serializer=org.apache.spark.serializer.KryoSerializer,
--conf
 spark.hadoop.hive.metastore.client.factory.class=com.amazonaws.glue.catalog.metastore.AWSGlueDataCatalogHiveClientFactory

To learn more about Apache Hudi releases of Amazon EMR, see Hudi release history.

Using Apache Iceberg with EMR Serverless

This section describes how to use Apache Iceberg with EMR Serverless applications. Apache Iceberg
is a table format that helps working with large data sets in data lakes.

To use Apache Iceberg with EMR Serverless applications

1. Set the required Spark properties in the corresponding Spark job run.

spark.jars=/usr/share/aws/iceberg/lib/iceberg-spark3-runtime.jar

2. Designate either the AWS Glue Data Catalog as your metastore or configure an external
metastore. To learn more about setting up your metastore, see Metastore configuration for
EMR Serverless.

Configure the metastore properties that you want to use for Iceberg. For example, if you
want to use the AWS Glue Data Catalog, set the following properties in the application
configuration.

spark.sql.catalog.dev.warehouse=s3://amzn-s3-demo-bucket/EXAMPLE-PREFIX/
spark.sql.extensions=org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions
spark.sql.catalog.dev=org.apache.iceberg.spark.SparkCatalog
spark.sql.catalog.dev.catalog-impl=org.apache.iceberg.aws.glue.GlueCatalog
spark.hadoop.hive.metastore.client.factory.class=com.amazonaws.glue.catalog.metastore.AWSGlueDataCatalogHiveClientFactory

When you use the AWS Glue Data Catalog as your metastore, you can specify the following
configuration properties for your Iceberg job.

--conf spark.jars=/usr/share/aws/iceberg/lib/iceberg-spark3-runtime.jar,
--conf
 spark.sql.extensions=org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions,

Using Iceberg 187

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/Hudi-release-history.html

Amazon EMR Amazon EMR Serverless User Guide

--conf spark.sql.catalog.dev=org.apache.iceberg.spark.SparkCatalog,
--conf spark.sql.catalog.dev.catalog-impl=org.apache.iceberg.aws.glue.GlueCatalog,
--conf spark.sql.catalog.dev.warehouse=s3://amzn-s3-demo-bucket/EXAMPLE-PREFIX/
--conf
 spark.hadoop.hive.metastore.client.factory.class=com.amazonaws.glue.catalog.metastore.AWSGlueDataCatalogHiveClientFactory

To learn more about Apache Iceberg releases of Amazon EMR, see Iceberg release history.

Using Python libraries with EMR Serverless

When you run PySpark jobs on Amazon EMR Serverless applications, you can package various
Python libraries as dependencies. To do this, you can use native Python features, build a virtual
environment, or directly configure your PySpark jobs to use Python libraries. This page covers each
approach.

Using native Python features

When you set the following configuration, you can use PySpark to upload Python files (.py),
zipped Python packages (.zip), and Egg files (.egg) to Spark executors.

--conf spark.submit.pyFiles=s3://amzn-s3-demo-bucket/EXAMPLE-PREFIX/<.py|.egg|.zip
 file>

For more details about how to use Python virtual environments for PySpark jobs, see Using
PySpark Native Features.

Building a Python virtual environment

To package multiple Python libraries for a PySpark job, you can create isolated Python virtual
environments.

1. To build the Python virtual environment, use the following commands. The example shown
installs the packages scipy and matplotlib into a virtual environment package and copies
the archive to an Amazon S3 location.

Important

You must run the following commands in a similar Amazon Linux 2 environment with
the same version of Python as you use in EMR Serverless, that is, Python 3.7.10 for

Using Python libraries 188

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/Iceberg-release-history.html
https://spark.apache.org/docs/latest/api/python/user_guide/python_packaging.html#using-pyspark-native-features
https://spark.apache.org/docs/latest/api/python/user_guide/python_packaging.html#using-pyspark-native-features

Amazon EMR Amazon EMR Serverless User Guide

Amazon EMR release 6.6.0. You can find an example Dockerfile in the EMR Serverless
Samples GitHub repository.

initialize a python virtual environment
python3 -m venv pyspark_venvsource
source pyspark_venvsource/bin/activate

optionally, ensure pip is up-to-date
pip3 install --upgrade pip

install the python packages
pip3 install scipy
pip3 install matplotlib

package the virtual environment into an archive
pip3 install venv-pack
venv-pack -f -o pyspark_venv.tar.gz

copy the archive to an S3 location
aws s3 cp pyspark_venv.tar.gz s3://amzn-s3-demo-bucket/EXAMPLE-PREFIX/

optionally, remove the virtual environment directory
rm -fr pyspark_venvsource

2. Submit the Spark job with your properties set to use the Python virtual environment.

--conf spark.archives=s3://amzn-s3-demo-bucket/EXAMPLE-PREFIX/
pyspark_venv.tar.gz#environment
--conf spark.emr-serverless.driverEnv.PYSPARK_DRIVER_PYTHON=./environment/bin/
python
--conf spark.emr-serverless.driverEnv.PYSPARK_PYTHON=./environment/bin/python
--conf spark.executorEnv.PYSPARK_PYTHON=./environment/bin/python

Note that if you don't override the original Python binary, the second
configuration in the preceding sequence of settings will be --conf
spark.executorEnv.PYSPARK_PYTHON=python.

For more on how to use Python virtual environments for PySpark jobs, see Using Virtualenv.
For more examples of how to submit Spark jobs, see Using Spark configurations when you run
EMR Serverless jobs.

Building a Python virtual environment 189

https://github.com/aws-samples/emr-serverless-samples/tree/main/examples/pyspark/dependencies
https://github.com/aws-samples/emr-serverless-samples/tree/main/examples/pyspark/dependencies
https://spark.apache.org/docs/latest/api/python/user_guide/python_packaging.html#using-virtualenv

Amazon EMR Amazon EMR Serverless User Guide

Configuring PySpark jobs to use Python libraries

With Amazon EMR releases 6.12.0 and higher, you can directly configure EMR Serverless PySpark
jobs to use popular data science Python libraries like pandas, NumPy, and PyArrow without any
additional setup.

The following examples show how to package each Python library for a PySpark job.

NumPy

NumPy is a Python library for scientific computing that offers multidimensional arrays and
operations for math, sorting, random simulation, and basic statistics. To use NumPy, run the
following command:

import numpy

pandas

pandas is a Python library that is built on top of NumPy. The pandas library provides datas
scientists with DataFrame data structures and data analysis tools. To use pandas, run the
following command:

import pandas

PyArrow

PyArrow is a Python library that manages in-memory columnar data for improved job
performance. PyArrow is based on the Apache Arrow cross-language development specification,
which is a standard way to represent and exchange data in a columnar format. To use PyArrow,
run the following command:

import pyarrow

Using different Python versions with EMR Serverless

In addition to the use case in Using Python libraries with EMR Serverless, you can also use Python
virtual environments to work with different Python versions than the version packaged in the
Amazon EMR release for your Amazon EMR Serverless application. To do this, you must build a
Python virtual environment with the Python version you want to use.

Configuring PySpark jobs to use Python libraries 190

https://pandas.pydata.org/docs/user_guide/index.html
https://numpy.org/doc/stable/user/index.html
https://arrow.apache.org/docs/python/index.html
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html

Amazon EMR Amazon EMR Serverless User Guide

To submit a job from a Python virtual environment

1. Build your virtual environment with the commands in the following example. This example
installs Python 3.9.9 into a virtual environment package and copies the archive to an Amazon
S3 location.

Important

If you use Amazon EMR releases 7.0.0 and higher, you must run your commands in an
Amazon Linux 2023 environment similar to the one you use for your EMR Serverless
applications.
If you use release 6.15.0 or lower, you must run the following commands in a similar
Amazon Linux 2 environment.

install Python 3.9.9 and activate the venv
yum install -y gcc openssl-devel bzip2-devel libffi-devel tar gzip wget make
wget https://www.python.org/ftp/python/3.9.9/Python-3.9.9.tgz && \
tar xzf Python-3.9.9.tgz && cd Python-3.9.9 && \
./configure --enable-optimizations && \
make altinstall

create python venv with Python 3.9.9
python3.9 -m venv pyspark_venv_python_3.9.9 --copies
source pyspark_venv_python_3.9.9/bin/activate

copy system python3 libraries to venv
cp -r /usr/local/lib/python3.9/* ./pyspark_venv_python_3.9.9/lib/python3.9/

package venv to archive.
Note that you have to supply --python-prefix option
to make sure python starts with the path where your
copied libraries are present.
Copying the python binary to the "environment" directory.
pip3 install venv-pack
venv-pack -f -o pyspark_venv_python_3.9.9.tar.gz --python-prefix /home/hadoop/
environment

stage the archive in S3
aws s3 cp pyspark_venv_python_3.9.9.tar.gz s3://<path>

Using different Python versions 191

Amazon EMR Amazon EMR Serverless User Guide

optionally, remove the virtual environment directory
rm -fr pyspark_venv_python_3.9.9

2. Set your properties to use the Python virtual environment and submit the Spark job.

note that the archive suffix "environment" is the same as the directory where you
 copied the Python binary.
--conf spark.archives=s3://amzn-s3-demo-bucket/EXAMPLE-PREFIX/
pyspark_venv_python_3.9.9.tar.gz#environment
--conf spark.emr-serverless.driverEnv.PYSPARK_DRIVER_PYTHON=./environment/bin/
python
--conf spark.emr-serverless.driverEnv.PYSPARK_PYTHON=./environment/bin/python
--conf spark.executorEnv.PYSPARK_PYTHON=./environment/bin/python

For more on how to use Python virtual environments for PySpark jobs, see Using Virtualenv. For
more examples of how to submit Spark jobs, see Using Spark configurations when you run EMR
Serverless jobs.

Using Delta Lake OSS with EMR Serverless

Amazon EMR versions 6.9.0 and higher

Note

Amazon EMR 7.0.0 and higher uses Delta Lake 3.0.0, which renames the delta-core.jar
file to delta-spark.jar. If you use Amazon EMR 7.0.0 or higher, make sure to specify
delta-spark.jar in your configurations.

Amazon EMR 6.9.0 and higher includes Delta Lake, so you no longer have to package Delta Lake
yourself or provide the --packages flag with your EMR Serverless jobs.

1. When you submit EMR Serverless jobs, make sure that you have the following configuration
properties and include the following parameters in the sparkSubmitParameters field.

--conf spark.jars=/usr/share/aws/delta/lib/delta-core.jar,/usr/share/aws/delta/lib/
delta-storage.jar
 --conf spark.sql.extensions=io.delta.sql.DeltaSparkSessionExtension

Using Delta Lake OSS 192

https://spark.apache.org/docs/latest/api/python/user_guide/python_packaging.html#using-virtualenv

Amazon EMR Amazon EMR Serverless User Guide

 --conf
 spark.sql.catalog.spark_catalog=org.apache.spark.sql.delta.catalog.DeltaCatalog

2. Create a local delta_sample.py to test creating and reading a Delta table.

delta_sample.py
 from pyspark.sql import SparkSession

 import uuid

 url = "s3://amzn-s3-demo-bucket/delta-lake/output/%s/" % str(uuid.uuid4())
 spark = SparkSession.builder.appName("DeltaSample").getOrCreate()

 ## creates a Delta table and outputs to target S3 bucket
 spark.range(5).write.format("delta").save(url)

 ## reads a Delta table and outputs to target S3 bucket
 spark.read.format("delta").load(url).show

3. Using the AWS CLI, upload the delta_sample.py file to your Amazon S3 bucket. Then use
the start-job-run command to submit a job to an existing EMR Serverless application.

aws s3 cp delta_sample.py s3://amzn-s3-demo-bucket/code/

 aws emr-serverless start-job-run \
 --application-id application-id \
 --execution-role-arn job-role-arn \
 --name emr-delta \
 --job-driver '{
 "sparkSubmit": {
 "entryPoint": "s3://amzn-s3-demo-bucket/code/delta_sample.py",
 "sparkSubmitParameters": "--conf spark.jars=/usr/share/
aws/delta/lib/delta-core.jar,/usr/share/aws/delta/lib/delta-storage.jar --
conf spark.sql.extensions=io.delta.sql.DeltaSparkSessionExtension --conf
 spark.sql.catalog.spark_catalog=org.apache.spark.sql.delta.catalog.DeltaCatalog"
 }
 }'

To use Python libraries with Delta Lake, you can add the delta-core library by packaging it as a
dependency or by using it as a custom image.

Amazon EMR versions 6.9.0 and higher 193

https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/using-python-libraries.html
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/using-python-libraries.html
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/using-custom-images.html

Amazon EMR Amazon EMR Serverless User Guide

Alternatively, you can use the SparkContext.addPyFile to add the Python libraries from the
delta-core JAR file:

import glob
from pyspark.sql import SparkSession

spark = SparkSession.builder.getOrCreate()
spark.sparkContext.addPyFile(glob.glob("/usr/share/aws/delta/lib/delta-core_*.jar")[0])

Amazon EMR versions 6.8.0 and lower

If you're using Amazon EMR 6.8.0 or lower, follow these steps to use Delta Lake OSS with your EMR
Serverless applications.

1. To build an open source version of Delta Lake that’s compatible with the version of Spark
on your Amazon EMR Serverless application, navigate to the Delta GitHub and follow the
instructions.

2. Upload the Delta Lake libraries to an Amazon S3 bucket in your AWS account.

3. When you submit EMR Serverless jobs in the application configuration, include the Delta Lake
JAR files that are now in your bucket.

--conf spark.jars=s3://amzn-s3-demo-bucket/jars/delta-core_2.12-1.1.0.jar

4. To ensure that you can read to and write from a Delta table, run a sample PySpark test.

from pyspark import SparkConf, SparkContext
 from pyspark.sql import HiveContext, SparkSession

 import uuid

 conf = SparkConf()
 sc = SparkContext(conf=conf)
 sqlContext = HiveContext(sc)

 url = "s3://amzn-s3-demo-bucket/delta-lake/output/1.0.1/%s/" %
 str(uuid.uuid4())

 ## creates a Delta table and outputs to target S3 bucket
 session.range(5).write.format("delta").save(url)

 ## reads a Delta table and outputs to target S3 bucket

Amazon EMR versions 6.8.0 and lower 194

https://delta.io/
https://github.com/delta-io/delta

Amazon EMR Amazon EMR Serverless User Guide

 session.read.format("delta").load(url).show

Submitting EMR Serverless jobs from Airflow

The Amazon Provider in Apache Airflow provides EMR Serverless operators. For more information
about operators, see Amazon EMR Serverless Operators in the Apache Airflow documentation.

You can use EmrServerlessCreateApplicationOperator to create a Spark or Hive
application. You can also use EmrServerlessStartJobOperator to start one or more jobs with
the your new application.

To use the operator with Amazon Managed Workflows for Apache Airflow (MWAA) with Airflow
2.2.2, add the following line to your requirements.txt file and update your MWAA environment
to use the new file.

apache-airflow-providers-amazon==6.0.0
boto3>=1.23.9

Note that EMR Serverless support was added to release 5.0.0 of the Amazon provider. Release 6.0.0
is the last version compatible with Airflow 2.2.2. You can use later versions with Airflow 2.4.3 on
MWAA.

The following abbreviated example shows how to create an application, run multiple Spark jobs,
and then stop the application. A full example is available in the EMR Serverless Samples GitHub
repository. For additional details of sparkSubmit configuration, see Using Spark configurations
when you run EMR Serverless jobs.

from datetime import datetime

from airflow import DAG
from airflow.providers.amazon.aws.operators.emr import (
 EmrServerlessCreateApplicationOperator,
 EmrServerlessStartJobOperator,
 EmrServerlessDeleteApplicationOperator,
)

Replace these with your correct values
JOB_ROLE_ARN = "arn:aws:iam::account-id:role/emr_serverless_default_role"
S3_LOGS_BUCKET = "amzn-s3-demo-bucket"

Submitting jobs from Airflow 195

https://airflow.apache.org/docs/apache-airflow-providers-amazon/stable/operators/emr_serverless.html
https://github.com/aws-samples/emr-serverless-samples/tree/main/airflow

Amazon EMR Amazon EMR Serverless User Guide

DEFAULT_MONITORING_CONFIG = {
 "monitoringConfiguration": {
 "s3MonitoringConfiguration": {"logUri": f"s3://amzn-s3-demo-bucket/logs/"}
 },
}

with DAG(
 dag_id="example_endtoend_emr_serverless_job",
 schedule_interval=None,
 start_date=datetime(2021, 1, 1),
 tags=["example"],
 catchup=False,
) as dag:
 create_app = EmrServerlessCreateApplicationOperator(
 task_id="create_spark_app",
 job_type="SPARK",
 release_label="emr-6.7.0",
 config={"name": "airflow-test"},
)

 application_id = create_app.output

 job1 = EmrServerlessStartJobOperator(
 task_id="start_job_1",
 application_id=application_id,
 execution_role_arn=JOB_ROLE_ARN,
 job_driver={
 "sparkSubmit": {
 "entryPoint": "local:///usr/lib/spark/examples/src/main/python/
pi_fail.py",
 }
 },
 configuration_overrides=DEFAULT_MONITORING_CONFIG,
)

 job2 = EmrServerlessStartJobOperator(
 task_id="start_job_2",
 application_id=application_id,
 execution_role_arn=JOB_ROLE_ARN,
 job_driver={
 "sparkSubmit": {
 "entryPoint": "local:///usr/lib/spark/examples/src/main/python/pi.py",
 "entryPointArguments": ["1000"]
 }

Submitting jobs from Airflow 196

Amazon EMR Amazon EMR Serverless User Guide

 },
 configuration_overrides=DEFAULT_MONITORING_CONFIG,
)

 delete_app = EmrServerlessDeleteApplicationOperator(
 task_id="delete_app",
 application_id=application_id,
 trigger_rule="all_done",
)

 (create_app >> [job1, job2] >> delete_app)

Using Hive user-defined functions with EMR Serverless

Hive user-defined functions (UDFs) let you create custom functions to process records or groups
of records. In this tutorial, you'll use a sample UDF with a pre-existing Amazon EMR Serverless
application to run a job that outputs a query result. To learn how to set up an application, see
Getting started with Amazon EMR Serverless.

To use a UDF with EMR Serverless

1. Navigate to the GitHub for a sample UDF. Clone the repo and switch to the git branch that you
want to use. Update the maven-compiler-plugin in the pom.xml file of the repository to
have a source. Also update the target java version configuration to 1.8. Run mvn package -
DskipTests to create the JAR file that contains your sample UDFs.

2. After you create the JAR file, upload it to your S3 bucket with the following command.

aws s3 cp brickhouse-0.8.2-JS.jar s3://amzn-s3-demo-bucket/jars/

3. Create an example file to use one of the sample UDF functions. Save this query as
udf_example.q and upload it to your S3 bucket.

add jar s3://amzn-s3-demo-bucket/jars/brickhouse-0.8.2-JS.jar;
CREATE TEMPORARY FUNCTION from_json AS 'brickhouse.udf.json.FromJsonUDF';
select from_json('{"key1":[0,1,2], "key2":[3,4,5,6], "key3":[7,8,9]}', map("",
 array(cast(0 as int))));
select from_json('{"key1":[0,1,2], "key2":[3,4,5,6], "key3":[7,8,9]}', map("",
 array(cast(0 as int))))["key1"][2];

4. Submit the following Hive job.

Using Hive user-defined functions 197

https://github.com/jeromebanks/brickhouse

Amazon EMR Amazon EMR Serverless User Guide

aws emr-serverless start-job-run \
 --application-id application-id \
 --execution-role-arn job-role-arn \
 --job-driver '{
 "hive": {
 "query": "s3://amzn-s3-demo-bucket/queries/udf_example.q",
 "parameters": "--hiveconf hive.exec.scratchdir=s3://amzn-s3-demo-bucket/
emr-serverless-hive/scratch --hiveconf hive.metastore.warehouse.dir=s3://'$BUCKET'/
emr-serverless-hive/warehouse"
 }
}' --configuration-overrides '{
 "applicationConfiguration": [{
 "classification": "hive-site",
 "properties": {
 "hive.driver.cores": "2",
 "hive.driver.memory": "6G"
 }
 }],
 "monitoringConfiguration": {
 "s3MonitoringConfiguration": {
 "logUri": "s3://amzn-s3-demo-bucket/logs/"
 }
 }
}'

5. Use the get-job-run command to check your job’s state. Wait for the state to change to
SUCCESS.

aws emr-serverless get-job-run --application-id application-id --job-run-id job-id

6. Download the output files with the following command.

aws s3 cp --recursive s3://amzn-s3-demo-bucket/logs/applications/application-id/
jobs/job-id/HIVE_DRIVER/ .

The stdout.gz file resembles the following.

{"key1":[0,1,2],"key2":[3,4,5,6],"key3":[7,8,9]}
2

Using Hive user-defined functions 198

Amazon EMR Amazon EMR Serverless User Guide

Using custom images with EMR Serverless

Topics

• Use a custom Python version

• Use a custom Java version

• Build a data science image

• Processing geospatial data with Apache Sedona

• Licensing information for using custom images

Use a custom Python version

You can build a custom image to use a different version of Python. To use Python version 3.10 for
Spark jobs, for example, run the following command:

FROM public.ecr.aws/emr-serverless/spark/emr-6.9.0:latest

USER root

install python 3
RUN yum install -y gcc openssl-devel bzip2-devel libffi-devel tar gzip wget make
RUN wget https://www.python.org/ftp/python/3.10.0/Python-3.10.0.tgz && \
tar xzf Python-3.10.0.tgz && cd Python-3.10.0 && \
./configure --enable-optimizations && \
make altinstall

EMRS will run the image as hadoop
USER hadoop:hadoop

Before you submit the Spark job, set your properties to use the Python virtual environment, as
follows.

--conf spark.emr-serverless.driverEnv.PYSPARK_DRIVER_PYTHON=/usr/local/bin/python3.10
--conf spark.emr-serverless.driverEnv.PYSPARK_PYTHON=/usr/local/bin/python3.10
--conf spark.executorEnv.PYSPARK_PYTHON=/usr/local/bin/python3.10

Using custom images 199

Amazon EMR Amazon EMR Serverless User Guide

Use a custom Java version

The following example demonstrates how to build a custom image to use Java 11 for your Spark
jobs.

FROM public.ecr.aws/emr-serverless/spark/emr-6.9.0:latest

USER root

install JDK 11
RUN sudo amazon-linux-extras install java-openjdk11

EMRS will run the image as hadoop
USER hadoop:hadoop

Before you submit the Spark job, set Spark properties to use Java 11, as follows.

--conf spark.executorEnv.JAVA_HOME=/usr/lib/jvm/java-11-
openjdk-11.0.16.0.8-1.amzn2.0.1.x86_64
--conf spark.emr-serverless.driverEnv.JAVA_HOME=/usr/lib/jvm/java-11-
openjdk-11.0.16.0.8-

Build a data science image

The following example shows how to include common, data science Python packages, such as
Pandas and NumPy.

FROM public.ecr.aws/emr-serverless/spark/emr-6.9.0:latest

USER root

python packages
RUN pip3 install boto3 pandas numpy
RUN pip3 install -U scikit-learn==0.23.2 scipy
RUN pip3 install sk-dist
RUN pip3 install xgboost

EMR Serverless will run the image as hadoop
USER hadoop:hadoop

Use a custom Java version 200

Amazon EMR Amazon EMR Serverless User Guide

Processing geospatial data with Apache Sedona

The following example shows how to build an image to include Apache Sedona for geospatial
processing.

FROM public.ecr.aws/emr-serverless/spark/emr-6.9.0:latest

USER root

RUN yum install -y wget
RUN wget https://repo1.maven.org/maven2/org/apache/sedona/sedona-core-3.0_2.12/1.3.0-
incubating/sedona-core-3.0_2.12-1.3.0-incubating.jar -P /usr/lib/spark/jars/
RUN pip3 install apache-sedona

EMRS will run the image as hadoop
USER hadoop:hadoop

Licensing information for using custom images

You can build custom images with EMR Serverless to perform specific tasks or to use specific
versions of a software package. Modification and distribution of custom images can be subject to
rules and licensing terms. The licensing text appears in the subsection that follows.

Licensing that applies to custom images

Copyright Amazon.com and its affiliates; all rights reserved. This software is AWS Content under AWS
Customer Agreement and may not be distributed without permission. In addition to the permissions
in AWS Intellectual Property License, the AWS Licensor grants you these additional permissions:

Create, Copy, and Use Derivatives of the AWS Content is permitted provided that the following
conditions are met:

• You do not modify the AWS Content itself, and any Derivatives are strictly the result of Your
addition of new content.

• Internal reproductions must retain the above copyright notice.

• External distribution, in source or binary form, with or without modification, is not permitted under
the terms of this license.

For more information about using custom images, see Using custom images with EMR Serverless.

Processing geospatial data with Apache Sedona 201

https://aws.amazon.com/agreement/
https://aws.amazon.com/agreement/
https://aws.amazon.com/legal/aws-ip-license-terms/
emr/latest/EMR-Serverless-UserGuide/using-custom-images.html

Amazon EMR Amazon EMR Serverless User Guide

Using Amazon Redshift integration for Apache Spark on
Amazon EMR Serverless

With Amazon EMR release 6.9.0 and later, every release image includes a connector between
Apache Spark and Amazon Redshift. With this connector, you can use Spark on Amazon EMR
Serverless to process data stored in Amazon Redshift. The integration is based on the spark-
redshift open-source connector. For Amazon EMR Serverless, the Amazon Redshift integration
for Apache Spark is included as a native integration.

Topics

• Launching a Spark application with the Amazon Redshift integration for Apache Spark

• Authenticating with the Amazon Redshift integration for Apache Spark

• Reading and writing from and to Amazon Redshift

• Considerations and limitations when using the Spark connector

Launching a Spark application with the Amazon Redshift integration
for Apache Spark

To use the integration with EMR Serverless 6.9.0, you must pass the required Spark-Redshift
dependencies with your Spark job. Use --jars to include Redshift connector related libraries.
To see other file locations supported by the --jars option, see the Advanced Dependency
Management section of the Apache Spark documentation.

• spark-redshift.jar

• spark-avro.jar

• RedshiftJDBC.jar

• minimal-json.jar

Amazon EMR releases 6.10.0 and higher don't require the minimal-json.jar dependency, and
automatically install the other dependencies to each cluster by default. The following examples
show how to launch a Spark application with the Amazon Redshift integration for Apache Spark.

Using Spark on Amazon Redshift 202

https://aws.amazon.com/emr/features/spark/
https://github.com/spark-redshift-community/spark-redshift#readme
https://github.com/spark-redshift-community/spark-redshift#readme
https://docs.aws.amazon.com/redshift/latest/mgmt/spark-redshift-connector.html
https://docs.aws.amazon.com/redshift/latest/mgmt/spark-redshift-connector.html
https://spark.apache.org/docs/latest/submitting-applications.html#advanced-dependency-management
https://spark.apache.org/docs/latest/submitting-applications.html#advanced-dependency-management

Amazon EMR Amazon EMR Serverless User Guide

Amazon EMR 6.10.0 +

Launch a Spark job on Amazon EMR Serverless with the Amazon Redshift integration for
Apache Spark on EMR Serverless release 6.10.0 and higher.

spark-submit my_script.py

Amazon EMR 6.9.0

To launch a Spark job on Amazon EMR Serverless with the Amazon Redshift integration for
Apache Spark on EMR Serverless release 6.9.0, use the --jars option as shown in the following
example. Note that the paths listed with the --jars option are the default paths for the JAR
files.

--jars
 /usr/share/aws/redshift/jdbc/RedshiftJDBC.jar,
 /usr/share/aws/redshift/spark-redshift/lib/spark-redshift.jar,
 /usr/share/aws/redshift/spark-redshift/lib/spark-avro.jar,
 /usr/share/aws/redshift/spark-redshift/lib/minimal-json.jar

spark-submit \
 --jars /usr/share/aws/redshift/jdbc/RedshiftJDBC.jar,/usr/share/aws/redshift/
spark-redshift/lib/spark-redshift.jar,/usr/share/aws/redshift/spark-redshift/lib/
spark-avro.jar,/usr/share/aws/redshift/spark-redshift/lib/minimal-json.jar \
 my_script.py

Authenticating with the Amazon Redshift integration for Apache Spark

Use AWS Secrets Manager to retrieve credentials and connect to Amazon Redshift

You can securely authenticate to Amazon Redshift by storing the credentials in Secrets Manager
and have the Spark job call the GetSecretValue API to fetch it:

from pyspark.sql import SQLContextimport boto3

sc = # existing SparkContext
sql_context = SQLContext(sc)

Authenticate to Amazon Redshift 203

Amazon EMR Amazon EMR Serverless User Guide

secretsmanager_client = boto3.client('secretsmanager',
 region_name=os.getenv('AWS_REGION'))
secret_manager_response = secretsmanager_client.get_secret_value(
 SecretId='string',
 VersionId='string',
 VersionStage='string'
)
username = # get username from secret_manager_response
password = # get password from secret_manager_response
url = "jdbc:redshift://redshifthost:5439/database?user=" + username + "&password="
 + password

Access to Redshift cluster using Spark

Authenticate to Amazon Redshift with a JDBC driver

Set username and password inside the JDBC URL

You can authenticate a Spark job to an Amazon Redshift cluster by specifying the Amazon Redshift
database name and password in the JDBC URL.

Note

If you pass the database credentials in the URL, anyone who has access to the URL can also
access the credentials. This method isn't generally recommended because it's not a secure
option.

If security isn't a concern for your application, you can use the following format to set the
username and password in the JDBC URL:

jdbc:redshift://redshifthost:5439/database?user=username&password=password

Use IAM based authentication with Amazon EMR Serverless job execution role

Starting with Amazon EMR Serverless release 6.9.0, the Amazon Redshift JDBC driver 2.1 or higher
is packaged into the environment. With JDBC driver 2.1 and higher, you can specify the JDBC URL
and not include the raw username and password.

Authenticate to Amazon Redshift 204

Amazon EMR Amazon EMR Serverless User Guide

Instead, you can specify jdbc:redshift:iam:// scheme. This commands the JDBC driver to use
your EMR Serverless job execution role to fetch the credentials automatically. See Configure a JDBC
or ODBC connection to use IAM credentials in the Amazon Redshift Management Guide for more
information. An example of this URL is:

jdbc:redshift:iam://examplecluster.abc123xyz789.us-west-2.redshift.amazonaws.com:5439/
dev

The following permissions are required for your job execution role when the provided conditions
are met:

Permission Conditions when required for job execution role

redshift:GetCluste
rCredentials

Required for JDBC driver to fetch the credentials from Amazon
Redshift

redshift:DescribeC
luster

Required if you specify the Amazon Redshift cluster and AWS
Region in the JDBC URL instead of endpoint

redshift-serverles
s:GetCredentials

Required for JDBC driver to fetch the credentials from Amazon
Redshift Serverless

redshift-serverles
s:GetWorkgroup

Required if you are using Amazon Redshift Serverless and you
are specifying the URL in terms of workgroup name and Region

Connecting to Amazon Redshift within a different VPC

When you set up a provisioned Amazon Redshift cluster or Amazon Redshift Serverless workgroup
under a VPC, you must configure VPC connectivity for your Amazon EMR Serverless application
to access to the resources. For more information on how to configure VPC connectivity on an EMR
Serverless application, see Configuring VPC access for EMR Serverless applications to connect to
data.

• If your provisioned Amazon Redshift cluster or Amazon Redshift Serverless workgroup is publicly
accessible, you can specify one or more private subnets that have a NAT gateway attached when
you create EMR Serverless applications.

• If your provisioned Amazon Redshift cluster or Amazon Redshift Serverless workgroup isn't
publicly accessible, you must create an Amazon Redshift managed VPC endpoint for your

Authenticate to Amazon Redshift 205

https://docs.aws.amazon.com/redshift/latest/mgmt/generating-iam-credentials-configure-jdbc-odbc.html
https://docs.aws.amazon.com/redshift/latest/mgmt/generating-iam-credentials-configure-jdbc-odbc.html

Amazon EMR Amazon EMR Serverless User Guide

Amazon Redshift cluster as described in Configuring VPC access for EMR Serverless applications
to connect to data. Alternatively, you can create your Amazon Redshift Serverless workgroup
as described in Connecting to Amazon Redshift Serverless in the Amazon Redshift Management
Guide. You must associate your cluster or your subgroup to the private subnets that you specify
when you create your EMR Serverless application.

Note

If you use IAM based authentication, and your private subnets for the EMR Serverless
application don't have a NAT gateway attached, then you must also create a VPC endpoint
on those subnets for Amazon Redshift or Amazon Redshift Serverless. This way, the JDBC
driver can fetch the credentials.

Reading and writing from and to Amazon Redshift

The following code examples use PySpark to read and write sample data from and to an Amazon
Redshift database with a data source API and with SparkSQL.

Data source API

Use PySpark to read and write sample data from and to an Amazon Redshift database with data
source API.

import boto3
from pyspark.sql import SQLContext

sc = # existing SparkContext
sql_context = SQLContext(sc)

url = "jdbc:redshift:iam://redshifthost:5439/database"
aws_iam_role_arn = "arn:aws:iam::account-id:role/role-name"

df = sql_context.read \
 .format("io.github.spark_redshift_community.spark.redshift") \
 .option("url", url) \
 .option("dbtable", "table-name") \
 .option("tempdir", "s3://path/for/temp/data") \
 .option("aws_iam_role", "aws-iam-role-arn") \
 .load()

Read and write to Amazon Redshift 206

https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-connecting.html

Amazon EMR Amazon EMR Serverless User Guide

df.write \
 .format("io.github.spark_redshift_community.spark.redshift") \
 .option("url", url) \
 .option("dbtable", "table-name-copy") \
 .option("tempdir", "s3://path/for/temp/data") \
 .option("aws_iam_role", "aws-iam-role-arn") \
 .mode("error") \
 .save()

SparkSQL

Use PySpark to read and write sample data from and to an Amazon Redshift database with
SparkSQL.

import boto3
import json
import sys
import os
from pyspark.sql import SparkSession

spark = SparkSession \
 .builder \
 .enableHiveSupport() \
 .getOrCreate()

url = "jdbc:redshift:iam://redshifthost:5439/database"
aws_iam_role_arn = "arn:aws:iam::account-id:role/role-name"

bucket = "s3://path/for/temp/data"
tableName = "table-name" # Redshift table name

s = f"""CREATE TABLE IF NOT EXISTS {table-name} (country string, data string)
 USING io.github.spark_redshift_community.spark.redshift
 OPTIONS (dbtable '{table-name}', tempdir '{bucket}', url '{url}', aws_iam_role
 '{aws-iam-role-arn}'); """

spark.sql(s)

columns = ["country" ,"data"]
data = [("test-country","test-data")]
df = spark.sparkContext.parallelize(data).toDF(columns)

Read and write to Amazon Redshift 207

Amazon EMR Amazon EMR Serverless User Guide

Insert data into table
df.write.insertInto(table-name, overwrite=False)
df = spark.sql(f"SELECT * FROM {table-name}")
df.show()

Considerations and limitations when using the Spark connector

• We recommend that you turn on SSL for the JDBC connection from Spark on Amazon EMR to
Amazon Redshift.

• We recommend that you manage the credentials for the Amazon Redshift cluster in AWS
Secrets Manager as a best practice. See Using AWS Secrets Manager to retrieve credentials for
connecting to Amazon Redshift for an example.

• We recommend that you pass an IAM role with the parameter aws_iam_role for the Amazon
Redshift authentication parameter.

• The parameter tempformat currently doesn't support the Parquet format.

• The tempdir URI points to an Amazon S3 location. This temp directory isn't cleaned up
automatically and therefore could add additional cost.

• Consider the following recommendations for Amazon Redshift:

• We recommend that you block public access to the Amazon Redshift cluster.

• We recommend that you turn on Amazon Redshift audit logging.

• We recommend that you turn on Amazon Redshift at-rest encryption.

• Consider the following recommendations for Amazon S3:

• We recommend that you block public access to Amazon S3 buckets.

• We recommend that you use Amazon S3 server-side encryption to encrypt the Amazon S3
buckets used.

• We recommend that you use Amazon S3 lifecycle policies to define the retention rules for the
Amazon S3 bucket.

• Amazon EMR always verifies code imported from open-source into the image. For security, we
don't support the following authentication methods from Spark to Amazon S3:

• Setting AWS access keys in the hadoop-env configuration classification

• Encoding AWS access keys in the tempdir URI

Considerations 208

https://docs.aws.amazon.com/redshift/latest/mgmt/redshift-secrets-manager-integration.html
https://docs.aws.amazon.com/redshift/latest/mgmt/redshift-secrets-manager-integration.html
https://docs.aws.amazon.com/redshift/latest/mgmt/db-auditing.html
https://docs.aws.amazon.com/redshift/latest/mgmt/security-server-side-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/access-control-block-public-access.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/serv-side-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/object-lifecycle-mgmt.html

Amazon EMR Amazon EMR Serverless User Guide

For more information on using the connector and its supported parameters, see the following
resources:

• Amazon Redshift integration for Apache Spark in the Amazon Redshift Management Guide

• The spark-redshift community repository on Github

Connecting to DynamoDB with Amazon EMR Serverless

In this tutorial, you upload a subset of data from the United States Board on Geographic Names to
an Amazon S3 bucket and then use Hive or Spark on Amazon EMR Serverless to copy the data to
an Amazon DynamoDB table that you can query.

Step 1: Upload data to an Amazon S3 bucket

To create an Amazon S3 bucket, follow the instructions in Creating a bucket in the Amazon Simple
Storage Service Console User Guide. Replace references to amzn-s3-demo-bucket with the name
of your newly created bucket. Now your EMR Serverless application is ready to run jobs.

1. Download the sample data archive features.zip with the following command.

wget https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/samples/
features.zip

2. Extract the features.txt file from the archive and view the first the few lines in the file:

unzip features.zip
head features.txt

The result should look similar to the following.

1535908|Big Run|Stream|WV|38.6370428|-80.8595469|794
875609|Constable Hook|Cape|NJ|40.657881|-74.0990309|7
1217998|Gooseberry Island|Island|RI|41.4534361|-71.3253284|10
26603|Boone Moore Spring|Spring|AZ|34.0895692|-111.410065|3681
1506738|Missouri Flat|Flat|WA|46.7634987|-117.0346113|2605
1181348|Minnow Run|Stream|PA|40.0820178|-79.3800349|1558
1288759|Hunting Creek|Stream|TN|36.343969|-83.8029682|1024
533060|Big Charles Bayou|Bay|LA|29.6046517|-91.9828654|0
829689|Greenwood Creek|Stream|NE|41.596086|-103.0499296|3671

Connecting to DynamoDB 209

https://docs.aws.amazon.com/redshift/latest/mgmt/spark-redshift-connector.html
https://github.com/spark-redshift-community/spark-redshift#readme
https://www.usgs.gov/us-board-on-geographic-names
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/create-bucket.html

Amazon EMR Amazon EMR Serverless User Guide

541692|Button Willow Island|Island|LA|31.9579389|-93.0648847|98

The fields in each line here indicate a unique identifier, name, type of natural feature, state,
latitude in degrees, longitude in degrees, and height in feet.

3. Upload your data to Amazon S3

aws s3 cp features.txt s3://amzn-s3-demo-bucket/features/

Step 2: Create a Hive table

Use Apache Spark or Hive to create a new Hive table that contains the uploaded data in Amazon
S3.

Spark

To create a Hive table with Spark, run the following command.

import org.apache.spark.sql.SparkSession

val sparkSession = SparkSession.builder().enableHiveSupport().getOrCreate()

sparkSession.sql("CREATE TABLE hive_features \
 (feature_id BIGINT, \
 feature_name STRING, \
 feature_class STRING, \
 state_alpha STRING, \
 prim_lat_dec DOUBLE, \
 prim_long_dec DOUBLE, \
 elev_in_ft BIGINT) \
 ROW FORMAT DELIMITED \
 FIELDS TERMINATED BY '|' \
 LINES TERMINATED BY '\n' \
 LOCATION 's3://amzn-s3-demo-bucket/features';")

You now have a populated Hive table with data from the features.txt file. To verify that
your data is in the table, run a Spark SQL query as shown in the following example.

sparkSession.sql(
 "SELECT state_alpha, COUNT(*) FROM hive_features GROUP BY state_alpha;")

Step 2: Create a Hive table 210

Amazon EMR Amazon EMR Serverless User Guide

Hive

To create a Hive table with Hive, run the following command.

CREATE TABLE hive_features
 (feature_id BIGINT,
 feature_name STRING ,
 feature_class STRING ,
 state_alpha STRING,
 prim_lat_dec DOUBLE ,
 prim_long_dec DOUBLE ,
 elev_in_ft BIGINT)
 ROW FORMAT DELIMITED
 FIELDS TERMINATED BY '|'
 LINES TERMINATED BY '\n'
 LOCATION 's3://amzn-s3-demo-bucket/features';

You now have a Hive table that contains data from the features.txt file. To verify that your
data is in the table, run a HiveQL query, as shown in the following example.

SELECT state_alpha, COUNT(*) FROM hive_features GROUP BY state_alpha;

Step 3: Copy data to DynamoDB

Use Spark or Hive to copy data to a new DynamoDB table.

Spark

To copy data from the Hive table that you created in the previous step to DynamoDB, follow
Steps 1-3 in Copy data to DynamoDB. This creates a new DynamoDB table called Features.
You can then read data directly from the text file and copy it to your DynamoDB table, as the
following example shows.

import com.amazonaws.services.dynamodbv2.model.AttributeValue
import org.apache.hadoop.dynamodb.DynamoDBItemWritable
import org.apache.hadoop.dynamodb.read.DynamoDBInputFormat
import org.apache.hadoop.io.Text
import org.apache.hadoop.mapred.JobConf
import org.apache.spark.SparkContext

import scala.collection.JavaConverters._

Step 3: Copy to DynamoDB 211

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/EMRforDynamoDB.Tutorial.CopyDataToDDB.html

Amazon EMR Amazon EMR Serverless User Guide

object EmrServerlessDynamoDbTest {

 def main(args: Array[String]): Unit = {

 jobConf.set("dynamodb.input.tableName", "Features")
 jobConf.set("dynamodb.output.tableName", "Features")
 jobConf.set("dynamodb.region", "region")

 jobConf.set("mapred.output.format.class",
 "org.apache.hadoop.dynamodb.write.DynamoDBOutputFormat")
 jobConf.set("mapred.input.format.class",
 "org.apache.hadoop.dynamodb.read.DynamoDBInputFormat")

 val rdd = sc.textFile("s3://amzn-s3-demo-bucket/ddb-connector/")
 .map(row => {
 val line = row.split("\\|")
 val item = new DynamoDBItemWritable()

 val elevInFt = if (line.length > 6) {
 new AttributeValue().withN(line(6))
 } else {
 new AttributeValue().withNULL(true)
 }

 item.setItem(Map(
 "feature_id" -> new AttributeValue().withN(line(0)),
 "feature_name" -> new AttributeValue(line(1)),
 "feature_class" -> new AttributeValue(line(2)),
 "state_alpha" -> new AttributeValue(line(3)),
 "prim_lat_dec" -> new AttributeValue().withN(line(4)),
 "prim_long_dec" -> new AttributeValue().withN(line(5)),
 "elev_in_ft" -> elevInFt)
 .asJava)
 (new Text(""), item)
 })
 rdd.saveAsHadoopDataset(jobConf)
 }
}

Hive

To copy data from the Hive table that you created in the previous step to DynamoDB, follow the
instructions in Copy data to DynamoDB.

Step 3: Copy to DynamoDB 212

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/EMRforDynamoDB.Tutorial.CopyDataToDDB.html

Amazon EMR Amazon EMR Serverless User Guide

Step 4: Query data from DynamoDB

Use Spark or Hive to query your DynamoDB table.

Spark

To query data from the DynamoDB table that you created in the previous step, you can use
either Spark SQL or the Spark MapReduce API.

Example – Query your DynamoDB table with Spark SQL

The following Spark SQL query returns a list of all the feature types in alphabetical order.

val dataFrame = sparkSession.sql("SELECT DISTINCT feature_class \
 FROM ddb_features \
 ORDER BY feature_class;")

The following Spark SQL query returns a list of all lakes that begin with the letter M.

val dataFrame = sparkSession.sql("SELECT feature_name, state_alpha \
 FROM ddb_features \
 WHERE feature_class = 'Lake' \
 AND feature_name LIKE 'M%' \
 ORDER BY feature_name;")

The following Spark SQL query returns a list of all states with at least three features that are
higher than one mile.

val dataFrame = sparkSession.dql("SELECT state_alpha, feature_class, COUNT(*) \
 FROM ddb_features \
 WHERE elev_in_ft > 5280 \
 GROUP by state_alpha, feature_class \
 HAVING COUNT(*) >= 3 \
 ORDER BY state_alpha, feature_class;")

Example – Query your DynamoDB table with the Spark MapReduce API

The following MapReduce query returns a list of all the feature types in alphabetical order.

val df = sc.hadoopRDD(jobConf, classOf[DynamoDBInputFormat], classOf[Text],
 classOf[DynamoDBItemWritable])
 .map(pair => (pair._1, pair._2.getItem))

Step 4: Query from DynamoDB 213

Amazon EMR Amazon EMR Serverless User Guide

 .map(pair => pair._2.get("feature_class").getS)
 .distinct()
 .sortBy(value => value)
 .toDF("feature_class")

The following MapReduce query returns a list of all lakes that begin with the letter M.

val df = sc.hadoopRDD(jobConf, classOf[DynamoDBInputFormat], classOf[Text],
 classOf[DynamoDBItemWritable])
 .map(pair => (pair._1, pair._2.getItem))
 .filter(pair => "Lake".equals(pair._2.get("feature_class").getS))
 .filter(pair => pair._2.get("feature_name").getS.startsWith("M"))
 .map(pair => (pair._2.get("feature_name").getS,
 pair._2.get("state_alpha").getS))
 .sortBy(_._1)
 .toDF("feature_name", "state_alpha")

The following MapReduce query returns a list of all states with at least three features that are
higher than one mile.

val df = sc.hadoopRDD(jobConf, classOf[DynamoDBInputFormat], classOf[Text],
 classOf[DynamoDBItemWritable])
 .map(pair => pair._2.getItem)
 .filter(pair => pair.get("elev_in_ft").getN != null)
 .filter(pair => Integer.parseInt(pair.get("elev_in_ft").getN) > 5280)
 .groupBy(pair => (pair.get("state_alpha").getS, pair.get("feature_class").getS))
 .filter(pair => pair._2.size >= 3)
 .map(pair => (pair._1._1, pair._1._2, pair._2.size))
 .sortBy(pair => (pair._1, pair._2))
 .toDF("state_alpha", "feature_class", "count")

Hive

To query data from the DynamoDB table that you created in the previous step, follow the
instructions in Query the data in the DynamoDB table.

Setting up cross-account access

To set up cross-account access for EMR Serverless, complete the following steps. In the example,
AccountA is the account where you created your Amazon EMR Serverless application, and
AccountB is the account where your Amazon DynamoDB is located.

Setting up cross-account access 214

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/EMRforDynamoDB.Tutorial.QueryDataInDynamoDB.html

Amazon EMR Amazon EMR Serverless User Guide

1. Create a DynamoDB table in AccountB. For more information, see Step 1: Create a table.

2. Create a Cross-Account-Role-B IAM role in AccountB that can access the DynamoDB
table.

a. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

b. Choose Roles, and create a new role called Cross-Account-Role-B. For more
information on how to create IAM roles, see Creating IAM roles in the a user Guide.

c. Create an IAM policy that grants permissions to access the cross-account DynamoDB table.
Then attach the IAM policy to Cross-Account-Role-B.

The following is a policy that grants access to a DynamoDB table CrossAccountTable.

{"Version": "2012-10-17",
 "Statement": [
 {"Effect": "Allow",
 "Action": "dynamodb:*",
 "Resource": "arn:aws:dynamodb:region:AccountB:table/
CrossAccountTable"
 }
]
}

d. Edit the trust relationship for the Cross-Account-Role-B role.

To configure the trust relationship for the role, choose the Trust Relationships tab in the
IAM console for the role that you created in Step 2: Cross-Account-Role-B.

Select Edit Trust Relationship and then add the following policy document. This
document allows Job-Execution-Role-A in AccountA to assume this Cross-
Account-Role-B role.

{"Version": "2012-10-17",
 "Statement": [
 {"Effect": "Allow",
 "Principal": {"AWS": "arn:aws:iam::AccountA:role/Job-Execution-Role-A"
 },
 "Action": "sts:AssumeRole"
 }
]

Setting up cross-account access 215

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/getting-started-step-1.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html

Amazon EMR Amazon EMR Serverless User Guide

}

e. Grant Job-Execution-Role-A in AccountA with - STS Assume role permissions to
assume Cross-Account-Role-B.

In the IAM console for AWS account AccountA, select Job-Execution-Role-A. Add the
following policy statement to the Job-Execution-Role-A to allow the AssumeRole
action on the Cross-Account-Role-B role.

{"Version": "2012-10-17",
 "Statement": [
 {"Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::AccountB:role/Cross-Account-Role-B"
 }
]
}

f. Set the dynamodb.customAWSCredentialsProvider property with value as
com.amazonaws.emr.AssumeRoleAWSCredentialsProvider in core-site
classification. Set the environment variable ASSUME_ROLE_CREDENTIALS_ROLE_ARN
with the ARN value of Cross-Account-Role-B.

3. Run Spark or Hive job using Job-Execution-Role-A.

Considerations

Note these behaviors and limitations when you use the DynamoDB connector with Apache Spark or
Apache Hive.

Considerations when using the DynamoDB connector with Apache Spark

• Spark SQL doesn't support the creation of a Hive table with the storage-handler option.
For more information, see Specifying storage format for Hive tables in the Apache Spark
documentation.

• Spark SQL doesn't support the STORED BY operation with storage handler. If you want to
interact with a DynamoDB table through an external Hive table, use Hive to create the table first.

• To translate a query to a DynamoDB query, the DynamoDB connector uses predicate pushdown.
Predicate pushdown filters data by a column that is mapped to the partition key of a DynamoDB

Considerations 216

https://spark.apache.org/docs/latest/sql-data-sources-hive-tables.html#specifying-storage-format-for-hive-tables

Amazon EMR Amazon EMR Serverless User Guide

table. Predicate pushdown only operates when you use the connector with Spark SQL, and not
with the MapReduce API.

Considerations when using the DynamoDB connector with Apache Hive

Tuning the maximum number of mappers

• If you use the SELECT query to read data from an external Hive table that maps to DynamoDB,
the number of map tasks on EMR Serverless is calculated as the total read throughput
configured for the DynamoDB table, divided by the throughput per map task. The default
throughput per map task is 100.

• The Hive job can use the number of map tasks beyond the maximum number of containers
configured per EMR Serverless application, depending upon the read throughput configured for
DynamoDB. Also, a long-running Hive query can consume all of the provisioned read capacity of
the DynamoDB table. This negatively impacts other users.

• You can use the dynamodb.max.map.tasks property to set an upper limit for map tasks. You
can also use this property to tune the amount of data read by each map task based on the task
container size.

• You can set the dynamodb.max.map.tasksproperty at Hive query level, or in the hive-
site classification of the start-job-run command. This value must be equal to or greater than
1. When Hive processes your query, the resulting Hive job uses no more than the values of
dynamodb.max.map.tasks when it reads from the DynamoDB table.

Tuning the write throughput per task

• Write throughput per task on EMR Serverless is calculated as the total write throughput that is
configured for a DynamoDB table, divided by the value of the mapreduce.job.maps property.
For Hive, the default value of this property is 2. Thusthe first two tasks in the final stage of Hive
job can consume all of the write throughput . This leads to throttling of writes of other tasks in
the same job or other jobs.

• To avoid write throttling, you can set the value of mapreduce.job.maps property based on
the number of tasks in the final stage or the write throughput that you want to allocate per
task. Set this property in the mapred-site classification of the start-job-run command on EMR
Serverless.

Considerations 217

Amazon EMR Amazon EMR Serverless User Guide

Security

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
compliance programs. To learn about the compliance programs that apply to Amazon EMR
Serverless, see AWS services in scope by compliance program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company's
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using Amazon EMR Serverless. The topics in this chapter show you how to configure Amazon EMR
Serverless and use other AWS services to meet your security and compliance objectives.

Topics

• Security best practices for Amazon EMR Serverless

• Data protection

• Identity and Access Management (IAM) in Amazon EMR Serverless

• Using EMR Serverless with AWS Lake Formation for fine-grained access control

• Inter-worker encryption

• Secrets Manager for data protection with EMR Serverless

• Using Amazon S3 Access Grants with EMR Serverless

• Logging Amazon EMR Serverless API calls using AWS CloudTrail

• Compliance validation for Amazon EMR Serverless

• Resilience in Amazon EMR Serverless

218

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

Amazon EMR Amazon EMR Serverless User Guide

• Infrastructure security in Amazon EMR Serverless

• Configuration and vulnerability analysis in Amazon EMR Serverless

Security best practices for Amazon EMR Serverless

Amazon EMR Serverless provides a number of security features to consider as you develop and
implement your own security policies. The following best practices are general guidelines and don’t
represent a complete security solution. Because these best practices might not be appropriate or
sufficient for your environment, treat them as helpful considerations rather than prescriptions.

Apply principle of least privilege

EMR Serverless provides a granular access policy for applications using IAM roles, such as execution
roles. We recommend that execution roles be granted only the minimum set of privileges required
by the job, such as covering your application and access to log destination. We also recommend
auditing the jobs for permissions on a regular basis and upon any change to application code.

Isolate untrusted application code

EMR Serverless creates full network isolation between jobs belonging to different EMR Serverless
applications. In cases where job-level isolation is desired, consider isolating jobs into different EMR
Serverless applications.

Role-based access control (RBAC) permissions

Administrators should strictly control Role-based access control (RBAC) permissions for EMR
Serverless applcations.

Data protection

The AWS shared responsibility model applies to data protection in Amazon EMR Serverless. As
described in this model, AWS is responsible for protecting the global infrastructure that runs all
of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on
this infrastructure. This content includes the security configuration and management tasks for the
AWS services that you use. For more information about data privacy, see the Data Privacy FAQ. For
information about data protection in Europe, see the AWS Shared Responsibility Model and GDPR
blog post on the AWS Security Blog.

Security best practices 219

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq/
http://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/

Amazon EMR Amazon EMR Serverless User Guide

For data protection purposes, we recommend that you protect AWS account credentials and set up
individual accounts with AWS Identity and Access Management (IAM). That way each user is given
only the permissions necessary to fulfill their job duties. We also recommend that you secure your
data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We recommend TLS 1.2 or later.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing personal data that is stored in Amazon S3.

• Use Amazon EMR Serverless encryption options to encrypt data at rest and in transit.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put sensitive identifying information, such as your
customers' account numbers, into free-form fields such as a Name field. This includes when you
work with Amazon EMR Serverless or other AWS services using the console, API, AWS CLI, or AWS
SDKs. Any data that you enter into Amazon EMR Serverless or other services might get picked
up for inclusion in diagnostic logs. When you provide a URL to an external server, don't include
credentials information in the URL to validate your request to that server.

Encryption at rest

Data encryption helps prevent unauthorized users from reading data on a cluster and associated
data storage systems. This includes data saved to persistent media, known as data at rest, and data
that may be intercepted as it travels the network, known as data in transit.

Data encryption requires keys and certificates. You can choose from several options, including keys
managed by AWS Key Management Service, keys managed by Amazon S3, and keys and certificates
from custom providers that you supply. When using AWS KMS as your key provider, charges apply
for the storage and use of encryption keys. For more information, see AWS KMS pricing.

Before you specify encryption options, decide on the key and certificate management systems you
want to use. Then create the keys and certificates for the custom providers that you specify as part
of encryption settings.

Encryption at rest 220

https://aws.amazon.com/compliance/fips/
https://aws.amazon.com/kms/pricing/

Amazon EMR Amazon EMR Serverless User Guide

Encryption at rest for EMRFS data in Amazon S3

Each EMR Serverless application uses a specific release version, which includes EMRFS (EMR File
System). Amazon S3 encryption works with EMR File System (EMRFS) objects read from and
written to Amazon S3. You can specify Amazon S3 server-side encryption (SSE) or client-side
encryption (CSE) as the Default encryption mode when you enable encryption at rest. Optionally,
you can specify different encryption methods for individual buckets using Per bucket encryption
overrides. Regardless of whether Amazon S3 encryption is enabled, Transport Layer Security
(TLS) encrypts the EMRFS objects in transit between EMR cluster nodes and Amazon S3. If you
use Amazon S3 CSE with customer-managed keys, your execution role used to run jobs in an EMR
Serverless application must have access to the key. For in-depth information about Amazon S3
encryption, see Protecting data using encryption in the Amazon Simple Storage Service Developer
Guide.

Note

When you use AWS KMS, charges apply for the storage and use of encryption keys. For
more information, see AWS KMS pricing.

Amazon S3 server-side encryption

When you set up Amazon S3 server-side encryption, Amazon S3 encrypts data at the object level
as it writes the data to disk and decrypts the data when it is accessed. For more information about
SSE, see Protecting data using server-side encryption in the Amazon Simple Storage Service
Developer Guide.

You can choose between two different key management systems when you specify SSE in Amazon
EMR Serverless:

• SSE-S3 ‐ Amazon S3 manages keys for you. No additional setup is required on EMR Serverless.

• SSE-KMS ‐ You use an AWS KMS key to set up with policies suitable for EMR Serverless. No
additional setup is required on EMR Serverless.

To use AWS KMS encryption for data that you write to Amazon S3, you have two options when
you use the StartJobRun API. You can either enable encrytion for everything that you write to
Amazon S3, or you can enable encryption for data that you write to a specific bucket. For more
information about the StartJobRun API, see the EMR Serverless API Reference.

Encryption at rest 221

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingEncryption.html
https://aws.amazon.com/kms/pricing/
https://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html
https://amazonaws.com/emr-serverless/latest/APIReference/API_StartJobRun.html

Amazon EMR Amazon EMR Serverless User Guide

To turn on AWS KMS encryption for all data that you write to Amazon S3, use the following
commands when you call the StartJobRun API.

--conf spark.hadoop.fs.s3.enableServerSideEncryption=true
--conf spark.hadoop.fs.s3.serverSideEncryption.kms.keyId=<kms_id>

To turn on AWS KMS encryption for data that you write to a specific bucket, use the following
commands when you call the StartJobRun API.

--conf spark.hadoop.fs.s3.bucket.<amzn-s3-demo-bucket1>.enableServerSideEncryption=true
--conf spark.hadoop.fs.s3.bucket.<amzn-s3-demo-
bucket1>.serverSideEncryption.kms.keyId=<kms-id>

SSE with customer-provided keys (SSE-C) is not available for use with EMR Serverless.

Amazon S3 client-side encryption

With Amazon S3 client-side encryption, the Amazon S3 encryption and decryption takes place
in the EMRFS client available on every Amazon EMR release. Objects are encrypted before being
uploaded to Amazon S3 and decrypted after they are downloaded. The provider you specify
supplies the encryption key that the client uses. The client can use keys provided by AWS KMS
(CSE-KMS) or a custom Java class that provides the client-side root key (CSE-C). The encryption
specifics are slightly different between CSE-KMS and CSE-C, depending on the specified provider
and the metadata of the object being decrypted or encrypted. If you use Amazon S3 CSE with
customer-managed keys, your execution role used to run jobs in an EMR Serverless application
must have access to the key. Additional KMS charges may apply. For more information about these
differences, see Protecting data using client-side encryption in the Amazon Simple Storage Service
Developer Guide.

Local disk encryption

Data stored in ephemeral storage is encrypted with service owned keys using industry standard
AES-256 cryptographic algorithm.

Key management

You can configure KMS to automatically rotate your KMS keys. This rotates your keys once a
year while saving old keys indefinitely so that your data can still be decrypted. For additional
information, see Rotating customer master keys.

Encryption at rest 222

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryption.html
https://docs.aws.amazon.com/kms/latest/developerguide/rotate-keys.html

Amazon EMR Amazon EMR Serverless User Guide

Encryption in transit

The following application-specific encryption features are available with Amazon EMR Serverless:

• Spark

• By default, communication between Spark drivers and executors is authenticated and internal.
RPC communication between drivers and executors is encrypted.

• Hive

• Communication between the AWS Glue metastore and EMR Serverless applications happens
via TLS.

You should allow only encrypted connections over HTTPS (TLS) using the aws:SecureTransport
condition on Amazon S3 bucket IAM policies.

Identity and Access Management (IAM) in Amazon EMR
Serverless

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use Amazon EMR Serverless resources. IAM is an AWS service
that you can use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How EMR Serverless works with IAM

• Using service-linked roles for EMR Serverless

• Job runtime roles for Amazon EMR Serverless

• User access policy examples for EMR Serverless

• Policies for tag-based access control

• Identity-based policy examples for EMR Serverless

• Amazon EMR Serverless updates to AWS managed policies

Encryption in transit 223

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_Boolean
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_Boolean

Amazon EMR Amazon EMR Serverless User Guide

• Troubleshooting Amazon EMR Serverless identity and access

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in Amazon EMR Serverless.

Service user – If you use the Amazon EMR Serverless service to do your job, then your
administrator provides you with the credentials and permissions that you need. As you use
more Amazon EMR Serverless features to do your work, you might need additional permissions.
Understanding how access is managed can help you request the right permissions from your
administrator. If you cannot access a feature in Amazon EMR Serverless, see Troubleshooting
Amazon EMR Serverless identity and access.

Service administrator – If you're in charge of Amazon EMR Serverless resources at your company,
you probably have full access to Amazon EMR Serverless. It's your job to determine which Amazon
EMR Serverless features and resources your service users should access. You must then submit
requests to your IAM administrator to change the permissions of your service users. Review the
information on this page to understand the basic concepts of IAM. To learn more about how your
company can use IAM with Amazon EMR Serverless, see Identity and Access Management (IAM) in
Amazon EMR Serverless.

IAM administrator – If you're an IAM administrator, you might want to learn details about how
you can write policies to manage access to Amazon EMR Serverless. To view example Amazon EMR
Serverless identity-based policies that you can use in IAM, see Sample identity-based policies for
EMR Serverless.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Audience 224

Amazon EMR Amazon EMR Serverless User Guide

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see AWS Signature Version 4 for API requests in
the IAM User Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in
the AWS IAM Identity Center User Guide and AWS Multi-factor authentication in IAM in the IAM User
Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For

Authenticating with identities 225

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks

Amazon EMR Amazon EMR Serverless User Guide

information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see Use cases for IAM users in
the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. To temporarily assume an IAM role in the
AWS Management Console, you can switch from a user to an IAM role (console). You can assume a
role by calling an AWS CLI or AWS API operation or by using a custom URL. For more information
about methods for using roles, see Methods to assume a role in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Create a role for a third-party identity provider
(federation) in the IAM User Guide. If you use IAM Identity Center, you configure a permission set.
To control what your identities can access after they authenticate, IAM Identity Center correlates
the permission set to a role in IAM. For information about permissions sets, see Permission sets
in the AWS IAM Identity Center User Guide.

Authenticating with identities 226

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/gs-identities-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html

Amazon EMR Amazon EMR Serverless User Guide

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Create a role to delegate permissions to an AWS service in the IAM User
Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Use an
IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM User
Guide.

Authenticating with identities 227

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html

Amazon EMR Amazon EMR Serverless User Guide

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choose between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific

Managing access using policies 228

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html

Amazon EMR Amazon EMR Serverless User Guide

resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see Service
control policies in the AWS Organizations User Guide.

• Resource control policies (RCPs) – RCPs are JSON policies that you can use to set the maximum
available permissions for resources in your accounts without updating the IAM policies attached

Managing access using policies 229

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html

Amazon EMR Amazon EMR Serverless User Guide

to each resource that you own. The RCP limits permissions for resources in member accounts
and can impact the effective permissions for identities, including the AWS account root
user, regardless of whether they belong to your organization. For more information about
Organizations and RCPs, including a list of AWS services that support RCPs, see Resource control
policies (RCPs) in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How EMR Serverless works with IAM

Before you use IAM to manage access to Amazon EMR Serverless, learn what IAM features are
available to use with Amazon EMR Serverless.

IAM features you can use with EMR Serverless

IAM feature Amazon EMR Serverless support

Identity-based policies Yes

Resource-based policies No

Policy actions Yes

Policy resources Yes

Policy condition keys No

ACLs No

ABAC (tags in policies) Yes

How EMR Serverless works with IAM 230

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

Amazon EMR Amazon EMR Serverless User Guide

IAM feature Amazon EMR Serverless support

Temporary credentials Yes

Principal permissions Yes

Service roles No

Service-linked roles Yes

To get a high-level view of how EMR Serverless and other AWS services work with most IAM
features, see AWS services that work with IAM in the IAM User Guide.

Identity-based policies for EMR Serverless

Supports identity-based policies: Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Sample identity-based policies for EMR Serverless

To view examples of Amazon EMR Serverless identity-based policies, see Identity-based policy
examples for EMR Serverless.

Resource-based policies within EMR Serverless

Supports resource-based policies: No

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that

How EMR Serverless works with IAM 231

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html

Amazon EMR Amazon EMR Serverless User Guide

support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different AWS accounts, an IAM administrator in the trusted account must also grant
the principal entity (user or role) permission to access the resource. They grant permission by
attaching an identity-based policy to the entity. However, if a resource-based policy grants access
to a principal in the same account, no additional identity-based policy is required. For more
information, see Cross account resource access in IAM in the IAM User Guide.

Policy actions for EMR Serverless

Supports policy actions: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of EMR Serverless actions, see Actions, resources, and condition keys for Amazon EMR
Serverless in the Service Authorization Reference.

Policy actions in EMR Serverless use the following prefix before the action.

emr-serverless

To specify multiple actions in a single statement, separate them with commas.

How EMR Serverless works with IAM 232

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonemrserverless.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonemrserverless.html

Amazon EMR Amazon EMR Serverless User Guide

"Action": [
 "emr-serverless:action1",
 "emr-serverless:action2"
]

To view examples of Amazon EMR Serverless identity-based policies, see Identity-based policy
examples for EMR Serverless.

Policy resources for EMR Serverless

Supports policy resources: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

To see a list of Amazon EMR Serverless resource types and their ARNs, see Resources defined by
Amazon EMR Serverless in the Service Authorization Reference. To learn which actions you can
specify the ARN of each resource, see Actions, resources, and condition keys for Amazon EMR
Serverless.

To view examples of Amazon EMR Serverless identity-based policies, see Identity-based policy
examples for EMR Serverless.

Policy condition keys for EMR Serverless

Supports service-specific policy condition keys No

How EMR Serverless works with IAM 233

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference-arns.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticmapreduce.html#amazonelasticmapreduce-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticmapreduce.html#amazonelasticmapreduce-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonemrserverless.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonemrserverless.html

Amazon EMR Amazon EMR Serverless User Guide

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

To see a list of Amazon EMR Serverless condition keys and to learn which actions and resources you
can use a condition key, see Actions, resources, and condition keys for Amazon EMR Serverless in
the Service Authorization Reference.

All Amazon EC2 actions support the aws:RequestedRegion and ec2:Region condition keys. For
more information, see Example: Restricting access to a specific region.

Access control lists (ACLs) in EMR Serverless

Supports ACLs: No

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Attribute-based access control (ABAC) with EMR Serverless

Supports ABAC (tags in policies) Yes

How EMR Serverless works with IAM 234

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonemrserverless.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ExamplePolicies_EC2.html#iam-example-region

Amazon EMR Amazon EMR Serverless User Guide

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then
you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see Define permissions with ABAC authorization in the IAM User
Guide. To view a tutorial with steps for setting up ABAC, see Use attribute-based access control
(ABAC) in the IAM User Guide.

Using Temporary credentials with EMR Serverless

Supports temporary credentials: Yes

Some AWS services don't work when you sign in using temporary credentials. For additional
information, including which AWS services work with temporary credentials, see AWS services that
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using
any method except a user name and password. For example, when you access AWS using your
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You
also automatically create temporary credentials when you sign in to the console as a user and then
switch roles. For more information about switching roles, see Switch from a user to an IAM role
(console) in the IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use
those temporary credentials to access AWS. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

How EMR Serverless works with IAM 235

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html

Amazon EMR Amazon EMR Serverless User Guide

Cross-service principal permissions for EMR Serverless

Supports forward access sessions (FAS): Yes

When you use an IAM user or role to perform actions in AWS, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a
different service. FAS uses the permissions of the principal calling an AWS service, combined with
the requesting AWS service to make requests to downstream services. FAS requests are only made
when a service receives a request that requires interactions with other AWS services or resources to
complete. In this case, you must have permissions to perform both actions. For policy details when
making FAS requests, see Forward access sessions.

Service roles for EMR Serverless

Supports service roles No

Service-linked roles for EMR Serverless

Supports service-linked roles Yes

For details about creating or managing service-linked roles, see AWS services that work with IAM.
Find a service in the table that includes a Yes in the Service-linked role column. Choose the Yes
link to view the service-linked role documentation for that service.

Using service-linked roles for EMR Serverless

Amazon EMR Serverless uses AWS Identity and Access Management (IAM) service-linked roles. A
service-linked role is a unique type of IAM role that is linked directly to EMR Serverless. Service-
linked roles are predefined by EMR Serverless and include all the permissions that the service
requires to call other AWS services on your behalf.

A service-linked role makes setting up EMR Serverless easier because you don’t have to manually
add the necessary permissions. EMR Serverless defines the permissions of its service-linked roles,
and unless defined otherwise, only EMR Serverless can assume its roles. The defined permissions
include the trust policy and the permissions policy, and that permissions policy cannot be attached
to any other IAM entity.

Using service-linked roles 236

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role

Amazon EMR Amazon EMR Serverless User Guide

You can delete a service-linked role only after first deleting their related resources. This protects
your EMR Serverless resources because you can't inadvertently remove permission to access the
resources.

For information about other services that support service-linked roles, see AWS Services That Work
with IAM and look for the services that have Yes in the Service-linked roles column. Choose a Yes
with a link to view the service-linked role documentation for that service.

Service-linked role permissions for EMR Serverless

EMR Serverless uses the service-linked role named AWSServiceRoleForAmazonEMRServerless to
enable it to call AWS APIs on your behalf.

The AWSServiceRoleForAmazonEMRServerless service-linked role trusts the following services to
assume the role:

• ops.emr-serverless.amazonaws.com

The role permissions policy named AmazonEMRServerlessServiceRolePolicy allows EMR
Serverless to complete the following actions on the specified resources.

Note

Managed policy contents change, so the policy shown here might be out of date. View the
most up-to-date policy AmazonEMRServerlessServiceRolePolicy in the AWS Management
Console.

• Action: ec2:CreateNetworkInterface

• Action: ec2:DeleteNetworkInterface

• Action: ec2:DescribeNetworkInterfaces

• Action: ec2:DescribeSecurityGroups

• Action: ec2:DescribeSubnets

• Action: ec2:DescribeVpcs

• Action: ec2:DescribeDhcpOptions

• Action: ec2:DescribeRouteTables

• Action: cloudwatch:PutMetricData

Using service-linked roles 237

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AmazonEMRServerlessServiceRolePolicy

Amazon EMR Amazon EMR Serverless User Guide

The following is the full AmazonEMRServerlessServiceRolePolicy policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "EC2PolicyStatement",
 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkInterface",
 "ec2:DeleteNetworkInterface",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeSubnets",
 "ec2:DescribeVpcs",
 "ec2:DescribeDhcpOptions",
 "ec2:DescribeRouteTables"
],
 "Resource": "*"
 },
 {
 "Sid": "CloudWatchPolicyStatement",
 "Effect": "Allow",
 "Action": [
 "cloudwatch:PutMetricData"
],
 "Resource": [
 "*"
],
 "Condition": {
 "StringEquals": {
 "cloudwatch:namespace": [
 "AWS/EMRServerless",
 "AWS/Usage"
]
 }
 }
 }
]
}

The following trust policy is attached to this role to allow the EMR Serverless principal to assume
this role.

Using service-linked roles 238

Amazon EMR Amazon EMR Serverless User Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "ops.emr-serverless.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

You must configure permissions to allow an IAM entity (such as a user, group, or role) to create,
edit, or delete a service-linked role. For more information, see Service-linked role permissions in
the IAM User Guide.

Creating a service-linked role for EMR Serverless

You don't need to manually create a service-linked role. When you create a new EMR Serverless
application in the AWS Management Console (using EMR Studio), the AWS CLI, or the AWS API,
EMR Serverless creates the service-linked role for you. You must configure permissions to allow an
IAM entity (such as a user, group, or role) to create, edit, or delete a service-linked role.

To create the AWSServiceRoleForAmazonEMRServerless service-linked role using IAM

Add the following statement to the permissions policy for the IAM entity that needs to create the
service-linked role.

{
 "Effect": "Allow",
 "Action": [
 "iam:CreateServiceLinkedRole"
],
 "Resource": "arn:aws:iam::*:role/aws-service-role/ops.emr-serverless.amazonaws.com/
AWSServiceRoleForAmazonEMRServerless*",
 "Condition": {"StringLike": {"iam:AWSServiceName": "ops.emr-
serverless.amazonaws.com"}}
}

Using service-linked roles 239

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions

Amazon EMR Amazon EMR Serverless User Guide

If you delete this service-linked role, and then need to create it again, you can use the same process
to recreate the role in your account. When you create a new EMR Serverless application, EMR
Serverless creates the service-linked role for you again.

You can also use the IAM console to create a service-linked role with the EMR Serverless
use case. In the AWS CLI or the AWS API, create a service-linked role with the ops.emr-
serverless.amazonaws.com service name. For more information, see Creating a service-linked
role in the IAM User Guide. If you delete this service-linked role, you can use this same process to
create the role again.

Editing a service-linked role for EMR Serverless

EMR Serverless does not allow you to edit the AWSServiceRoleForAmazonEMRServerless service-
linked role because various entities might reference the role. You can't edit the AWS-owned IAM
policy that the EMR Serverless service-linked role uses, as it contains all the necessary permissions
EMR Serverless needs. However, you can edit the description of the role using IAM.

To edit the description of the AWSServiceRoleForAmazonEMRServerless service-linked role
using IAM

Add the following statement to the permissions policy for the IAM entity that needs to edit the
description of a service-linked role.

{
 "Effect": "Allow",
 "Action": [
 "iam: UpdateRoleDescription"
],
 "Resource": "arn:aws:iam::*:role/aws-service-role/ops.emr-serverless.amazonaws.com/
AWSServiceRoleForAmazonEMRServerless*",
 "Condition": {"StringLike": {"iam:AWSServiceName": "ops.emr-
serverless.amazonaws.com"}}
}

For more information, see Editing a service-linked role in the IAM User Guide.

Deleting a service-linked role for EMR Serverless

If you no longer need to use a feature or service that requires a service-linked role, we recommend
that you delete that role. This is so you don’t have an unused entity that is not actively monitored

Using service-linked roles 240

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#create-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#create-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role

Amazon EMR Amazon EMR Serverless User Guide

or maintained. However, you must delete all EMR Serverless applications in all Regions before you
can delete the service-linked role.

Note

If the EMR Serverless service is using the role when you try to delete the resources
associated with the role, then the deletion might fail. If that happens, wait for a few
minutes and try the operation again.

To delete the AWSServiceRoleForAmazonEMRServerless service-linked role using IAM

Add the following statement to the permissions policy for the IAM entity that needs to delete a
service-linked role.

{
 "Effect": "Allow",
 "Action": [
 "iam:DeleteServiceLinkedRole",
 "iam:GetServiceLinkedRoleDeletionStatus"
],
 "Resource": "arn:aws:iam::*:role/aws-service-role/ops.emr-serverless.amazonaws.com/
AWSServiceRoleForAmazonEMRServerless*",
 "Condition": {"StringLike": {"iam:AWSServiceName": "ops.emr-
serverless.amazonaws.com"}}
}

To manually delete the service-linked role using IAM

Use the IAM console, the AWS CLI, or the AWS API to delete the
AWSServiceRoleForAmazonEMRServerless service-linked role. For more information, see Deleting a
service-linked role in the IAM User Guide.

Supported Regions for EMR Serverless service-linked roles

EMR Serverless supports using service-linked roles in all of the Regions where the service is
available. For more information, see AWS Regions and endpoints.

Using service-linked roles 241

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.aws.amazon.com/general/latest/gr/rande.html

Amazon EMR Amazon EMR Serverless User Guide

Job runtime roles for Amazon EMR Serverless

You can specify IAM role permissions that a EMR Serverless job run can assume when calling other
services on your behalf. This includes access to Amazon S3 for any data sources, targets, as well
as other AWS resources like Amazon Redshift clusters and DynamoDB tables. To learn more about
how to create a role, see Create a job runtime role.

Sample runtime policies

You can attach a runtime policy, such as the following, to a job runtime role. The following job
runtime policy allows:

• Read access to Amazon S3 buckets with EMR samples.

• Full access to S3 buckets.

• Create and read access to AWS Glue Data Catalog.

To add access to other AWS resources like DynamoDB, you’ll need to include permissions for them
in the policy when creating the runtime role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadAccessForEMRSamples",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::*.elasticmapreduce",
 "arn:aws:s3:::*.elasticmapreduce/*"
]
 },
 {
 "Sid": "FullAccessToS3Bucket",
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:GetObject",

Job runtime roles for Amazon EMR Serverless 242

Amazon EMR Amazon EMR Serverless User Guide

 "s3:ListBucket",
 "s3:DeleteObject"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket",
 "arn:aws:s3:::amzn-s3-demo-bucket/*"
]
 },
 {
 "Sid": "GlueCreateAndReadDataCatalog",
 "Effect": "Allow",
 "Action": [
 "glue:GetDatabase",
 "glue:CreateDatabase",
 "glue:GetDataBases",
 "glue:CreateTable",
 "glue:GetTable",
 "glue:UpdateTable",
 "glue:DeleteTable",
 "glue:GetTables",
 "glue:GetPartition",
 "glue:GetPartitions",
 "glue:CreatePartition",
 "glue:BatchCreatePartition",
 "glue:GetUserDefinedFunctions"
],
 "Resource": ["*"]
 }
]
}

Pass role privileges

You can attach IAM permissions policies to the a user’s role to allow the user to pass only approved
roles. This allows administrators to control which users can pass specific job runtime roles to EMR
Serverless jobs. To learn more about setting permissions, see Granting a user permissions to pass a
role to an AWS service.

The following is an example policy that allows passing a job runtime role to the EMR Serverless
service principal.

{
 "Effect": "Allow",

Job runtime roles for Amazon EMR Serverless 243

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html

Amazon EMR Amazon EMR Serverless User Guide

 "Action": "iam:PassRole",
 "Resource": "arn:aws:iam::1234567890:role/JobRuntimeRoleForEMRServerless",
 "Condition": {
 "StringLike": {
 "iam:PassedToService": "emr-serverless.amazonaws.com"
 }
 }
}

Managed permission policies associated with runtime roles

When you submit job runs to EMR serverless through the EMR Studio console, there is a step where
you choose a Runtime role to associate with your application. There are underlying managed
policies associated with each selection in the console that are important to be aware of. The three
selections are the following:

1. All buckets – When you choose this, it specifies the AmazonS3FullAccess AWS managed policy,
which provides full access to all buckets.

2. Specific buckets – This specifies the Amazon resource name (ARN) identifier of each bucket that
you choose. There isn't an underlying managed policy included.

3. None – No managed-policy permissions are included.

We recommend adding specific buckets. If you choose all buckets, keep in mind that it sets full
access for all buckets.

User access policy examples for EMR Serverless

You can set up fine-grained policies for your users depending on the actions you want each user to
perform when interacting with EMR Serverless applications. The following policies are examples
that might help in setting up the right permissions for your users. This section focuses only on
EMR Serverless policies. For samples of EMR Studio user policies, see Configure EMR Studio user
permissions. For information about how to attach policies to IAM users (principals), see Managing
IAM policies in the IAM User Guide.

Power user policy

To grant all the required actions for EMR Serverless, create and attach a
AmazonEMRServerlessFullAccess policy to the required IAM user, role, or group.

User access policies 244

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonS3FullAccess.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-studio-user-permissions.html#emr-studio-advanced-permissions-policy
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-studio-user-permissions.html#emr-studio-advanced-permissions-policy
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-using.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-using.html

Amazon EMR Amazon EMR Serverless User Guide

The following is a sample policy that allows power users to create and modify EMR Serverless
applications, as well as perform other actions like submitting and debugging jobs. It reveals all the
actions that EMR Serverless requires for other services.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "EMRServerlessActions",
 "Effect": "Allow",
 "Action": [
 "emr-serverless:CreateApplication",
 "emr-serverless:UpdateApplication",
 "emr-serverless:DeleteApplication",
 "emr-serverless:ListApplications",
 "emr-serverless:GetApplication",
 "emr-serverless:StartApplication",
 "emr-serverless:StopApplication",
 "emr-serverless:StartJobRun",
 "emr-serverless:CancelJobRun",
 "emr-serverless:ListJobRuns",
 "emr-serverless:GetJobRun"
],
 "Resource": "*"
 }
]
}

When you enable network connectivity to your VPC, EMR Serverless applications create Amazon
EC2 elastic network interfaces (ENIs) to communicate with VPC resources. The following policy
ensures that any new EC2 ENIs are only created in the context of EMR Serverless applications.

Note

We strongly recommend setting this policy to ensure that users cannot create EC2 ENIs
except in the context of launching EMR Serverless applications.

{
 "Version": "2012-10-17",
 "Statement": [

User access policies 245

Amazon EMR Amazon EMR Serverless User Guide

 {
 "Sid": "AllowEC2ENICreationWithEMRTags",
 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkInterface"
],
 "Resource": [
 "arn:aws:ec2:*:*:network-interface/*"
],
 "Condition": {
 "StringEquals": {
 "aws:CalledViaLast": "ops.emr-serverless.amazonaws.com"
 }
 }
 }
}

If you want to restrict EMR Serverless access to certain subnets, you can tag each subnet with a tag
condition. This IAM policy ensures that EMR Serverless applications can only create EC2 ENIs within
allowed subnets.

{
 "Sid": "AllowEC2ENICreationInSubnetAndSecurityGroupWithEMRTags",
 "Effect": "Allow",
 "Action": [
 "ec2:CreateNetworkInterface"
],
 "Resource": [
 "arn:aws:ec2:*:*:subnet/*",
 "arn:aws:ec2:*:*:security-group/*"
],
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/KEY": "VALUE"
 }
 }
}

User access policies 246

Amazon EMR Amazon EMR Serverless User Guide

Important

If you’re an Administrator or power user creating your first application, you must configure
your permission policies to allow you to create a EMR Serverless service-linked role. To
learn more, see Using service-linked roles for EMR Serverless.

The following IAM policy permits you to create a EMR Serverless service-linked role for your
account.

{
 "Sid":"AllowEMRServerlessServiceLinkedRoleCreation",
 "Effect":"Allow",
 "Action":"iam:CreateServiceLinkedRole",
 "Resource":"arn:aws:iam::account-id:role/aws-service-role/ops.emr-
serverless.amazonaws.com/AWSServiceRoleForAmazonEMRServerless"
}

Data engineer policy

This following is a sample policy that allows users read-only permissions on EMR Serverless
applications, as well as the the ability to submit and debug jobs. Keep in mind that because this
policy does not explicitly deny actions, a different policy statement may still be used to grant
access to specified actions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "EMRServerlessActions",
 "Effect": "Allow",
 "Action": [
 "emr-serverless:ListApplications",
 "emr-serverless:GetApplication",
 "emr-serverless:StartApplication",
 "emr-serverless:StartJobRun",
 "emr-serverless:CancelJobRun",
 "emr-serverless:ListJobRuns",
 "emr-serverless:GetJobRun"
],
 "Resource": "*"

User access policies 247

Amazon EMR Amazon EMR Serverless User Guide

 }
]
}

Using tags for access control

You can use tag conditions for fine-grained access control. For example, you can restrict users from
one team such that they’re only able to submit jobs to EMR Serverless applications tagged with
their team name.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "EMRServerlessActions",
 "Effect": "Allow",
 "Action": [
 "emr-serverless:ListApplications",
 "emr-serverless:GetApplication",
 "emr-serverless:StartApplication",
 "emr-serverless:StartJobRun",
 "emr-serverless:CancelJobRun",
 "emr-serverless:ListJobRuns",
 "emr-serverless:GetJobRun"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/Team": "team-name"
 }
 }
 }
]
}

Policies for tag-based access control

You can use conditions in your identity-based policy to control access to applications and job runs
based on tags.

The following examples demonstrate different scenarios and ways to use condition operators
with EMR Serverless condition keys. These IAM policy statements are intended for demonstration

Policies for tag-based access control 248

Amazon EMR Amazon EMR Serverless User Guide

purposes only and should not be used in production environments. There are multiple ways to
combine policy statements to grant and deny permissions according to your requirements. For
more information about planning and testing IAM policies, see the IAM user Guide.

Important

Explicitly denying permission for tagging actions is an important consideration. This
prevents users from tagging a resource and thereby granting themselves permissions that
you did not intend to grant. If tagging actions for a resource are not denied, a user can
modify tags and circumvent the intention of the tag-based policies. For an example of a
policy that denies tagging actions, see Deny access to add and remove tags.

The examples below demonstrate identity-based permissions policies that are used to control the
actions that are allowed with EMR Serverless applications.

Allow actions only on resources with specific tag values

In the following policy example, the StringEquals condition operator tries to match dev with
the value for the tag department. If the tag department hasn't been added to the application,
or doesn't contain the value dev, the policy doesn't apply, and the actions aren't allowed by this
policy. If no other policy statements allow the actions, the user can only work with applications
that have this tag with this value.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "emr-serverless:GetApplication"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "emr-serverless:ResourceTag/department": "dev"
 }
 }
 }
]

Policies for tag-based access control 249

https://docs.aws.amazon.com/IAM/latest/UserGuide/

Amazon EMR Amazon EMR Serverless User Guide

}

You can also specify multiple tag values using a condition operator. For example, to allow actions
on applications where the department tag contains the value dev or test, you could replace the
condition block in the earlier example with the following.

"Condition": {
 "StringEquals": {
 "emr-serverless:ResourceTag/department": ["dev", "test"]
 }
 }

Require tagging when a resource is created

In the example below, the tag needs to be applied when creating the application.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "emr-serverless:CreateApplication"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "emr-serverless:RequestTag/department": "dev"
 }
 }
 }
]
}

The following policy statement allows a user to create an application only if the application has a
department tag, which can contain any value.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

Policies for tag-based access control 250

Amazon EMR Amazon EMR Serverless User Guide

 "Action": [
 "emr-serverless:CreateApplication"
],
 "Resource": "*",
 "Condition": {
 "Null": {
 "emr-serverless:RequestTag/department": "false"
 }
 }
 }
]
}

Deny access to add and remove tags

This policy prevents a user from adding or removing tags on EMR Serverless applications with a
department tag whose value is not dev.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "emr-serverless:TagResource",
 "emr-serverless:UntagResource"
],
 "Resource": "*",
 "Condition": {
 "StringNotEquals": {
 "emr-serverless:ResourceTag/department": "dev"
 }
 }
 }
]
}

Identity-based policy examples for EMR Serverless

By default, users and roles don't have permission to create or modify Amazon EMR Serverless
resources. They also can't perform tasks by using the AWS Management Console, AWS Command
Line Interface (AWS CLI), or AWS API. To grant users permission to perform actions on the

Identity-based policies 251

Amazon EMR Amazon EMR Serverless User Guide

resources that they need, an IAM administrator can create IAM policies. The administrator can then
add the IAM policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Create IAM policies (console) in the IAM User Guide.

For details about actions and resource types defined by Amazon EMR Serverless, including the
format of the ARNs for each of the resource types, see Actions, resources, and condition keys for
Amazon EMR Serverless in the Service Authorization Reference.

Topics

• Policy best practices

• Allow users to view their own permissions

Policy best practices

Note

EMR Serverless doesn't support managed policies, so the first practice listed below doesn't
apply.

Identity-based policies determine whether someone can create, access, or delete Amazon EMR
Serverless resources in your account. These actions can incur costs for your AWS account. When you
create or edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

Identity-based policies 252

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticmapreduce.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonelasticmapreduce.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html

Amazon EMR Amazon EMR Serverless User Guide

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see Validate policies with IAM Access Analyzer in the
IAM User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users or
a root user in your AWS account, turn on MFA for additional security. To require MFA when API
operations are called, add MFA conditions to your policies. For more information, see Secure API
access with MFA in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]

Identity-based policies 253

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon EMR Amazon EMR Serverless User Guide

 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Amazon EMR Serverless updates to AWS managed policies

View details about updates to AWS managed policies for Amazon EMR Serverless since this service
began tracking these changes. For automatic alerts about changes to this page, subscribe to the
RSS feed on the Amazon EMR Serverless Document history page.

Change Description Date

AmazonEMRServerles
sServiceRolePolicy – Update
to an existing policy

Amazon EMR Serverles
s added the new Sid
CloudWatchPolicySt
atement and EC2Policy
Statement to the
AmazonEMRServerles
sServiceRolePolicy policy.

January 25, 2024

Policy updates 254

https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/doc-history.html
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/using-service-linked-roles.html#slr-permissions
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/using-service-linked-roles.html#slr-permissions

Amazon EMR Amazon EMR Serverless User Guide

Change Description Date

AmazonEMRServerles
sServiceRolePolicy – Update
to an existing policy

Amazon EMR Serverless
added new permissions to
allow Amazon EMR Serverles
s to publish aggregated
account metrics for vCPU
usage in the "AWS/Usage"
namespace.

April 20, 2023

Amazon EMR Serverless
started tracking changes

Amazon EMR Serverless
started tracking changes for
its AWS managed policies.

April 20, 2023

Troubleshooting Amazon EMR Serverless identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with Amazon EMR Serverless and IAM.

Topics

• I am not authorized to perform an action in Amazon EMR Serverless

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my Amazon EMR Serverless
resources

I am not authorized to perform an action in Amazon EMR Serverless

If the AWS Management Console tells you that you're not authorized to perform an action, then
you must contact your administrator for assistance. Your administrator is the person that provided
you with your user name and password.

The following example error occurs when the mateojackson user tries to use the console to view
details about a fictional my-example-widget resource but does not have the fictional emr-
serverless:GetWidget permissions.

Troubleshooting 255

Amazon EMR Amazon EMR Serverless User Guide

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform: emr-
serverless:GetWidget on resource: my-example-widget

In this case, Mateo asks his administrator to update his policies to allow him to access the my-
example-widget resource using the emr-serverless:GetWidget action.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to Amazon EMR Serverless.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in Amazon EMR Serverless. However, the action requires the service to have
permissions that are granted by a service role. Mary does not have permissions to pass the role to
the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my Amazon EMR
Serverless resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether Amazon EMR Serverless supports these features, see Identity and Access
Management (IAM) in Amazon EMR Serverless.

Troubleshooting 256

Amazon EMR Amazon EMR Serverless User Guide

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

Using EMR Serverless with AWS Lake Formation for fine-
grained access control

Overview

With Amazon EMR releases 7.2.0 and higher, you can leverage AWS Lake Formation to apply fine-
grained access controls on Data Catalog tables that are backed by S3. This capability lets you
configure table, row, column, and cell level access controls for read queries within your Amazon
EMR Serverless Spark jobs. To configure fine-grained access control for Apache Spark batch jobs
and interactive sessions, use EMR Studio. See the following sections to learn more about Lake
Formation and how to use it with EMR Serverless.

Using Amazon EMR Serverless with AWS Lake Formation incurs additional charges. For more
information, see Amazon EMR pricing.

How EMR Serverless works with AWS Lake Formation

Using EMR Serverless with Lake Formation lets you enforce a layer of permissions on each
Spark job to apply Lake Formation permissions control when EMR Serverless executes jobs. EMR
Serverless uses Spark resource profiles to create two profiles to effectively execute jobs. The user
profile executes user-supplied code, while the system profile enforces Lake Formation policies. For
more information, see What is AWS Lake Formation and Considerations and limitations.

When you use pre-initialized capacity with Lake Formation, we recommend that you have a
minimum of two Spark drivers. Each Lake Formation-enabled job utilizes two Spark drivers, one
for the user profile and one for the system profile. For the best performance, you should use
double the number of drivers for Lake Formation-enabled jobs compared to if you don't use Lake
Formation.

Lake Formation for FGAC 257

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://aws.amazon.com/emr/pricing/
https://spark.apache.org/docs/latest/api/java/org/apache/spark/resource/ResourceProfile.html
https://docs.aws.amazon.com/lake-formation/latest/dg/what-is-lake-formation.html
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/emr-serverless-lf-enable-considerations.html

Amazon EMR Amazon EMR Serverless User Guide

When you run Spark jobs on EMR Serverless, you must also consider the impact of
dynamic allocation on resource management and cluster performance. The configuration
spark.dynamicAllocation.maxExecutors of the maximum number of executors per resource
profile applies to both user and system executors. If you configure that number to be equal to
the maximum allowed number of executors, your job run might get stuck because of one type of
executor that uses all available resources, which prevents the other executor when you run jobs
jobs.

So you don't run out of resources, EMR Serverless sets the default maximum number of executors
per resource profile to 90% of the spark.dynamicAllocation.maxExecutors value. You can
override this configuration when you specify spark.dynamicAllocation.maxExecutorsRatio
with a value between 0 and 1. Additionally, you can also configure the following properties to
optimize resource allocation and overall performance:

• spark.dynamicAllocation.cachedExecutorIdleTimeout

• spark.dynamicAllocation.shuffleTracking.timeout

• spark.cleaner.periodicGC.interval

The following is a high-level overview of how EMR Serverless gets access to data protected by Lake
Formation security policies.

How it works 258

Amazon EMR Amazon EMR Serverless User Guide

1. A user submits Spark job to an AWS Lake Formation-enabled EMR Serverless application.

2. EMR Serverless sends the job to a user driver and runs the job in the user profile. The user
driver runs a lean version of Spark that has no ability to launch tasks, request executors, access
S3 or the Glue Catalog. It builds a job plan.

3. EMR Serverless sets up a second driver called the system driver and runs it in the system
profile (with a privileged identity). EMR Serverless sets up an encrypted TLS channel between
the two drivers for communication. The user driver uses the channel to send the job plans to
the system driver. The system driver does not run user-submitted code. It runs full Spark and
communicates with S3, and the Data Catalog for data access. It request executors and compiles
the Job Plan into a sequence of execution stages.

4. EMR Serverless then runs the stages on executors with the user driver or system driver. User
code in any stage is run exclusively on user profile executors.

How it works 259

Amazon EMR Amazon EMR Serverless User Guide

5. Stages that read data from Data Catalog tables protected by AWS Lake Formation or those
that apply security filters are delegated to system executors.

Enabling Lake Formation in Amazon EMR

To enable Lake Formation, you must set spark.emr-serverless.lakeformation.enabled
to true under spark-defaults classification for the runtime-configuration parameter when
creating an EMR Serverless application.

aws emr-serverless create-application \
 --release-label emr-7.6.0 \
 --runtime-configuration '{
 "classification": "spark-defaults",
 "properties": {
 "spark.emr-serverless.lakeformation.enabled": "true"
 }
 }' \
 --type "SPARK"

You can also enable Lake Formation when you create a new application in EMR Studio. Choose Use
Lake Formation for fine-grained access control, available under Additional configurations.

Inter-worker encryption is enabled by default when you use Lake Formation with EMR Serverless,
so you don't have to explicitly enable inter-worker encryption again.

Enabling Lake Formation for Spark jobs

To enable Lake Formation for individual Spark jobs, set spark.emr-
serverless.lakeformation.enabled to true when using spark-submit.

--conf spark.emr-serverless.lakeformation.enabled=true

Job runtime role IAM permissions

Lake Formation permissions control access to AWS Glue Data Catalog resources, Amazon S3
locations, and the underlying data at those locations. IAM permissions control access to the
Lake Formation and AWS Glue APIs and resources. Although you might have the Lake Formation
permission to access a table in the Data Catalog (SELECT), your operation fails if you don’t have the
IAM permission on the glue:Get* API operation.

Enable Lake Formation 260

https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/getting-started.html#gs-application-console
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/getting-started.html#gs-application-console
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/interworker-encryption.html

Amazon EMR Amazon EMR Serverless User Guide

The following is an example policy of how to provide IAM permissions to access a script in S3,
uploading logs to S3, AWS Glue API permissions, and permission to access Lake Formation.

{
"Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ScriptAccess",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::*.amzn-s3-demo-bucket/scripts",
 "arn:aws:s3:::*.amzn-s3-demo-bucket/*"]
 },
 {
 "Sid": "LoggingAccess",
 "Effect": "Allow",
 "Action": [
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::amzn-s3-demo-bucket/logs/*"
]
 },
 {
 "Sid": "GlueCatalogAccess",
 "Effect": "Allow",
 "Action": [
 "glue:Get*",
 "glue:Create*",
 "glue:Update*"
],
 "Resource": ["*"]
 },
 {
 "Sid": "LakeFormationAccess",
 "Effect": "Allow",
 "Action": [
 "lakeformation:GetDataAccess"
],

Enable runtime permissions 261

Amazon EMR Amazon EMR Serverless User Guide

 "Resource": ["*"]
 }
]
}

Setting up Lake Formation permissions for job runtime role

First, register the location of your Hive table with Lake Formation. Then create permissions for your
job runtime role on your desired table. For more details about Lake Formation, see What is AWS
Lake Formation? in the AWS Lake Formation Developer Guide.

After you set up the Lake Formation permissions, you can submit Spark jobs on Amazon EMR
Serverless. For more information about Spark jobs, see Spark examples.

Submitting a job run

After you finish setting up the Lake Formation grants, you can submit Spark jobs on EMR
Serverless. To run Iceberg jobs, you must provide the following spark-submit properties.

--conf spark.sql.catalog.spark_catalog=org.apache.iceberg.spark.SparkSessionCatalog
--conf spark.sql.catalog.spark_catalog.warehouse=<S3_DATA_LOCATION>
--conf spark.sql.catalog.spark_catalog.glue.account-id=<ACCOUNT_ID>
--conf spark.sql.catalog.spark_catalog.client.region=<REGION>
--conf spark.sql.catalog.spark_catalog.glue.endpoint=https://
glue.<REGION>.amazonaws.com

Open-table format support

Amazon EMR release 7.2.0 includes support for fine-grained access control based on Lake
Formation. EMR Serverless supports Hive and Iceberg table types. The following table describes all
of the supported operations.

Operations Hive Iceberg

DDL commands With IAM role permissions
only

With IAM role permissions
only

Incremental queries Not applicable Fully supported

Set up runtime permissions 262

https://docs.aws.amazon.com/lake-formation/latest/dg/what-is-lake-formation.html
https://docs.aws.amazon.com/lake-formation/latest/dg/what-is-lake-formation.html
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/jobs-spark.html#spark-examples
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/jobs-spark.html#spark-examples
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/jobs-spark.html#spark-examples

Amazon EMR Amazon EMR Serverless User Guide

Operations Hive Iceberg

Time travel queries Not applicable to this table
format

Fully supported

Metadata tables Not applicable to this table
format

Supported, but certain tables
are hidden. See considera
tions and limitations for more
information.

DML INSERT With IAM permissions only With IAM permissions only

DML UPDATE Not applicable to this table
format

With IAM permissions only

DML DELETE Not applicable to this table
format

With IAM permissions only

Read operations Fully supported Fully supported

Stored procedures Not applicable Supported with the exception
s of register_table and
migrate. See considera
tions and limitations for more
information.

Debugging jobs

Note

With this feature, you can view stdout and stderr logs for the system profile workers that
may contain sensitive, unfiltered information. The following permission should be used
only for accessing non-production data. For applications created for use with production
jobs, we strongly recommend that you add these permissions only to administrators or
users with elevated data access.

Debugging jobs 263

https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/emr-serverless-lf-enable-considerations.html
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/emr-serverless-lf-enable-considerations.html
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/emr-serverless-lf-enable-considerations.html
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/emr-serverless-lf-enable-considerations.html

Amazon EMR Amazon EMR Serverless User Guide

With EMR-7.3.0 and later, EMR Serverless is enabling self-debugging capability for Lake
Formation-enabled batch jobs. To do so, use the new parameter accessSystemProfileLogs in the
GetDashboardForJobRun API. If accessSystemProfileLogs is set to true, you can view the stdout
and stderr logs for the system profile workers, which can be used for debugging a Lake Formation-
enabled EMR Serverless batch job.

aws emr-serverless get-dashboard-for-job-run \
 --application-id application-id
 --job-run-id job-run-id
 --access-system-profile-logs

Required permissions

The principal who wants to debug Lake Formation-enabled batch jobs using
GetDashboardForJobRun must have the following additional permissions:

{
 "Sid": "AccessSystemProfileLogs",
 "Effect": "Allow",
 "Action": [
 "emr-serverless:GetDashboardForJobRun",
 "emr-serverless:AccessSystemProfileLogs",
 "glue:GetDatabases",
 "glue:SearchTables"
],
 "Resource": [
 "arn:aws:emr-serverless:region:account-id:/applications/applicationId/
jobruns/jobid",
 "arn:aws:glue:region:account-id:catalog",
 "arn:aws:glue:region:account-id:database/*",
 "arn:aws:glue:region:account-id:table/*/*"
]
}

Considerations

System profile logs for debugging are visible for jobs that access databases or tables in Lake
Formation within the same account as the job. They are not visible in the following scenarios:

• If the data catalog managed using Lake Formation permissions has cross-account databases and
tables

Debugging jobs 264

https://docs.aws.amazon.com/emr-serverless/latest/APIReference/API_GetDashboardForJobRun.html

Amazon EMR Amazon EMR Serverless User Guide

• If the data catalog managed using Lake Formation permissions has resource links

Considerations and limitations

Consider the following considerations and limitations when you use Lake Formation with EMR
Serverless.

Note

When you enable Lake Formation for a Spark job on EMR Serverless, the job launches a
system driver and a user driver. If you specified pre-initialized capacity at launch, the drivers
provision from the pre-initialized capacity, and the number of system drivers is equal to the
number of user drivers that you specify. If you choose On Demand capacity, EMR Serverless
launches a system driver in addition to a user driver. To estimate the costs associated with
your EMR Serverless with Lake Formation job, use the AWS Pricing Calculator.

Amazon EMR Serverless with Lake Formation is available in all supported EMR Serverless Regions
except AWS GovCloud (US-East) and AWS GovCloud (US-West).

• Amazon EMR Serverless supports fine-grained access control via Lake Formation only for Apache
Hive and Apache Iceberg tables. Apache Hive formats include Parquet, ORC, and xSV.

• Lake Formation-enabled applications don’t support usage of customized EMR Serverless images.

• You can't turn off DynamicResourceAllocation for Lake Formation jobs.

• You can only use Lake Formation with Spark jobs.

• EMR Serverless with Lake Formation only supports a single Spark session throughout a job.

• EMR Serverless with Lake Formation only supports cross-account table queries shared through
resource links.

• The following aren't supported:

• Resilient distributed datasets (RDD)

• Spark streaming

• Write with Lake Formation granted permissions

• Access control for nested columns

• EMR Serverless blocks functionalities that might undermine the complete isolation of system
driver, including the following:

Considerations 265

https://calculator.aws/#/addService/EMR
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/considerations.html
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/application-custom-image.html

Amazon EMR Amazon EMR Serverless User Guide

• UDTs, HiveUDFs, and any user-defined function that involves custom classes

• Custom data sources

• Supply of additional jars for Spark extension, connector, or metastore

• ANALYZE TABLE command

• To enforce access controls, EXPLAIN PLAN and DDL operations such as DESCRIBE TABLE don't
expose restricted information.

• EMR Serverless restricts access to system driver Spark logs on Lake Formation-enabled
applications. Since the system driver runs with more access, events and logs that the system
driver generates can include sensitive information. To prevent unauthorized users or code
from accessing this sensitive data, EMR Serverless disabled access to system driver logs. For
troubleshooting, contact AWS support.

• If you registered a table location with Lake Formation, the data access path goes through the
Lake Formation stored credentials regardless of the IAM permission for the EMR Serverless job
runtime role. If you misconfigure the role registered with table location, jobs submitted that use
the role with S3 IAM permission to the table location will fail.

• Writing to a Lake Formation table uses IAM permission rather than Lake Formation granted
permissions. If your job runtime role has the necessary S3 permissions, you can use it to run write
operations.

The following are considerations and limitations when using Apache Iceberg:

• You can only use Apache Iceberg with session catalog and not arbitrarily named catalogs.

• Iceberg tables that are registered in Lake Formation only support the metadata tables history,
metadata_log_entries, snapshots, files, manifests, and refs. Amazon EMR hides
the columns that might have sensitive data, such as partitions, path, and summaries. This
limitation doesn't apply to Iceberg tables that aren't registered in Lake Formation.

• Tables that you don't register in Lake Formation support all Iceberg stored procedures. The
register_table and migrate procedures aren't supported for any tables.

• We recommend that you use Iceberg DataFrameWriterV2 instead of V1.

Troubleshooting

See the following sections for troubleshooting solutions.

Troubleshooting 266

Amazon EMR Amazon EMR Serverless User Guide

Logging

EMR Serverless uses Spark resources profiles to split job execution. EMR Serverless uses the user
profile to run the code you supplied, while the system profile enforces Lake Formation policies. You
can access the logs for the tasks ran as the user profile.

For more information about debugging Lake Formation-enabled jobs, see Debugging jobs.

Live UI and Spark History Server

The Live UI and the Spark History Server have all Spark events generated from the user profile and
redacted events generated from the system driver.

You can see all of the tasks from both the user and system drivers in the Executors tab. However,
log links are available only for the user profile. Also, some information is redacted from Live UI,
such as the number of output records.

Job failed with insufficient Lake Formation permissions

Make sure that your job runtime role has the permissions to run SELECT and DESCRIBE on the table
that you are accessing.

Job with RDD execution failed

EMR Serverless currently doesn't support resilient distributed dataset (RDD) operations on Lake
Formation-enabled jobs.

Unable to access data files in Amazon S3

Make sure you have registered the location of the data lake in Lake Formation.

Security validation exception

EMR Serverless detected a security validation error. Contact AWS support for assistance.

Sharing AWS Glue Data Catalog and tables across accounts

You can share databases and tables across accounts and still use Lake Formation. For more
information, see Cross-account data sharing in Lake Formation and How do I share AWS Glue Data
Catalog and tables cross-account using AWS Lake Formation?.

Troubleshooting 267

emr-serverless-lf-enable-debugging.html
https://docs.aws.amazon.com/lake-formation/latest/dg/cross-account-permissions.html
https://repost.aws/knowledge-center/glue-lake-formation-cross-account
https://repost.aws/knowledge-center/glue-lake-formation-cross-account

Amazon EMR Amazon EMR Serverless User Guide

Inter-worker encryption

With Amazon EMR versions 6.15.0 and higher, you can enable mutual-TLS encrypted
communication between workers in your Spark job runs. When enabled, EMR Serverless
automatically generates and distributes a unique certificate for each worker provisioned under your
job runs. When these workers communicate to exchange control messages or transfer shuffle data,
they establish a mutual TLS connection and use the configured certificates to verify the identity
of each other. If a worker is unable to verify another certificate, the TLS handshake fails, and EMR
Serverless aborts the connection between them.

If you're using Lake Formation with EMR Serverless, mutual-TLS encryption is enabled by default.

Enabling mutual-TLS encryption on EMR Serverless

To enable mutual TLS encryption on your spark application, set
spark.ssl.internode.enabled to true when creating EMR Serverless application. If you're
using the AWS console to create an EMR Serverless application, choose Use custom settings, then
expand Application configuration, and enter your runtimeConfiguration.

aws emr-serverless create-application \
--release-label emr-6.15.0 \
--runtime-configuration '{
 "classification": "spark-defaults",
 "properties": {"spark.ssl.internode.enabled": "true"}
}' \
--type "SPARK"

If you want to enable mutual TLS encryption for individual spark job runs, set
spark.ssl.internode.enabled to true when using spark-submit.

--conf spark.ssl.internode.enabled=true

Secrets Manager for data protection with EMR Serverless

AWS Secrets Manager is a secret storage service that you can use to protect database credentials,
API keys, and other secret information. Then in your code, you can replace hardcoded credentials
with an API call to Secrets Manager. This helps ensure that the secret can't be compromised by
someone examining your code, because the secret isn't there. For an overview, see the AWS Secrets
Manager User Guide.

Inter-worker encryption 268

https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/getting-started.html#gs-cli
https://docs.aws.amazon.com/secretsmanager/latest/userguide
https://docs.aws.amazon.com/secretsmanager/latest/userguide

Amazon EMR Amazon EMR Serverless User Guide

Secrets Manager encrypts secrets using AWS Key Management Service keys. For more information,
see Secret encryption and decryption in the AWS Secrets Manager User Guide.

You can configure Secrets Manager to automatically rotate secrets for you according to a schedule
that you specify. This enables you to replace long-term secrets with short-term ones, which helps
to significantly reduce the risk of compromise. For more information, see Rotate AWS Secrets
Manager secrets in the AWS Secrets Manager User Guide.

Amazon EMR Serverless integrates with AWS Secrets Manager so that you can store your data in
Secrets Manager and use the secret ID in your configurations.

How EMR Serverless uses secrets

When you store your data in Secrets Manager and use the secret ID in your configurations for EMR
Serverless, you don't pass sensitive configuration data to EMR Serverless in plain text and expose
it to external APIs. If you indicate that a key-value pair contains a secret ID for a secret that you
stored in Secrets Manager, EMR Serverless retrieves the secret when it sends configuration data to
workers for running jobs.

To indicate that a key-value pair for a configuration contains a reference to a secret stored
in Secrets Manager, add the EMR.secret@ annotation to the configuration value. For any
configuration property with secret Id annotation, EMR Serverless calls Secrets Manager and
resolves the secret at the time of job execution.

How to create a secret

To create a secret, follow the steps in Create an AWS Secrets Manager secret in the AWS Secrets
Manager User Guide. In Step 3, choose the Plaintext field to enter your sensitive value.

Provide a secret in a configuration classification

The following examples show how to provide a secret in a configuration classification at
StartJobRun. If you want to configure classifications for Secrets Manager at the application level,
see Default application configuration for EMR Serverless.

In the examples, replace SecretName with the name of the secret to retrieve. Include the hyphen,
followed by the six characters that Secrets Manager adds to the end of the secret ARN. For more
information, see How to create a secret.

In this section

How secrets work 269

https://docs.aws.amazon.com/secretsmanager/latest/userguide/security-encryption.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotating-secrets.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotating-secrets.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/create_secret.html

Amazon EMR Amazon EMR Serverless User Guide

• Specify secret references - Spark

• Specify secret references - Hive

Specify secret references - Spark

Example – Specify secret references in the external Hive metastore configuration for Spark

aws emr-serverless start-job-run \
 --application-id "application-id" \
 --execution-role-arn "job-role-arn" \
 --job-driver '{
 "sparkSubmit": {
 "entryPoint": "s3://amzn-s3-demo-bucket/scripts/spark-jdbc.py",
 "sparkSubmitParameters": "--jars s3://amzn-s3-demo-bucket/mariadb-
connector-java.jar
 --conf
 spark.hadoop.javax.jdo.option.ConnectionDriverName=org.mariadb.jdbc.Driver
 --conf spark.hadoop.javax.jdo.option.ConnectionUserName=connection-user-
name
 --conf
 spark.hadoop.javax.jdo.option.ConnectionPassword=EMR.secret@SecretName
 --conf spark.hadoop.javax.jdo.option.ConnectionURL=jdbc:mysql://db-host:db-
port/db-name
 --conf spark.driver.cores=2
 --conf spark.executor.memory=10G
 --conf spark.driver.memory=6G
 --conf spark.executor.cores=4"
 }
 }' \
 --configuration-overrides '{
 "monitoringConfiguration": {
 "s3MonitoringConfiguration": {
 "logUri": "s3://amzn-s3-demo-bucket/spark/logs/"
 }
 }
}'

Example – Specify secret references for the external Hive metastore configuration in the
spark-defaults classification

{

Specify secret references 270

Amazon EMR Amazon EMR Serverless User Guide

 "classification": "spark-defaults",
 "properties": {

 "spark.hadoop.javax.jdo.option.ConnectionDriverName":"org.mariadb.jdbc.Driver"
 "spark.hadoop.javax.jdo.option.ConnectionURL":"jdbc:mysql://db-host:db-
port/db-name"
 "spark.hadoop.javax.jdo.option.ConnectionUserName":"connection-user-name"
 "spark.hadoop.javax.jdo.option.ConnectionPassword":
 "EMR.secret@SecretName",
 }
 }

Specify secret references - Hive

Example – Specify secret references in the external Hive metastore configuration for Hive

aws emr-serverless start-job-run \
 --application-id "application-id" \
 --execution-role-arn "job-role-arn" \
 --job-driver '{
 "hive": {
 "query": "s3://amzn-s3-demo-bucket/emr-serverless-hive/query/hive-query.ql",
 "parameters": "--hiveconf hive.exec.scratchdir=s3://amzn-s3-demo-bucket/emr-
serverless-hive/hive/scratch
 --hiveconf hive.metastore.warehouse.dir=s3://amzn-s3-demo-bucket/
emr-serverless-hive/hive/warehouse
 --hiveconf javax.jdo.option.ConnectionUserName=username
 --hiveconf
 javax.jdo.option.ConnectionPassword=EMR.secret@SecretName
 --hiveconf
 hive.metastore.client.factory.class=org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClientFactory
 --hiveconf
 javax.jdo.option.ConnectionDriverName=org.mariadb.jdbc.Driver
 --hiveconf javax.jdo.option.ConnectionURL=jdbc:mysql://db-host:db-
port/db-name"
 }
 }' \
 --configuration-overrides '{
 "monitoringConfiguration": {
 "s3MonitoringConfiguration": {
 "logUri": "s3://amzn-s3-demo-bucket"
 }
 }

Specify secret references 271

Amazon EMR Amazon EMR Serverless User Guide

}'

Example – Specify secret references for the external Hive metastore configuration in the hive-
site classification

{
 "classification": "hive-site",
 "properties": {
 "hive.metastore.client.factory.class":
 "org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClientFactory",
 "javax.jdo.option.ConnectionDriverName": "org.mariadb.jdbc.Driver",
 "javax.jdo.option.ConnectionURL": "jdbc:mysql://db-host:db-port/db-name",
 "javax.jdo.option.ConnectionUserName": "username",
 "javax.jdo.option.ConnectionPassword": "EMR.secret@SecretName"
 }
}

Grant access for EMR Serverless to retrieve the secret

To allow EMR Serverless to retrieve the secret value from Secrets Manager, add the following
policy statement to your secret when you create it. You must create your secret with the customer-
managed KMS key for EMR Serverless to read the secret value. For more information, see
Permissions for the KMS key in the AWS Secrets Manager User Guide.

In the following policy, replace applicationId with the ID for your application.

Resource policy for the secret

You must include the following permissions in the resource policy for the secret in AWS Secrets
Manager to allow EMR Serverless to retrieve secret values. To ensure that only a specific
application can retrieve this secret, you can optionally specify the EMR Serverless application ID as
a condition in the policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue",

Grant access to the secret 272

https://docs.aws.amazon.com/secretsmanager/latest/userguide/security-encryption.html#security-encryption-authz

Amazon EMR Amazon EMR Serverless User Guide

 "secretsmanager:DescribeSecret"
],
 "Principal": {
 "Service": [
 "emr-serverless.amazonaws.com"
]
 },
 "Resource": [
 "*"
],
 "Condition": {
 "StringEquals": {
 "aws:SourceArn": "arn:aws:emr-serverless:AWS Region:aws_account_id:/
applications/applicationId"
 }
 }
 }
]
}

Create your secret with the following policy for the customer-managed AWS Key Management
Service (AWS KMS) key:

Policy for customer-managed AWS KMS key

{
 "Sid": "Allow EMR Serverless to use the key for decrypting secrets",
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "emr-serverless.amazonaws.com"
]
 },
 "Action": [
 "kms:Decrypt",
 "kms:DescribeKey"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:ViaService": "secretsmanager.AWS Region.amazonaws.com"
 }
 }

Grant access to the secret 273

Amazon EMR Amazon EMR Serverless User Guide

}

Rotating the secret

Rotation is when you periodically update a secret. You can configure AWS Secrets Manager
to automatically rotate the secret for you on a schedule that you specify. This way, you can
replace long-term secrets with short-term ones. This helps to reduce the risk of compromise. EMR
Serverless retrieves the secret value from an annotated configuration when the job transitions to
a running state. If you or a process updates the secret value in Secrets Manager, you must submit a
new job so that the job can fetch the updated value.

Note

Jobs that are already in a running state can't fetch an updated secret value. This might
result in job failure.

Using Amazon S3 Access Grants with EMR Serverless

S3 Access Grants overview for EMR Serverless

With Amazon EMR releases 6.15.0 and higher, Amazon S3 Access Grants provide a scalable access
control solution that you can use to augment access to your Amazon S3 data from EMR Serverless.
If you have a complex or large permission configuration for your S3 data, you can use Access Grants
to scale S3 data permissions for users, roles, and applications.

Use S3 Access Grants to augment access to Amazon S3 data beyond the permissions granted
by the runtime role or the IAM roles that are attached to the identities with access to your EMR
Serverless application.

For more information, see Managing access with S3 Access Grants for Amazon EMR in the Amazon
EMR Management Guide and Managing access with S3 Access Grants in the Amazon Simple Storage
Service User Guide.

This section describes how to launch an EMR Serverless application that uses S3 Access Grants to
provide access to data in Amazon S3. For steps to use S3 Access Grants with other Amazon EMR
deployments, see the following documentation:

• Using S3 Access Grants with Amazon EMR

Rotate the secret 274

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-access-grants.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/access-grants.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-access-grants.html

Amazon EMR Amazon EMR Serverless User Guide

• Using S3 Access Grants with Amazon EMR on EKS

Launch an EMR Serverless application with S3 Access Grants for data
management

You can enable S3 Access Grants on EMR Serverless and launch a Spark application. When your
application makes a request for S3 data, Amazon S3 provides temporary credentials that are
scoped to the specific bucket, prefix, or object.

1. Set up a job execution role for your EMR Serverless application. Include the required IAM
permissions that you need to run Spark jobs and use S3 Access Grants, s3:GetDataAccess
and s3:GetAccessGrantsInstanceForPrefix:

{
 "Effect": "Allow",
 "Action": [
 "s3:GetDataAccess",
 "s3:GetAccessGrantsInstanceForPrefix"
],
 "Resource": [//LIST ALL INSTANCE ARNS THAT THE ROLE IS ALLOWED TO QUERY
 "arn:aws_partition:s3:Region:account-id1:access-grants/default",
 "arn:aws_partition:s3:Region:account-id2:access-grants/default"
]
}

Note

If you specify IAM roles for job execution that have additional permissions to access S3
directly, then users will be able to access the data permitted by the role even if they
don't have permission from S3 Access Grants.

2. Launch your EMR Serverless application with an Amazon EMR release label of 6.15.0 or higher
and the spark-defaults classification, as the following example shows. Replace the values
in red text with the appropriate values for your usage scenario.

aws emr-serverless start-job-run \
 --application-id application-id \
 --execution-role-arn job-role-arn \
 --job-driver '{

Launch an application 275

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/access-grants.html

Amazon EMR Amazon EMR Serverless User Guide

 "sparkSubmit": {
 "entryPoint": "s3://us-east-1.elasticmapreduce/emr-containers/samples/
wordcount/scripts/wordcount.py",
 "entryPointArguments": ["s3://amzn-s3-demo-destination-bucket1/
wordcount_output"],
 "sparkSubmitParameters": "--conf spark.executor.cores=1 --conf
 spark.executor.memory=4g --conf spark.driver.cores=1 --conf spark.driver.memory=4g
 --conf spark.executor.instances=1"
 }
 }' \
 --configuration-overrides '{
 "applicationConfiguration": [{
 "classification": "spark-defaults",
 "properties": {
 "spark.hadoop.fs.s3.s3AccessGrants.enabled": "true",
 "spark.hadoop.fs.s3.s3AccessGrants.fallbackToIAM": "false"
 }
 }]
}'

S3 Access Grants considerations with EMR Serverless

For important support, compatibility, and behavioral information when you use Amazon S3 Access
Grants with EMR Serverless, see S3 Access Grants considerations with Amazon EMR in the Amazon
EMR Management Guide.

Logging Amazon EMR Serverless API calls using AWS CloudTrail

Amazon EMR Serverless is integrated with AWS CloudTrail, a service that provides a record of
actions taken by a user, role, or an AWS service in EMR Serverless. CloudTrail captures all API calls
for EMR Serverless as events. The calls captured include calls from the EMR Serverless console and
code calls to the EMR Serverless API operations. If you create a trail, you can enable continuous
delivery of CloudTrail events to an Amazon S3 bucket, including events for EMR Serverless. If you
don't configure a trail, you can still view the most recent events in the CloudTrail console in Event
history. Using the information collected by CloudTrail, you can determine the request that was
made to EMR Serverless, the IP address from which the request was made, who made the request,
when it was made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

Considerations 276

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-access-grants.html#emr-access-grants-considerations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html

Amazon EMR Amazon EMR Serverless User Guide

EMR Serverless information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in
EMR Serverless, that activity is recorded in a CloudTrail event along with other AWS service events
in Event history. You can view, search, and download recent events in your AWS account. For more
information, see Viewing events with CloudTrail Event history.

For an ongoing record of events in your AWS account, including events for EMR Serverless, create
a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when
you create a trail in the console, the trail applies to all AWS Regions. The trail logs events from all
Regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you specify.
Additionally, you can configure other AWS services to further analyze and act upon the event data
collected in CloudTrail logs. For more information, see the following:

• Overview for creating a trail

• CloudTrail supported services and integrations

• Configuring Amazon SNS notifications for CloudTrail

• Receiving CloudTrail log files from multiple regions and Receiving CloudTrail log files from
multiple accounts

All EMR Serverless actions are logged by CloudTrail and are documented in the EMR Serverless API
Reference. For example, calls to the CreateApplication, StartJobRun and CancelJobRun
actions generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or AWS Identity and Access Management (IAM) user
credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity element.

EMR Serverless information in CloudTrail 277

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/emr-serverless/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/emr-serverless/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

Amazon EMR Amazon EMR Serverless User Guide

Understanding EMR Serverless log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the
public API calls, so they don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the CreateApplication
action.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE:admin",
 "arn": "arn:aws:sts::012345678910:assumed-role/Admin/admin",
 "accountId": "012345678910",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE",
 "arn": "arn:aws:iam::012345678910:role/Admin",
 "accountId": "012345678910",
 "userName": "Admin"
 },
 "webIdFederationData": {},
 "attributes": {
 "creationDate": "2022-06-01T23:46:52Z",
 "mfaAuthenticated": "false"
 }
 }
 },
 "eventTime": "2022-06-01T23:49:28Z",
 "eventSource": "emr-serverless.amazonaws.com",
 "eventName": "CreateApplication",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "203.0.113.0",
 "userAgent": "PostmanRuntime/7.26.10",
 "requestParameters": {
 "name": "my-serverless-application",

Understanding EMR Serverless log file entries 278

Amazon EMR Amazon EMR Serverless User Guide

 "releaseLabel": "emr-6.6",
 "type": "SPARK",
 "clientToken": "0a1b234c-de56-7890-1234-567890123456"
 },
 "responseElements": {
 "name": "my-serverless-application",
 "applicationId": "1234567890abcdef0",
 "arn": "arn:aws:emr-serverless:us-west-2:555555555555:/
applications/1234567890abcdef0"
 },
 "requestID": "890b8639-e51f-11e7-b038-EXAMPLE",
 "eventID": "874f89fa-70fc-4798-bc00-EXAMPLE",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "012345678910",
 "eventCategory": "Management"
}

Compliance validation for Amazon EMR Serverless

The security and compliance of EMR Serverless is assessed by third-party auditors as part of
multiple AWS compliance programs, including the following:

• System and Organization Controls (SOC)

• Payment Card Industry Data Security Standard (PCI DSS)

• Federal Risk and Authorization Management Program (FedRAMP) Moderate

• Health Insurance Portability and Accountability Act (HIPAA)

AWS provides a frequently updated list of AWS services in scope of specific compliance programs at
AWS Services in Scope by Compliance Program.

Third-party audit reports are available for you to download using AWS Artifact. For more
information, see Downloading Reports in AWS Artifact.

For more information about AWS compliance programs, see AWS Compliance Programs.

Your compliance responsibility when using EMR Serverless is determined by the sensitivity of your
data, your organization’s compliance objectives, and applicable laws and regulations. If your use

Compliance validation 279

https://aws.amazon.com/compliance/services-in-scope/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/compliance/programs/

Amazon EMR Amazon EMR Serverless User Guide

of EMR Serverless is subject to compliance with standards like HIPAA, PCI, or FedRAMP Moderate,
AWS provides resources to help:

• Security and Compliance Quick Start Guides that discuss architectural considerations and steps
for deploying security- and compliance-focused baseline environments on AWS.

• AWS Customer Compliance Guides can help you understand the shared responsibility model
through the lens of compliance. The guides summarize the best practices for securing AWS
services and map the guidance to security controls across multiple frameworks (including
National Institute of Standards and Technology (NIST), Payment Card Industry Security
Standards Council (PCI), and International Organization for Standardization (ISO)).

• AWS Config can be used to assess how well your resource configurations comply with internal
practices, industry guidelines, and regulations.

• AWS Compliance Resources is a collection of workbooks and guides might apply to your industry
and location.

• AWS Security Hub provides you with a comprehensive view of your security state within AWS and
helps you check your compliance with security industry standards and best practices.

• AWS Audit Manager – this AWS service helps you continuously audit your AWS usage to simplify
how you manage risk and compliance with regulations and industry standards.

Resilience in Amazon EMR Serverless

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you
can design and operate applications and databases that automatically fail over between zones
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than
traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

In addition to the AWS global infrastructure, Amazon EMR Serverless offers integration with
Amazon S3 through EMRFS to help support your data resiliency and backup needs.

Infrastructure security in Amazon EMR Serverless

As a managed service, Amazon EMR is protected by AWS global network security. For information
about AWS security services and how AWS protects infrastructure, see AWS Cloud Security. To

Resilience 280

https://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://aws.amazon.com/compliance/resources/
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/security/

Amazon EMR Amazon EMR Serverless User Guide

design your AWS environment using the best practices for infrastructure security, see Infrastructure
Protection in Security Pillar AWS Well‐Architected Framework.

You use AWS published API calls to access Amazon EMR through the network. Clients must support
the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Configuration and vulnerability analysis in Amazon EMR
Serverless

AWS handles basic security tasks like guest operating system (OS) and database patching, firewall
configuration, and disaster recovery. These procedures have been reviewed and certified by the
appropriate third parties. For more details, see the following resources:

• Compliance validation for Amazon EMR Serverless

• Shared Responsibility Model

• Amazon Web Services: Overview of Security Processes (whitepaper)

Configuration and vulnerability analysis 281

https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/STS/latest/APIReference/welcome.html
https://aws.amazon.com/compliance/shared-responsibility-model/
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf

Amazon EMR Amazon EMR Serverless User Guide

Endpoints and quotas for EMR Serverless

Service endpoints

To connect programmatically to an AWS service, you use an endpoint. An endpoint is the URL of the
entry point for an AWS web service. In addition to the standard AWS endpoints, some AWS services
offer FIPS endpoints in selected Regions. The following table lists the service endpoints for EMR
Serverless. For more information, see AWS service endpoints.

Region name Region Endpoint Protocol

US East (Ohio) us-east-2 (limited
to the following
Availability Zones:
use2-az1, use2-
az2, and use2-az3)

emr-serve
rless.us-
east-2.am
azonaws.com

HTTPS

US East (N. Virginia) us-east-1 (limited
to the following
Availability Zones:
use1-az1, use1-
az2, use1-az4,
use1-az5, and
use1-az6)

emr-serve
rless.us-
east-1.am
azonaws.com

emr-serverless-
fips.us-east
-1.amazon
aws.com

HTTPS

US West (N. Californi
a)

us-west-1 emr-serve
rless.us-
west-1.am
azonaws.com

HTTPS

US West (Oregon) us-west-2 emr-serve
rless.us-
west-2.am
azonaws.com

HTTPS

Service endpoints 282

https://docs.aws.amazon.com/general/latest/gr/rande.html

Amazon EMR Amazon EMR Serverless User Guide

Region name Region Endpoint Protocol

emr-serverless-
fips.us-west
-2.amazon
aws.com

Africa (Cape Town) af-south-1 emr-serve
rless.af-
south-1.a
mazonaws.com

HTTPS

Asia Pacific (Hong
Kong)

ap-east-1 emr-serve
rless.ap-
east-1.am
azonaws.com

HTTPS

Asia Pacific (Jakarta) ap-southeast-3 emr-serve
rless.ap-
southeast
-3.amazon
aws.com

HTTPS

Asia Pacific (Mumbai) ap-south-1 emr-serve
rless.ap-
south-1.a
mazonaws.com

HTTPS

Asia Pacific (Osaka) ap-northeast-3 emr-serve
rless.ap-
northeast
-3.amazon
aws.com

HTTPS

Service endpoints 283

Amazon EMR Amazon EMR Serverless User Guide

Region name Region Endpoint Protocol

Asia Pacific (Seoul) ap-northeast-2 emr-serve
rless.ap-
northeast
-2.amazon
aws.com

HTTPS

Asia Pacific (Singapor
e)

ap-southeast-1 emr-serve
rless.ap-
southeast
-1.amazon
aws.com

HTTPS

Asia Pacific (Sydney) ap-southeast-2 emr-serve
rless.ap-
southeast
-2.amazon
aws.com

HTTPS

Asia Pacific (Tokyo) ap-northeast-1 emr-serve
rless.ap-
northeast
-1.amazon
aws.com

HTTPS

Canada (Central) ca-central-1
(limited to the
following Availabil
ity Zones: cac1-az1
and cac1-az2)

emr-serve
rless.ca-
central-1
.amazonaws.com

HTTPS

Europe (Frankfurt) eu-central-1 emr-serve
rless.eu-
central-1
.amazonaws.com

HTTPS

Service endpoints 284

Amazon EMR Amazon EMR Serverless User Guide

Region name Region Endpoint Protocol

Europe (Ireland) eu-west-1 emr-serve
rless.eu-
west-1.am
azonaws.com

HTTPS

Europe (London) eu-west-2 emr-serve
rless.eu-
west-2.am
azonaws.com

HTTPS

Europe (Milan) eu-south-1 emr-serve
rless.eu-
south-1.a
mazonaws.com

HTTPS

Europe (Paris) eu-west-3 emr-serve
rless.eu-
west-3.am
azonaws.com

HTTPS

Europe (Spain) eu-south-2 emr-serve
rless.eu-
south-2.a
mazonaws.com

HTTPS

Europe (Stockholm) eu-north-1 emr-serve
rless.eu-
north-1.a
mazonaws.com

HTTPS

Middle East (Bahrain) me-south-1 emr-serve
rless.me-
south-1.a
mazonaws.com

HTTPS

Service endpoints 285

Amazon EMR Amazon EMR Serverless User Guide

Region name Region Endpoint Protocol

Middle East (UAE) me-central-1 emr-serve
rless.me-
central-1
.amazonaws.com

HTTPS

South America (São
Paulo)

sa-east-1 emr-serve
rless.sa-
east-1.am
azonaws.com

HTTPS

AWS GovCloud (US-
East)

us-gov-east-1 emr-serve
rless.us-gov-
east-1.amazona
ws.com

HTTPS

AWS GovCloud (US-
West)

us-gov-west-1 emr-serve
rless.us-gov-
west-1.amazona
ws.com

HTTPS

Service quotas

Service quotas, also known as limits, are the maximum number of service resources or operations
that your AWS account can use. EMR Serverless collects service quota usage metrics every minute
and publishes them in the AWS/Usage namespace.

Note

New AWS accounts might have initial lower quotas that can increase over time. Amazon
EMR Serverless monitors account usage within each AWS Region, and then automatically
increases the quotas based on your usage.

The following table lists the service quotas for EMR Serverless. For more information, see AWS
service quotas.

Service quotas 286

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Amazon EMR Amazon EMR Serverless User Guide

Name Default limit Adjustable? Description

Max concurrent
vCPUs per account

16 Yes The maximum
number of vCPUs
that can concurrently
run for the account
in the current AWS
Region.

Max Queued Jobs Per
Account

2000 Yes The maximum
number of queued
jobs for the account
in the current AWS
Region.

API limits

The following describes the API limits per Region for your AWS account.

Resource Default quota

ListApplications 10 transactions per second. Burst of 50
transactions per second.

CreateApplication 1 transaction per second. Burst of 25 transacti
ons per second.

DeleteApplication 1 transaction per second. Burst of 25 transacti
ons per second.

GetApplication 10 transactions per second. Burst of 50
transactions per second.

UpdateApplication 1 transaction per second. Burst of 25 transacti
ons per second.

API limits 287

https://docs.aws.amazon.com/emr-serverless/latest/APIReference/API_ListApplications.html
https://docs.aws.amazon.com/emr-serverless/latest/APIReference/API_CreateApplication.html
https://docs.aws.amazon.com/emr-serverless/latest/APIReference/API_DeleteApplication.html
https://docs.aws.amazon.com/emr-serverless/latest/APIReference/API_GetApplication.html
https://docs.aws.amazon.com/emr-serverless/latest/APIReference/API_UpdateApplication.html

Amazon EMR Amazon EMR Serverless User Guide

Resource Default quota

ListJobRuns 1 transaction per second. Burst of 25 transacti
ons per second.

StartJobRun 1 transaction per second. Burst of 25 transacti
ons per second.

GetDashboardForJobRun 1 transaction per second. Burst of 2 transacti
ons per second.

CancelJobRun 1 transaction per second. Burst of 25 transacti
ons per second.

GetJobRun 10 transactions per second. Burst of 50
transactions per second.

StartApplication 1 transaction per second. Burst of 25 transacti
ons per second.

StopApplication 1 transaction per second. Burst of 25 transacti
ons per second.

API limits 288

https://docs.aws.amazon.com/emr-serverless/latest/APIReference/API_ListJobRuns.html
https://docs.aws.amazon.com/emr-serverless/latest/APIReference/API_StartJobRun.html
https://docs.aws.amazon.com/emr-serverless/latest/APIReference/API_GetDashboardForJobRun.html
https://docs.aws.amazon.com/emr-serverless/latest/APIReference/API_CancelJobRun.html
https://docs.aws.amazon.com/emr-serverless/latest/APIReference/API_GetJobRun.html
https://docs.aws.amazon.com/emr-serverless/latest/APIReference/API_StartApplication.html
https://docs.aws.amazon.com/emr-serverless/latest/APIReference/API_StopApplication.html

Amazon EMR Amazon EMR Serverless User Guide

Other considerations

The following list contains other considerations with EMR Serverless.

• EMR Serverless is available in the following AWS Regions:

• US East (Ohio)

• US East (N. Virginia)

• US West (N. California)

• US West (Oregon)

• Africa (Cape Town)

• Asia Pacific (Hong Kong)

• Asia Pacific (Jakarta)

• Asia Pacific (Mumbai)

• Asia Pacific (Osaka)

• Asia Pacific (Seoul)

• Asia Pacific (Singapore)

• Asia Pacific (Sydney)

• Asia Pacific (Tokyo)

• Canada (Central)

• Europe (Frankfurt)

• Europe (Ireland)

• Europe (London)

• Europe (Milan)

• Europe (Paris)

• Europe (Spain)

• Europe (Stockholm)

• Middle East (Bahrain)

• Middle East (UAE)

• South America (São Paulo)

• AWS GovCloud (US-East)

• AWS GovCloud (US-West)

289

Amazon EMR Amazon EMR Serverless User Guide

For a list of endpoints associated with these Regions, see Service endpoints.

• The default timeout for a job run is 12 hours. You can change this setting with the
executionTimeoutMinutes property in the startJobRun API or the AWS SDK. You can set
executionTimeoutMinutes to 0 if you want your job run to never time out. For example, if
you have a streaming application, you can set executionTimeoutMinutes to 0 to allow the
streaming job to run continuously.

• The billedResourceUtilization property in the getJobRun API shows the aggregate
vCPU, memory, and storage that AWS has billed for the job run. Billed resources include a 1-
minute minimum usage for workers, plus additional storage over 20 GB per worker. These
resources don't include usage for idle pre-initialized workers.

• Without VPC connectivity, a job can access some AWS service endpoints in the same AWS Region.
These services include Amazon S3, AWS Glue, AWS Lake Formation, Amazon CloudWatch Logs,
AWS KMS, AWS Security Token Service, Amazon DynamoDB, and AWS Secrets Manager. You can
enable VPC connectivity to access other AWS services through AWS PrivateLink, but you aren't
required to do this. To access external services, you can create your application with a VPC.

• EMR Serverless doesn't support HDFS. The local disks on workers are temporal storage that EMR
Serverless uses to shuffle and process data during job runs.

• EMR Serverless doesn't support the existing emr-dynamodb-connector.

290

https://docs.aws.amazon.com/vpc/latest/privatelink/what-is-privatelink.html
https://github.com/awslabs/emr-dynamodb-connector

Amazon EMR Amazon EMR Serverless User Guide

Amazon EMR Serverless release versions

An Amazon EMR release is a set of open source applications from the big data ecosystem. Each
release includes big data applications, components, and features that you select to have Amazon
EMR Serverless deploy and configure when you run your job.

With Amazon EMR 6.6.0 and higher, you can deploy EMR Serverless. This deployment option isn't
available with earlier Amazon EMR release versions. When you submit your job, you must specify
one of the following supported releases.

Topics

• EMR Serverless 7.6.0

• EMR Serverless 7.5.0

• EMR Serverless 7.4.0

• EMR Serverless 7.3.0

• EMR Serverless 7.2.0

• EMR Serverless 7.1.0

• EMR Serverless 7.0.0

• EMR Serverless 6.15.0

• EMR Serverless 6.14.0

• EMR Serverless 6.13.0

• EMR Serverless 6.12.0

• EMR Serverless 6.11.0

• EMR Serverless 6.10.0

• EMR Serverless 6.9.0

• EMR Serverless 6.8.0

• EMR Serverless 6.7.0

• EMR Serverless 6.6.0

EMR Serverless 7.6.0

The following table lists the application versions available with EMR Serverless 7.6.0.

EMR Serverless 7.6.0 291

Amazon EMR Amazon EMR Serverless User Guide

Application Version

Apache Spark 3.5.3

Apache Hive 3.1.3

Apache Tez 0.10.2

EMR Serverless 7.5.0

The following table lists the application versions available with EMR Serverless 7.5.0.

Application Version

Apache Spark 3.5.2

Apache Hive 3.1.3

Apache Tez 0.10.2

EMR Serverless 7.4.0

The following table lists the application versions available with EMR Serverless 7.4.0.

Application Version

Apache Spark 3.5.2

Apache Hive 3.1.3

Apache Tez 0.10.2

EMR Serverless 7.3.0

The following table lists the application versions available with EMR Serverless 7.3.0.

EMR Serverless 7.5.0 292

Amazon EMR Amazon EMR Serverless User Guide

Application Version

Apache Spark 3.5.1

Apache Hive 3.1.3

Apache Tez 0.10.2

EMR Serverless 7.3.0 release notes

• Job concurrency and queuing with EMR Serverless – Job concurrency and queuing is enabled
by default when you create a new EMR Serverless application on Amazon EMR release 7.3.0
or higher. For more information, see the section called “Job concurrency and queuing”, which
details how to get started with concurrency and queuing and also contains a list of feature
considerations.

EMR Serverless 7.2.0

The following table lists the application versions available with EMR Serverless 7.2.0.

Application Version

Apache Spark 3.5.1

Apache Hive 3.1.3

Apache Tez 0.10.2

EMR Serverless 7.2.0 release notes

• Lake Formation with EMR Serverless – you can now use AWS Lake Formation to apply fine-
grained access controls on Data Catalog tables that are backed by S3. This capability lets you
configure table, row, column, and cell level access controls for read queries within your EMR
Serverless Spark jobs. For more information, see the section called “Lake Formation for FGAC”
and the section called “Considerations”.

EMR Serverless 7.2.0 293

Amazon EMR Amazon EMR Serverless User Guide

EMR Serverless 7.1.0

The following table lists the application versions available with EMR Serverless 7.1.0.

Application Version

Apache Spark 3.5.0

Apache Hive 3.1.3

Apache Tez 0.10.2

EMR Serverless 7.0.0

The following table lists the application versions available with EMR Serverless 7.0.0.

Application Version

Apache Spark 3.5.0

Apache Hive 3.1.3

Apache Tez 0.10.2

EMR Serverless 6.15.0

The following table lists the application versions available with EMR Serverless 6.15.0.

Application Version

Apache Spark 3.4.1

Apache Hive 3.1.3

Apache Tez 0.10.2

EMR Serverless 7.1.0 294

Amazon EMR Amazon EMR Serverless User Guide

EMR Serverless 6.15.0 release notes

• TLS support – With Amazon EMR Serverless releases 6.15.0 and higher, you can enable mutual-
TLS encrypted communication between workers in your Spark job runs. When enabled, EMR
Serverless automatically generates a unique certificate for each worker that it provisions under
a job runs that workers utilize during TLS handshake to authenticate each other and establish an
encrypted channel to process data securely. For more information about mutual-TLS encryption,
see Inter-worker encryption.

EMR Serverless 6.14.0

The following table lists the application versions available with EMR Serverless 6.14.0.

Application Version

Apache Spark 3.4.1

Apache Hive 3.1.3

Apache Tez 0.10.2

EMR Serverless 6.13.0

The following table lists the application versions available with EMR Serverless 6.13.0.

Application Version

Apache Spark 3.4.1

Apache Hive 3.1.3

Apache Tez 0.10.2

EMR Serverless 6.12.0

The following table lists the application versions available with EMR Serverless 6.12.0.

EMR Serverless 6.14.0 295

https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/interworker-encryption.html

Amazon EMR Amazon EMR Serverless User Guide

Application Version

Apache Spark 3.4.0

Apache Hive 3.1.3

Apache Tez 0.10.2

EMR Serverless 6.11.0

The following table lists the application versions available with EMR Serverless 6.11.0.

Application Version

Apache Spark 3.3.2

Apache Hive 3.1.3

Apache Tez 0.10.2

EMR Serverless 6.11.0 release notes

• Access S3 resources in other accounts - With releases 6.11.0 and higher, you can configure
multiple IAM roles to assume when you access Amazon S3 buckets in different AWS accounts
from EMR Serverless.

EMR Serverless 6.10.0

The following table lists the application versions available with EMR Serverless 6.10.0.

Application Version

Apache Spark 3.3.1

Apache Hive 3.1.3

Apache Tez 0.10.2

EMR Serverless 6.11.0 296

Amazon EMR Amazon EMR Serverless User Guide

EMR Serverless 6.10.0 release notes

• For EMR Serverless applications with release 6.10.0 or higher, the default value for the
spark.dynamicAllocation.maxExecutors property is infinity. Earlier releases default to
100. For more information, see Spark job properties.

EMR Serverless 6.9.0

The following table lists the application versions available with EMR Serverless 6.9.0.

Application Version

Apache Spark 3.3.0

Apache Hive 3.1.3

Apache Tez 0.10.2

EMR Serverless 6.9.0 release notes

• The Amazon Redshift integration for Apache Spark is included in Amazon EMR releases 6.9.0 and
later. Previously an open-source tool, the native integration is a Spark connector that you can
use to build Apache Spark applications that read from and write to data in Amazon Redshift and
Amazon Redshift Serverless. For more information, see Using Amazon Redshift integration for
Apache Spark on Amazon EMR Serverless.

• EMR Serverless release 6.9.0 adds support for AWS Graviton2 (arm64) architecture. You can use
the architecture parameter for the create-application and update-application
APIs to choose the arm64 architecture. For more information, see Amazon EMR Serverless
architecture options.

• You can now export, import, query, and join Amazon DynamoDB tables directly from your EMR
Serverless Spark and Hive applications. For more information, see Connecting to DynamoDB with
Amazon EMR Serverless.

Known issues

EMR Serverless 6.9.0 297

Amazon EMR Amazon EMR Serverless User Guide

• If you use the the Amazon Redshift integration for Apache Spark and have a time, timetz,
timestamp, or timestamptz with microsecond precision in Parquet format, the connector rounds
the time values to the nearest millisecond value. As a workaround, use the text unload format
unload_s3_format parameter.

EMR Serverless 6.8.0

The following table lists the application versions available with EMR Serverless 6.8.0.

Application Version

Apache Spark 3.3.0

Apache Hive 3.1.3

Apache Tez 0.9.2

EMR Serverless 6.7.0

The following table lists the application versions available with EMR Serverless 6.7.0.

Application Version

Apache Spark 3.2.1

Apache Hive 3.1.3

Apache Tez 0.9.2

Engine-specific changes, enhancements, and resolved issues

The following table lists a new engine-specific feature.

EMR Serverless 6.8.0 298

Amazon EMR Amazon EMR Serverless User Guide

Change Description

Feature Tez scheduler now supports preemption of Tez
task instead of preemption of container

EMR Serverless 6.6.0

The following table lists the application versions available with EMR Serverless 6.6.0.

Application Version

Apache Spark 3.2.0

Apache Hive 3.1.2

Apache Tez 0.9.2

EMR Serverless initial release notes

• EMR Serverless supports the Spark configuration classification spark-defaults. This
classification changes values in Spark's spark-defaults.conf XML file. Configuration
classifications allow you to customize applications. For more information, see Configure
applications.

• EMR Serverless supports the Hive configuration classifications hive-site, tez-site, emrfs-
site, and core-site. This classification can change the values in Hive's hive-site.xml
file, Tez's tez-site.xml file, Amazon EMR's EMRFS settings, or Hadoop's core-site.xml
file, respectively. Configuration classifications allow you to customize applications. For more
information, see Configure applications.

Engine-specific changes, enhancements, and resolved issues

• The following table lists Hive and Tez backports.

EMR Serverless 6.6.0 299

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-configure-apps.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-configure-apps.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-configure-apps.html

Amazon EMR Amazon EMR Serverless User Guide

Hive and Tez changes

Change Description

Backport TEZ-4430: Fixed issue with tez.task.
launch.cmd-opts property

Backport HIVE-25971: Fixed Tez task shutdown delays
due to open cached thread pool

EMR Serverless 6.6.0 300

https://issues.apache.org/jira/browse/TEZ-4430
https://issues.apache.org/jira/browse/HIVE-25971

Amazon EMR Amazon EMR Serverless User Guide

Document history

The following table describes the important changes to the documentation since the last release of
EMR Serverless. For more information about updates to this documentation, you can subscribe to
an RSS feed.

Change Description Date

New release EMR Serverless 7.2.0 July 25, 2024

New release EMR Serverless 7.1.0 April 17, 2024

Update to an existing policy. Added the new Sid
CloudWatchPolicySt
atement and EC2Policy
Statement to the
AmazonEMRServerles
sServiceRolePolicy policy.

January 25, 2024

New release EMR Serverless 7.0.0 December 29, 2023

New release EMR Serverless 6.15.0 November 17, 2023

New feature Configure multiple IAM
roles to assume when you
access Amazon S3 buckets in
different accounts from EMR
Serverless (6.11 and higher)

October 18, 2023

New release EMR Serverless 6.14.0 October 17, 2023

New feature Default application configura
tion for EMR Serverless

September 25, 2023

Update to default Hive
properties

Updated the default values
for hive.driver.disk ,
hive.tez.disk.size

, hive.tez.auto.redu
cer.parallelism , and

September 12, 2023

301

https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/using-service-linked-roles.html#slr-permissions
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/using-service-linked-roles.html#slr-permissions

Amazon EMR Amazon EMR Serverless User Guide

tez.grouping.min-s
ize Hive job properties.

New release EMR Serverless 6.13.0 September 11, 2023

New release EMR Serverless 6.12.0 July 21, 2023

New release EMR Serverless 6.11.0 June 8, 2023

Update to service-linked role
policy

Updated the AmazonEMR
ServerlessServiceR
olePolicy SLR role to
publish account-level usage in
"AWS/Usage" namespace.

April 20, 2023

EMR Serverless general
availability (GA)

This is the first public release
of EMR Serverless.

June 1, 2022

302

https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/jobs-hive.html#hive-defaults
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/using-service-linked-roles.html#slr-permissions
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/using-service-linked-roles.html#slr-permissions
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/using-service-linked-roles.html#slr-permissions

	Amazon EMR
	Table of Contents
	What is Amazon EMR Serverless?
	Concepts
	Release version
	Application
	Job run
	Workers
	Pre-initialized capacity
	EMR Studio

	Prerequisites for getting started with EMR Serverless
	Sign up for an AWS account
	Create a user with administrative access
	Grant permissions
	Grant programmatic access

	Install and configure the AWS CLI
	Open the console

	Getting started with Amazon EMR Serverless
	Grant permissions to use EMR Serverless
	Prepare storage for EMR Serverless
	Create an EMR Studio to run interactive workloads
	Create a job runtime role
	Getting started with EMR Serverless from the console
	Step 1: Create an EMR Serverless application
	Step 2: Submit a job run or interactive workload
	Step 3: View application UI and logs
	Step 4: Clean up

	Getting started from the AWS CLI
	Step 1: Create an EMR Serverless application
	Step 2: Submit a job run to your EMR Serverless application
	Step 3: Review your job run's output
	Step 4: Clean up
	Delete your application
	Delete your S3 log bucket
	Delete your job runtime role

	Interact with and configure an EMR Serverless application
	Application states
	Creating an EMR Serverless application from the EMR Studio console
	Create an application
	List applications from the EMR Studio console
	Manage applications from the EMR Studio console

	Interacting with your EMR Serverless application on the AWS CLI
	Configuring an application when working with EMR Serverless
	Understanding application behavior in EMR Serverless
	Default application behavior
	Maximum capacity
	Supported worker configurations

	Pre-initialized capacity for working with an application in EMR Serverless
	Customizing pre-initialized capacity for Spark and Hive

	Default application configuration for EMR Serverless
	Declaring configurations at the application level
	Example declaration

	Overriding configurations during a job run
	Example override

	Customizing an EMR Serverless image
	Prerequisites
	Step 1: Create a custom image from EMR Serverless base images
	Step 2: Validate image locally
	Step 3: Upload the image to your Amazon ECR repository
	Step 4: Create or update an application with custom images
	Step 5: Allow EMR Serverless to access the custom image repository
	Considerations and limitations

	Configuring VPC access for EMR Serverless applications to connect to data
	Create application
	VPCs
	Subnets
	Considerations and limitations for subnets

	Security groups

	Configure application
	View job run details

	Best practices for subnet planning

	Amazon EMR Serverless architecture options
	Using x86_64 architecture
	Using arm64 architecture (Graviton)
	Launching new applications with Graviton support
	Configuring existing applications to use Graviton
	Considerations when using Graviton
	Library compatibility

	Job concurrency and queuing for an EMR Serverless application
	Key benefits of concurrency and queuing
	Getting started with concurrency and queuing
	Considerations for concurrency and queuing

	Get data into S3 Express One Zone with EMR Serverless
	Prerequisites
	Getting started with S3 Express One Zone

	Running jobs
	Job run states
	Running jobs from the EMR Studio console
	Submit a job
	View job runs

	Running jobs from the AWS CLI
	Using shuffle-optimized disks
	Key benefits
	Getting started

	Streaming jobs for processing continuously streamed data
	Considerations and limitations
	Getting started streaming jobs
	Supported streaming connectors
	Streaming job log management

	Using Spark configurations when you run EMR Serverless jobs
	Spark job parameters
	Spark job runtime role
	Spark job driver parameter
	Spark configuration override parameter
	Spark dynamic resource allocation optimization

	Spark job properties
	Spark examples

	Using Hive configurations when you run EMR Serverless jobs
	Hive job parameters
	Hive job runtime role
	Hive job driver parameter
	Hive configuration override parameter

	Hive job properties
	Hive job examples

	EMR Serverless Job resiliency
	Monitoring a job with a retry policy
	Logging with retry policy

	Metastore configuration for EMR Serverless
	Using the AWS Glue Data Catalog as a metastore
	Configure the AWS Glue Data Catalog
	Configure cross-account access for EMR Serverless and AWS Glue Data Catalog
	Considerations when using the AWS Glue Data Catalog

	Using an external Hive metastore
	Create an external Hive metastore
	Configure Spark options
	Configure Hive options

	Working with AWS Glue multi-catalog hierarchy on EMR Serverless
	Using Redshift Managed Storage (RMS) with Iceberg and AWS Glue Data Catalog
	Using Redshift Managed Storage (RMS) with Iceberg REST API and AWS Glue Data Catalog

	Considerations when using an external metastore

	Accessing S3 data in another AWS account from EMR Serverless
	Prerequisites
	Use an S3 bucket policy to access cross-account S3 data
	Use an assumed role to access cross-account S3 data
	Assumed role examples
	Access S3 resources with one assumed role
	Access S3 resources with multiple assumed roles

	Troubleshooting errors in EMR Serverless
	Error: Job failed as account has reached the service limit on the maximum vCPU it can use concurrently.
	Error: Job failed as application has exceeded maximumCapacity settings.
	Error: Job failed due to Worker could not be allocated as the application has exceeded maximumCapacity.
	Error: S3 access is denied. Please check S3 access permissions of the job runtime role on the required S3 resources.
	Error: ModuleNotFoundError: No module named <module>. Please refer to the user guide on how to use python libraries with EMR Serverless.
	Error: Could not assume execution role <role name> because it does not exist or is not set up with the required trust relationship.

	Run interactive workloads with EMR Serverless through EMR Studio
	Overview
	Prerequisites
	Required permissions for interactive workloads
	Configuring interactive applications
	Considerations with interactive applications
	Run interactive workloads with EMR Serverless through an Apache Livy endpoint
	Prerequisites
	Required permissions
	Getting started
	HTTP clients
	Sending requests to the Apache Livy endpoint

	Sparkmagic kernel

	Considerations

	Logging and monitoring
	Storing logs
	Logging for EMR Serverless with managed storage
	Logging for EMR Serverless with Amazon S3 buckets
	Logging for EMR Serverless with Amazon CloudWatch
	Required permissions for logging with CloudWatch
	AWS CLI

	Rotating logs
	Encrypting logs
	Encrypting EMR Serverless logs with managed storage
	Encrypting EMR Serverless logs with Amazon S3 buckets
	Encrypting EMR Serverless logs with Amazon CloudWatch
	Required permissions for log encryption
	Required user permissions
	Encryption key permissions for Amazon S3 and managed storage
	Encryption key permissions for Amazon CloudWatch

	Configure Apache Log4j2 properties for Amazon EMR Serverless
	Configure Spark Log4j2 properties for Amazon EMR Serverless
	Log4j2 classifications for Spark
	Log4j2 configuration example for Spark
	Log4j2 in sample Spark jobs
	Log4j2 considerations for Spark

	Monitoring EMR Serverless
	Monitoring EMR Serverless applications and jobs
	Application-level monitoring
	Job-level monitoring
	Job worker-level monitoring

	Monitor Spark metrics with Amazon Managed Service for Prometheus
	Prerequisites
	Setup
	Advanced configuration properties
	Considerations and limitations

	EMR Serverless usage metrics
	Service quota usage metrics for EMR Serverless
	Dimensions for EMR Serverless service quota usage metrics

	Automating EMR Serverless with Amazon EventBridge
	Sample EMR Serverless EventBridge events

	Tagging resources
	What is a tag?
	Tagging your resources
	Tagging limitations
	Working with tags using the AWS CLI and the Amazon EMR Serverless API

	Tutorials for EMR Serverless
	Using Java 17 with Amazon EMR Serverless
	JAVA_HOME
	spark-defaults

	Using Apache Hudi with EMR Serverless
	Using Apache Iceberg with EMR Serverless
	Using Python libraries with EMR Serverless
	Using native Python features
	Building a Python virtual environment
	Configuring PySpark jobs to use Python libraries

	Using different Python versions with EMR Serverless
	Using Delta Lake OSS with EMR Serverless
	Amazon EMR versions 6.9.0 and higher
	Amazon EMR versions 6.8.0 and lower

	Submitting EMR Serverless jobs from Airflow
	Using Hive user-defined functions with EMR Serverless
	Using custom images with EMR Serverless
	Use a custom Python version
	Use a custom Java version
	Build a data science image
	Processing geospatial data with Apache Sedona
	Licensing information for using custom images
	Licensing that applies to custom images

	Using Amazon Redshift integration for Apache Spark on Amazon EMR Serverless
	Launching a Spark application with the Amazon Redshift integration for Apache Spark
	Authenticating with the Amazon Redshift integration for Apache Spark
	Use AWS Secrets Manager to retrieve credentials and connect to Amazon Redshift
	Authenticate to Amazon Redshift with a JDBC driver
	Use IAM based authentication with Amazon EMR Serverless job execution role
	Connecting to Amazon Redshift within a different VPC

	Reading and writing from and to Amazon Redshift
	Considerations and limitations when using the Spark connector

	Connecting to DynamoDB with Amazon EMR Serverless
	Step 1: Upload data to an Amazon S3 bucket
	Step 2: Create a Hive table
	Step 3: Copy data to DynamoDB
	Step 4: Query data from DynamoDB
	Setting up cross-account access
	Considerations
	Considerations when using the DynamoDB connector with Apache Spark
	Considerations when using the DynamoDB connector with Apache Hive

	Security
	Security best practices for Amazon EMR Serverless
	Apply principle of least privilege
	Isolate untrusted application code
	Role-based access control (RBAC) permissions

	Data protection
	Encryption at rest
	Encryption at rest for EMRFS data in Amazon S3
	Amazon S3 server-side encryption
	Amazon S3 client-side encryption
	Local disk encryption
	Key management

	Encryption in transit

	Identity and Access Management (IAM) in Amazon EMR Serverless
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How EMR Serverless works with IAM
	Identity-based policies for EMR Serverless
	Sample identity-based policies for EMR Serverless

	Resource-based policies within EMR Serverless
	Policy actions for EMR Serverless
	Policy resources for EMR Serverless
	Policy condition keys for EMR Serverless
	Access control lists (ACLs) in EMR Serverless
	Attribute-based access control (ABAC) with EMR Serverless
	Using Temporary credentials with EMR Serverless
	Cross-service principal permissions for EMR Serverless
	Service roles for EMR Serverless
	Service-linked roles for EMR Serverless

	Using service-linked roles for EMR Serverless
	Service-linked role permissions for EMR Serverless
	Creating a service-linked role for EMR Serverless
	Editing a service-linked role for EMR Serverless
	Deleting a service-linked role for EMR Serverless
	Supported Regions for EMR Serverless service-linked roles

	Job runtime roles for Amazon EMR Serverless
	Managed permission policies associated with runtime roles

	User access policy examples for EMR Serverless
	Power user policy
	Data engineer policy
	Using tags for access control

	Policies for tag-based access control
	Allow actions only on resources with specific tag values
	Require tagging when a resource is created
	Deny access to add and remove tags

	Identity-based policy examples for EMR Serverless
	Policy best practices
	Allow users to view their own permissions

	Amazon EMR Serverless updates to AWS managed policies
	Troubleshooting Amazon EMR Serverless identity and access
	I am not authorized to perform an action in Amazon EMR Serverless
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my Amazon EMR Serverless resources

	Using EMR Serverless with AWS Lake Formation for fine-grained access control
	Overview
	How EMR Serverless works with AWS Lake Formation
	Enabling Lake Formation in Amazon EMR
	Job runtime role IAM permissions
	Setting up Lake Formation permissions for job runtime role
	Submitting a job run
	Open-table format support
	Debugging jobs
	Required permissions
	Considerations

	Considerations and limitations
	Troubleshooting
	Logging
	Live UI and Spark History Server
	Job failed with insufficient Lake Formation permissions
	Job with RDD execution failed
	Unable to access data files in Amazon S3
	Security validation exception
	Sharing AWS Glue Data Catalog and tables across accounts

	Inter-worker encryption
	Enabling mutual-TLS encryption on EMR Serverless

	Secrets Manager for data protection with EMR Serverless
	How EMR Serverless uses secrets
	How to create a secret
	Provide a secret in a configuration classification
	Specify secret references - Spark
	Specify secret references - Hive

	Grant access for EMR Serverless to retrieve the secret
	Rotating the secret

	Using Amazon S3 Access Grants with EMR Serverless
	S3 Access Grants overview for EMR Serverless
	Launch an EMR Serverless application with S3 Access Grants for data management
	S3 Access Grants considerations with EMR Serverless

	Logging Amazon EMR Serverless API calls using AWS CloudTrail
	EMR Serverless information in CloudTrail
	Understanding EMR Serverless log file entries

	Compliance validation for Amazon EMR Serverless
	Resilience in Amazon EMR Serverless
	Infrastructure security in Amazon EMR Serverless
	Configuration and vulnerability analysis in Amazon EMR Serverless

	Endpoints and quotas for EMR Serverless
	Service endpoints
	Service quotas
	API limits

	Other considerations
	Amazon EMR Serverless release versions
	EMR Serverless 7.6.0
	EMR Serverless 7.5.0
	EMR Serverless 7.4.0
	EMR Serverless 7.3.0
	EMR Serverless 7.2.0
	EMR Serverless 7.1.0
	EMR Serverless 7.0.0
	EMR Serverless 6.15.0
	EMR Serverless 6.14.0
	EMR Serverless 6.13.0
	EMR Serverless 6.12.0
	EMR Serverless 6.11.0
	EMR Serverless 6.10.0
	EMR Serverless 6.9.0
	EMR Serverless 6.8.0
	EMR Serverless 6.7.0
	Engine-specific changes, enhancements, and resolved issues

	EMR Serverless 6.6.0

	Document history

