
Developer Guide

AWS Panorama

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Panorama Developer Guide

AWS Panorama: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Panorama Developer Guide

Table of Contents

What is AWS Panorama? ... 1
Getting started .. 3

Concepts ... 4
The AWS Panorama Appliance ... 4
Compatible devices ... 4
Applications .. 5
Nodes ... 5
Models ... 5

Setting up .. 7
Prerequisites ... 7
Register and configure the AWS Panorama Appliance .. 8
Upgrade the appliance software ... 11
Add a camera stream ... 12
Next steps ... 13

Deploying an application .. 14
Prerequisites ... 14
Import the sample application .. 15
Deploy the application .. 16
View the output .. 18
Enable the SDK for Python .. 20
Clean up .. 20
Next steps ... 21

Developing applications .. 22
The application manifest .. 23
Building with the sample application ... 26
Changing the computer vision model .. 28
Preprocessing images ... 30
Uploading metrics with the SDK for Python .. 31
Next steps ... 34

Supported models and cameras ... 35
Supported models .. 35
Supported cameras .. 36

Appliance specifications .. 37
Quotas .. 39

iii

AWS Panorama Developer Guide

Permissions .. 40
User policies .. 41
Service roles .. 43

Securing the appliance role .. 43
Use of other services ... 45

Application role .. 46
Appliance .. 47

Managing .. 48
Update the appliance software ... 48
Deregister an appliance ... 49
Reboot an appliance .. 49
Reset an appliance ... 50

Network setup .. 51
Single network configuration ... 51
Dual network configuration .. 52
Configuring service access .. 52
Configuring local network access .. 53
Private connectivity .. 53

Cameras .. 54
Removing a stream ... 55

Applications ... 56
Buttons and lights ... 57

Status light ... 57
Network light ... 57
Power and reset buttons ... 58

Managing applications .. 59
Deploy ... 60

Install the AWS Panorama Application CLI ... 60
Import an application .. 61
Build a container image .. 62
Import a model ... 63
Upload application assets ... 64
Deploy an application with the AWS Panorama console .. 65
Automate application deployment ... 66

Manage ... 67
Update or copy an application .. 67

iv

AWS Panorama Developer Guide

Delete versions and applications ... 67
Packages ... 68
Application manifest ... 70

JSON schema ... 72
Nodes .. 73

Edges ... 73
Abstract nodes ... 74

Parameters ... 77
Overrides .. 79

Building applications ... 81
Models .. 83

Using models in code .. 83
Building a custom model .. 84
Packaging a model ... 86
Training models ... 87

Build an image .. 88
Specifying dependencies ... 89
Local storage .. 89
Building image assets .. 89

AWS SDK .. 91
Using Amazon S3 .. 91
Using the AWS IoT MQTT topic ... 91

Application SDK .. 93
Adding text and boxes to output video ... 93

Running multiple threads ... 95
Serving inbound traffic ... 98

Configuring inbound ports ... 98
Serving traffic .. 100

Using the GPU .. 104
Tutorial – Windows development environment .. 106

Prerequisites .. 106
Install WSL 2 and Ubuntu .. 107
Install Docker ... 107
Configure Ubuntu ... 107
Next steps .. 109

Using AWS Panorama after update 8.0.29 ... 110

v

AWS Panorama Developer Guide

Application Base Image Changes .. 110
Running Applications on an OpenGPU framework ... 111

The AWS Panorama API .. 112
Automate device registration .. 113
Manage appliance .. 115

View devices .. 115
Upgrade appliance software .. 116
Reboot appliances .. 118

Automate application deployment .. 119
Build the container ... 119
Upload the container and register nodes .. 119
Deploy the application .. 120
Monitor the deployment ... 122

Manage applications ... 124
View applications .. 124
Manage camera streams ... 125

Using VPC endpoints .. 128
Creating a VPC endpoint .. 128
Connecting an appliance to a private subnet .. 128
Sample AWS CloudFormation templates .. 129

Samples .. 133
Sample applications .. 133
Utility scripts ... 134
AWS CloudFormation templates .. 134
More samples and tools ... 135

Monitoring ... 136
AWS Panorama console .. 137
Logs ... 138

Viewing device logs ... 138
Viewing application logs ... 139
Configuring application logs .. 139
Viewing provisioning logs ... 140
Egressing logs from a device ... 141

CloudWatch metrics .. 142
Using device metrics .. 142
Using application metrics ... 143

vi

AWS Panorama Developer Guide

Configuring alarms ... 143
Troubleshooting ... 144

Provisioning ... 144
Appliance configuration ... 144
Application configuration ... 145
Camera streams .. 145

Security .. 147
Security features .. 148
Best practices .. 150
Data protection .. 152

Encryption in transit .. 153
AWS Panorama Appliance .. 153
Applications ... 153
Other services .. 154

Identity and access management ... 155
Audience ... 155
Authenticating with identities ... 156
Managing access using policies ... 159
How AWS Panorama works with IAM .. 161
Identity-based policy examples ... 161
AWS managed policies .. 164
Using service-linked roles ... 165
Cross-service confused deputy prevention ... 168
Troubleshooting .. 169

Compliance validation .. 171
Additional considerations for when people are present .. 172

Infrastructure security ... 173
Deploying the AWS Panorama Appliance in your datacenter ... 173

Runtime environment ... 175
Releases .. 176

vii

AWS Panorama Developer Guide

What is AWS Panorama?

AWS Panorama is a service that brings computer vision to your on-premises camera network. You
install the AWS Panorama Appliance or another compatible device in your datacenter, register it
with AWS Panorama, and deploy computer vision applications from the cloud. AWS Panorama
works with your existing real time streaming protocol (RTSP) network cameras. The appliance runs
secure computer vision applications from AWS Partners, or applications that you build yourself
with the AWS Panorama Application SDK.

The AWS Panorama Appliance is a compact edge appliance that uses a powerful system-on-module
(SOM) that is optimized for machine learning workloads. The appliance can run multiple computer
vision models against multiple video streams in parallel and output the results in real time. It is
designed for use in commercial and industrial settings and is rated for dust and liquid protection
(IP-62).

The AWS Panorama Appliance enables you to run self-contained computer vision applications at
the edge, without sending images to the AWS Cloud. By using the AWS SDK, you can integrate with
other AWS services and use them to track data from the application over time. By integrating with
other AWS services, you can use AWS Panorama to do the following:

• Analyze traffic patterns – Use the AWS SDK to record data for retail analytics in Amazon
DynamoDB. Use a serverless application to analyze the collected data over time, detect
anomalies in the data, and predict future behavior.

• Receive site safety alerts – Monitor off-limits areas at an industrial site. When your application
detects a potentially unsafe situation, upload an image to Amazon Simple Storage Service
(Amazon S3) and send a notification to an Amazon Simple Notification Service (Amazon SNS)
topic so recipients can take corrective action.

• Improve quality control – Monitor an assembly line's output to identify parts that don't conform
to requirements. Highlight images of nonconformant parts with text and a bounding box and
display them on a monitor for review by your quality control team.

• Collect training and test data – Upload images of objects that your computer vision model
couldn't identify, or where the model's confidence in its guess was borderline. Use a serverless
application to create a queue of images that need to be tagged. Tag the images and use them to
retrain the model in Amazon SageMaker AI.

1

https://aws.amazon.com//panorama/partners/

AWS Panorama Developer Guide

AWS Panorama uses other AWS services to manage the AWS Panorama Appliance, access models
and code, and deploy applications. AWS Panorama does as much as possible without requiring you
to interact with other services, but a knowledge of the following services can help you understand
how AWS Panorama works.

• SageMaker AI – You can use SageMaker AI to collect training data from cameras or sensors, build
a machine learning model, and train it for computer vision. AWS Panorama uses SageMaker AI
Neo to optimize models to run on the AWS Panorama Appliance.

• Amazon S3 – You use Amazon S3 access points to stage application code, models, and
configuration files for deployment to an AWS Panorama Appliance.

• AWS IoT – AWS Panorama uses AWS IoT services to monitor the state of the AWS Panorama
Appliance, manage software updates, and deploy applications. You don't need to use AWS IoT
directly.

To get started with the AWS Panorama Appliance and learn more about the service, continue to
Getting started with AWS Panorama.

Note

AWS Panorama version 8.0.29 ends support for Sagemaker Neo models. See the section
called “Using AWS Panorama after update 8.0.29” for more information on how to handle
your applications post update.

2

https://aws.amazon.com/sagemaker/
https://aws.amazon.com/s3/
https://aws.amazon.com/iot/

AWS Panorama Developer Guide

Getting started with AWS Panorama

To get started with AWS Panorama, first learn about the service's concepts and the terminology
used in this guide. Then you can use the AWS Panorama console to register your AWS Panorama
Appliance and create an application. In about an hour, you can configure the device, update its
software, and deploy a sample application. To complete the tutorials in this section, you use the
AWS Panorama Appliance and a camera that streams video over a local network.

Note

To purchase an AWS Panorama Appliance, visit the AWS Panorama console.

The AWS Panorama sample application demonstrates use of AWS Panorama features. It includes
a model that has been trained with SageMaker AI and sample code that uses the AWS Panorama
Application SDK to run inference and output video. The sample application include a AWS
CloudFormation template and scripts that show how to automate development and deployment
workflows from the command line.

The final two topics in this chapter detail requirements for models and cameras, and the hardware
specifications of the AWS Panorama Appliance. If you haven't obtained an appliance and cameras
yet, or plan on developing your own computer vision models, see these topics first for more
information.

Topics

• AWS Panorama concepts

• Setting up the AWS Panorama Appliance

• Deploying the AWS Panorama sample application

• Developing AWS Panorama applications

• Supported computer vision models and cameras

• AWS Panorama Appliance specifications

• Service quotas

3

https://console.aws.amazon.com/panorama/home#get-device-quote

AWS Panorama Developer Guide

AWS Panorama concepts

In AWS Panorama, you create computer vision applications and deploy them to the AWS Panorama
Appliance or a compatible device to analyze video streams from network cameras. You write
application code in Python and build application containers with Docker. You use the AWS
Panorama Application CLI to import machine learning models locally or from Amazon Simple
Storage Service (Amazon S3). Applications use the AWS Panorama Application SDK to receive video
input from a camera and interact with a model.

Concepts

• The AWS Panorama Appliance

• Compatible devices

• Applications

• Nodes

• Models

The AWS Panorama Appliance

The AWS Panorama Appliance is the hardware that runs your applications. You use the AWS
Panorama console to register an appliance, update its software, and deploy applications to it. The
software on the AWS Panorama Appliance connects to camera streams, sends frames of video to
your application, and displays video output on an attached display.

The AWS Panorama Appliance is an edge device powered by Nvidia Jetson AGX Xavier. Instead
of sending images to the AWS Cloud for processing, it runs applications locally on optimized
hardware. This enables you to analyze video in real time and process the results locally. The
appliance requires an internet connection to report its status, to upload logs, and to perform
software updates and deployments.

For more information, see Managing the AWS Panorama Appliance.

Compatible devices

In addition to the AWS Panorama Appliance, AWS Panorama supports compatible devices from
AWS Partners. Compatible devices support the same features as the AWS Panorama Appliance. You
register and manage compatible devices with the AWS Panorama console and API, and build and
deploy applications in the same way.

Concepts 4

AWS Panorama Developer Guide

• Lenovo ThinkEdge® SE70 – Powered by Nvidia Jetson Xavier NX

The content and sample applications in this guide are developed with the AWS Panorama
Appliance. For more information about specific hardware and software features for your device,
refer to the manufacturer's documentation.

Applications

Applications run on the AWS Panorama Appliance to perform computer vision tasks on video
streams. You can build computer vision applications by combining Python code and machine
learning models, and deploy them to the AWS Panorama Appliance over the internet. Applications
can send video to a display, or use the AWS SDK to send results to AWS services.

To build and deploy applications, you use the AWS Panorama Application CLI. The AWS Panorama
Application CLI is a command-line tool that generates default application folders and configuration
files, builds containers with Docker, and uploads assets. You can run multiple applications on one
device.

For more information, see Managing AWS Panorama applications.

Nodes

An application comprises multiple components called nodes, which represent inputs, outputs,
models, and code. A node can be configuration only (inputs and outputs), or include artifacts
(models and code). An application's code node are bundled in node packages that you upload to
an Amazon S3 access point, where the AWS Panorama Appliance can access them. An application
manifest is a configuration file that defines connections between the nodes.

For more information, see Application nodes.

Models

A computer vision model is a machine learning network that is trained to process images.
Computer vision models can perform various tasks such as classification, detection, segmentation,
and tracking. A computer vision model takes an image as input and outputs information about the
image or objects in the image.

Applications 5

https://techtoday.lenovo.com/us/en/solutions/smb/thinkedge

AWS Panorama Developer Guide

AWS Panorama supports models built with PyTorch, Apache MXNet, and TensorFlow. You can build
models with Amazon SageMaker AI or in your development environment. For more information,
see ???.

Models 6

AWS Panorama Developer Guide

Setting up the AWS Panorama Appliance

To get started using your AWS Panorama Appliance or compatible device, register it in the AWS
Panorama console and update its software. During the setup process, you create an appliance
resource in AWS Panorama that represents the physical appliance, and copy files to the appliance
with a USB drive. The appliance uses these certificates and configuration files to connect to
the AWS Panorama service. Then you use the AWS Panorama console to update the appliance's
software and register cameras.

Sections

• Prerequisites

• Register and configure the AWS Panorama Appliance

• Upgrade the appliance software

• Add a camera stream

• Next steps

Prerequisites

To follow this tutorial, you need an AWS Panorama Appliance or compatible device and the
following hardware:

• Display – A display with HDMI input for viewing the sample application output.

• USB drive (included with AWS Panorama Appliance) – A FAT32-formatted USB 3.0 flash memory
drive with at least 1 GB of storage, for transferring an archive with configuration files and a
certificate to the AWS Panorama Appliance.

• Camera – An IP camera that outputs an RTSP video stream.

Use the tools and instructions provided by your camera's manufacturer to identify the camera's
IP address and stream path. You can use a video player such as VLC to verify the stream URL, by
opening it as a network media source:

Setting up 7

https://www.videolan.org/

AWS Panorama Developer Guide

The AWS Panorama console uses other AWS services to assemble application components, manage
permissions, and verify settings. To register an appliance and deploy the sample application, you
need the following permissions:

• AWSPanoramaFullAccess – Provides full access to AWS Panorama, AWS Panorama access points
in Amazon S3, appliance credentials in AWS Secrets Manager, and appliance logs in Amazon
CloudWatch. Includes permission to create a service-linked role for AWS Panorama.

• AWS Identity and Access Management (IAM) – On first run, to create roles used by the AWS
Panorama service and the AWS Panorama Appliance.

If you don't have permission to create roles in IAM, have an administrator open the AWS Panorama
console and accept the prompt to create service roles.

Register and configure the AWS Panorama Appliance

The AWS Panorama Appliance is a hardware device that connects to network-enabled cameras
over a local network connection. It uses a Linux-based operating system that includes the AWS
Panorama Application SDK and supporting software for running computer vision applications.

To connect to AWS for appliance management and application deployment, the appliance uses a
device certificate. You use the AWS Panorama console to generate a provisioning certificate. The
appliance uses this temporary certificate to complete initial setup and download a permanent
device certificate.

Register and configure the AWS Panorama Appliance 8

https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AWSPanoramaFullAccess
https://console.aws.amazon.com/panorama/home
https://console.aws.amazon.com/panorama/home

AWS Panorama Developer Guide

Important

The provisioning certificate that you generate in this procedure is only valid for 5 minutes.
If you do not complete the registration process within this time frame, you must start over.

To register a appliance

1. Connect the USB drive to your computer. Prepare the appliance by connecting the network
and power cables. The appliance powers on and waits for a USB drive to be connected.

2. Open the AWS Panorama console Getting started page.

3. Choose Add device.

4. Choose Begin setup.

5. Enter a name and description for the device resource that represents the appliance in AWS
Panorama. Choose Next

Register and configure the AWS Panorama Appliance 9

https://console.aws.amazon.com/panorama/home#getting-started

AWS Panorama Developer Guide

6. If you need to manually assign an IP address, NTP server, or DNS settings, choose Advanced
network settings. Otherwise, choose Next.

7. Choose Download archive. Choose Next.

8. Copy the configuration archive to the root directory of the USB drive.

9. Connect the USB drive to the USB 3.0 port on the front of the appliance, next to the HDMI
port.

When you connect the USB drive, the appliance copies the configuration archive and network
configuration file to itself and connects to the AWS Cloud. The appliance's status light turns
from green to blue while it completes the connection, and then back to green.

10. To continue, choose Next.

Register and configure the AWS Panorama Appliance 10

AWS Panorama Developer Guide

11. Choose Done.

Upgrade the appliance software

The AWS Panorama Appliance has several software components, including a Linux operating
system, the AWS Panorama application SDK, and supporting computer vision libraries and
frameworks. To ensure that you can use the latest features and applications with your appliance,
upgrade its software after setup and whenever an update is available.

To update the appliance software

1. Open the AWS Panorama console Devices page.

Upgrade the appliance software 11

https://console.aws.amazon.com/panorama/home#devices

AWS Panorama Developer Guide

2. Choose an appliance.

3. Choose Settings

4. Under System software, choose Install software update.

5. Choose a new version and then choose Install.

Important

Before you continue, remove the USB drive from the appliance and format it to delete
its contents. The configuration archive contains sensitive data and is not deleted
automatically.

The upgrade process can take 30 minutes or more. You can monitor its progress in the AWS
Panorama console or on a connected monitor. When the process completes, the appliance reboots.

Add a camera stream

Next, register a camera stream with the AWS Panorama console.

To register a camera stream

1. Open the AWS Panorama console Data sources page.

2. Choose Add data source.

Add a camera stream 12

https://console.aws.amazon.com/panorama/home#data-sources

AWS Panorama Developer Guide

3. Configure the following settings.

• Name – A name for the camera stream.

• Description – A short description of the camera, its location, or other details.

• RTSP URL – A URL that specifies the camera's IP address and the path to the stream. For
example, rtsp://192.168.0.77/live/mpeg4/

• Credentials – If the camera stream is password protected, specify the username and
password.

4. Choose Save.

AWS Panorama stores your camera's credentials securely in AWS Secrets Manager. Multiple
applications can process the same camera stream simultaneously.

Next steps

If you encountered errors during setup, see Troubleshooting.

To deploy a sample application, continue to the next topic.

Next steps 13

AWS Panorama Developer Guide

Deploying the AWS Panorama sample application

After you've set up your AWS Panorama Appliance or compatible device and upgraded its software,
deploy a sample application. In the following sections, you import a sample application with the
AWS Panorama Application CLI and deploy it with the AWS Panorama console.

The sample application uses a machine learning model to classify objects in frames of video from a
network camera. It uses the AWS Panorama Application SDK to load a model, get images, and run
the model. The application then overlays the results on top of the original video and outputs it to a
connected display.

In a retail setting, analyzing foot traffic patterns enables you to predict traffic levels. By combining
the analysis with other data, you can plan for increased staffing needs around holidays and other
events, measure the effectiveness of advertisements and sales promotions, or optimize display
placement and inventory management.

Sections

• Prerequisites

• Import the sample application

• Deploy the application

• View the output

• Enable the SDK for Python

• Clean up

• Next steps

Prerequisites

To follow the procedures in this tutorial, you need a command line terminal or shell to run
commands. In the code listings, commands are preceded by a prompt symbol ($) and the name of
the current directory, when appropriate.

~/panorama-project$ this is a command
this is output

For long commands, we use an escape character (\) to split a command over multiple lines.

Deploying an application 14

AWS Panorama Developer Guide

On Linux and macOS, use your preferred shell and package manager. On Windows 10, you can
install the Windows Subsystem for Linux to get a Windows-integrated version of Ubuntu and
Bash. For help setting up a development environment in Windows, see Setting up a development
environment in Windows.

You use Python to develop AWS Panorama applications and install tools with pip, Python's package
manager. If you don't already have Python, install the latest version. If you have Python 3 but not
pip, install pip with your operating system's package manager, or install a new version of Python,
which comes with pip.

In this tutorial, you use Docker to build the container that runs your application code. Install Docker
from the Docker website: Get Docker

This tutorial uses the AWS Panorama Application CLI to import the sample application, build
packages, and upload artifacts. The AWS Panorama Application CLI uses the AWS Command Line
Interface (AWS CLI) to call service API operations. If you already have the AWS CLI, upgrade it to
the latest version. To install the AWS Panorama Application CLI and AWS CLI, use pip.

$ pip3 install --upgrade awscli panoramacli

Download the sample application, and extract it into your workspace.

• Sample application – aws-panorama-sample.zip

Import the sample application

To import the sample application for use in your account, use the AWS Panorama Application
CLI. The application's folders and manifest contain references to a placeholder account number.
To update these with your account number, run the panorama-cli import-application
command.

aws-panorama-sample$ panorama-cli import-application

The SAMPLE_CODE package, in the packages directory, contains the application's code
and configuration, including a Dockerfile that uses the application base image, panorama-
application. To build the application container that runs on the appliance, use the panorama-
cli build-container command.

Import the sample application 15

https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://www.python.org/downloads/
https://docs.docker.com/get-docker/
https://github.com/awsdocs/aws-panorama-developer-guide/releases/download/v1.0-ga/aws-panorama-sample.zip

AWS Panorama Developer Guide

aws-panorama-sample$ ACCOUNT_ID=$(aws sts get-caller-identity --output text --query
 'Account')
aws-panorama-sample$ panorama-cli build-container --container-asset-name code_asset --
package-path packages/${ACCOUNT_ID}-SAMPLE_CODE-1.0

The final step with the AWS Panorama Application CLI is to register the application's code and
model nodes, and upload assets to an Amazon S3 access point provided by the service. The assets
include the code's container image, the model, and a descriptor file for each. To register the nodes
and upload assets, run the panorama-cli package-application command.

aws-panorama-sample$ panorama-cli package-application
Uploading package model
Registered model with patch version
 bc9c58bd6f83743f26aa347dc86bfc3dd2451b18f964a6de2cc4570cb6f891f9
Uploading package code
Registered code with patch version
 11fd7001cb31ea63df6aaed297d600a5ecf641a987044a0c273c78ceb3d5d806

Deploy the application

Use the AWS Panorama console to deploy the application to your appliance.

To deploy the application

1. Open the AWS Panorama console Deployed applications page.

2. Choose Deploy application.

3. Paste the contents of the application manifest, graphs/aws-panorama-sample/
graph.json, into the text editor. Choose Next.

4. For Application name, enter aws-panorama-sample.

5. Choose Proceed to deploy.

6. Choose Begin deployment.

7. Choose Next without selecting a role.

8. Choose Select device, and then choose your appliance. Choose Next.

9. On the Select data sources step, choose View input(s), and add your camera stream as a data
source. Choose Next.

10. On the Configure step, choose Next.

Deploy the application 16

https://console.aws.amazon.com/panorama/home#deployed-applications

AWS Panorama Developer Guide

11. Choose Deploy, and then choose Done.

12. In the list of deployed applications, choose aws-panorama-sample.

Refresh this page for updates, or use the following script to monitor the deployment from the
command line.

Example monitor-deployment.sh

while true; do
 aws panorama list-application-instances --query 'ApplicationInstances[?Name==`aws-
panorama-sample`]'
 sleep 10
done

[
 {
 "Name": "aws-panorama-sample",
 "ApplicationInstanceId": "applicationInstance-x264exmpl33gq5pchc2ekoi6uu",
 "DefaultRuntimeContextDeviceName": "my-appliance",
 "Status": "DEPLOYMENT_PENDING",
 "HealthStatus": "NOT_AVAILABLE",
 "StatusDescription": "Deployment Workflow has been scheduled.",
 "CreatedTime": 1630010747.443,
 "Arn": "arn:aws:panorama:us-west-2:123456789012:applicationInstance/
applicationInstance-x264exmpl33gq5pchc2ekoi6uu",
 "Tags": {}
 }
]
[
 {
 "Name": "aws-panorama-sample",
 "ApplicationInstanceId": "applicationInstance-x264exmpl33gq5pchc2ekoi6uu",
 "DefaultRuntimeContextDeviceName": "my-appliance",
 "Status": "DEPLOYMENT_PENDING",
 "HealthStatus": "NOT_AVAILABLE",
 "StatusDescription": "Deployment Workflow has completed data validation.",
 "CreatedTime": 1630010747.443,
 "Arn": "arn:aws:panorama:us-west-2:123456789012:applicationInstance/
applicationInstance-x264exmpl33gq5pchc2ekoi6uu",
 "Tags": {}
 }

Deploy the application 17

AWS Panorama Developer Guide

]
...

If the application doesn't start running, check the application and device logs in Amazon
CloudWatch Logs.

View the output

When the deployment is complete, the application starts processing the video stream and sends
logs to CloudWatch.

To view logs in CloudWatch Logs

1. Open the Log groups page of the CloudWatch Logs console.

2. Find AWS Panorama application and appliance logs in the following groups:

• Device logs – /aws/panorama/devices/device-id

• Application logs – /aws/panorama/devices/device-id/applications/instance-
id

2022-08-26 17:43:39 INFO INITIALIZING APPLICATION
2022-08-26 17:43:39 INFO ## ENVIRONMENT VARIABLES
{'PATH': '/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin', 'TERM':
 'xterm', 'container': 'podman'...}
2022-08-26 17:43:39 INFO Configuring parameters.
2022-08-26 17:43:39 INFO Configuring AWS SDK for Python.
2022-08-26 17:43:39 INFO Initialization complete.
2022-08-26 17:43:39 INFO PROCESSING STREAMS
2022-08-26 17:46:19 INFO epoch length: 160.183 s (0.936 FPS)
2022-08-26 17:46:19 INFO avg inference time: 805.597 ms
2022-08-26 17:46:19 INFO max inference time: 120023.984 ms
2022-08-26 17:46:19 INFO avg frame processing time: 1065.129 ms
2022-08-26 17:46:19 INFO max frame processing time: 149813.972 ms
2022-08-26 17:46:29 INFO epoch length: 10.562 s (14.202 FPS)
2022-08-26 17:46:29 INFO avg inference time: 7.185 ms
2022-08-26 17:46:29 INFO max inference time: 15.693 ms
2022-08-26 17:46:29 INFO avg frame processing time: 66.561 ms
2022-08-26 17:46:29 INFO max frame processing time: 123.774 ms

View the output 18

https://console.aws.amazon.com/cloudwatch/home#logsV2:log-groups

AWS Panorama Developer Guide

To view the application's video output, connect the appliance to a monitor with an HDMI cable. By
default, the application shows any classification result that has more than 20% confidence.

Example squeezenet_classes.json

["tench", "goldfish", "great white shark", "tiger shark",
"hammerhead", "electric ray", "stingray", "cock", "hen", "ostrich",
"brambling", "goldfinch", "house finch", "junco", "indigo bunting",
"robin", "bulbul", "jay", "magpie", "chickadee", "water ouzel",
"kite", "bald eagle", "vulture", "great grey owl",
"European fire salamander", "common newt", "eft",
"spotted salamander", "axolotl", "bullfrog", "tree frog",
...

The sample model has 1000 classes including many animals, food, and common objects. Try
pointing your camera at a keyboard or coffee mug.

View the output 19

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/packages/123456789012-SAMPLE_CODE-1.0/squeezenet_classes.json

AWS Panorama Developer Guide

For simplicity, the sample application uses a lightweight classification model. The model outputs a
single array with a probability for each of its classes. Real-world applications more frequently use
object detection models that have multidimensional output. For sample applications with more
complex models, see Sample applications, scripts, and templates.

Enable the SDK for Python

The sample application uses the AWS SDK for Python (Boto) to send metrics to Amazon
CloudWatch. To enable this functionality, create a role that grants the application permission to
send metrics, and redeploy the application with the role attached.

The sample application includes a AWS CloudFormation template that creates a role with the
permissions that it needs. To create the role, use the aws cloudformation deploy command.

$ aws cloudformation deploy --template-file aws-panorama-sample.yml --stack-name aws-
panorama-sample-runtime --capabilities CAPABILITY_NAMED_IAM

To redeploy the application

1. Open the AWS Panorama console Deployed applications page.

2. Choose an application.

3. Choose Replace.

4. Complete the steps to deploy the application. In the Specify IAM role, choose the role that
you created. Its name starts with aws-panorama-sample-runtime.

5. When the deployment completes, open the CloudWatch console and view the metrics in the
AWSPanoramaApplication namespace. Every 150 frames, the application logs and uploads
metrics for frame processing and inference time.

Clean up

If you are done working with the sample application, you can use the AWS Panorama console to
remove it from the appliance.

To remove the application from the appliance

1. Open the AWS Panorama console Deployed applications page.

2. Choose an application.

Enable the SDK for Python 20

https://console.aws.amazon.com/panorama/home#deployed-applications
https://console.aws.amazon.com/cloudwatch/home#metricsV2:graph=~();namespace=~'AWSPanoramaApplication
https://console.aws.amazon.com/panorama/home#deployed-applications

AWS Panorama Developer Guide

3. Choose Delete from device.

Next steps

If you encountered errors while deploying or running the sample application, see Troubleshooting.

To learn more about the sample application's features and implementation, continue to the next
topic.

Next steps 21

AWS Panorama Developer Guide

Developing AWS Panorama applications

You can use the sample application to learn about AWS Panorama application structure, and as a
starting point for your own application.

The following diagram shows the major components of the application running on an AWS
Panorama Appliance. The application code uses the AWS Panorama Application SDK to get images
and interact with the model, which it doesn't have direct access to. The application outputs video
to a connected display but does not send image data outside of your local network.

In this example, the application uses the AWS Panorama Application SDK to get frames of video
from a camera, preprocess the video data, and send the data to a computer vision model that
detects objects. The application displays the result on an HDMI display connected to the appliance.

Sections

• The application manifest

• Building with the sample application

• Changing the computer vision model

• Preprocessing images

• Uploading metrics with the SDK for Python

• Next steps

Developing applications 22

AWS Panorama Developer Guide

The application manifest

The application manifest is a file named graph.json in the graphs folder. The manifest defines
the application's components, which are packages, nodes, and edges.

Packages are code, configuration, and binary files for application code, models, cameras, and
displays. The sample application uses 4 packages:

Example graphs/aws-panorama-sample/graph.json – Packages

 "packages": [
 {
 "name": "123456789012::SAMPLE_CODE",
 "version": "1.0"
 },
 {
 "name": "123456789012::SQUEEZENET_PYTORCH_V1",
 "version": "1.0"
 },
 {
 "name": "panorama::abstract_rtsp_media_source",
 "version": "1.0"
 },
 {
 "name": "panorama::hdmi_data_sink",
 "version": "1.0"
 }
],

The first two packages are defined within the application, in the packages directory. They contain
the code and model specific to this application. The second two packages are generic camera and
display packages provided by the AWS Panorama service. The abstract_rtsp_media_source
package is a placeholder for a camera that you override during deployment. The hdmi_data_sink
package represents the HDMI output connector on the device.

Nodes are interfaces to packages, as well as non-package parameters that can have default
values that you override at deploy time. The code and model packages define interfaces in
package.json files that specify inputs and outputs, which can be video streams or a basic data
type such as a float, boolean, or string.

For example, the code_node node refers to an interface from the SAMPLE_CODE package.

The application manifest 23

AWS Panorama Developer Guide

 "nodes": [
 {
 "name": "code_node",
 "interface": "123456789012::SAMPLE_CODE.interface",
 "overridable": false,
 "launch": "onAppStart"
 },

This interface is defined in the package configuration file, package.json. The interface specifies
that the package is business logic and that it takes a video stream named video_in and a floating
point number named threshold as inputs. The interface also specifies that the code requires a
video stream buffer named video_out to output video to a display

Example packages/123456789012-SAMPLE_CODE-1.0/package.json

{
 "nodePackage": {
 "envelopeVersion": "2021-01-01",
 "name": "SAMPLE_CODE",
 "version": "1.0",
 "description": "Computer vision application code.",
 "assets": [],
 "interfaces": [
 {
 "name": "interface",
 "category": "business_logic",
 "asset": "code_asset",
 "inputs": [
 {
 "name": "video_in",
 "type": "media"
 },
 {
 "name": "threshold",
 "type": "float32"
 }
],
 "outputs": [
 {
 "description": "Video stream output",
 "name": "video_out",
 "type": "media"

The application manifest 24

AWS Panorama Developer Guide

 }
]
 }
]
 }
}

Back in the application manifest, the camera_node node represents a video stream from a camera.
It includes a decorator that appears in the console when you deploy the application, prompting you
to choose a camera stream.

Example graphs/aws-panorama-sample/graph.json – Camera node

 {
 "name": "camera_node",
 "interface": "panorama::abstract_rtsp_media_source.rtsp_v1_interface",
 "overridable": true,
 "launch": "onAppStart",
 "decorator": {
 "title": "Camera",
 "description": "Choose a camera stream."
 }
 },

A parameter node, threshold_param, defines the confidence threshold parameter used by the
application code. It has a default value of 60, and can be overriden during deployment.

Example graphs/aws-panorama-sample/graph.json – Parameter node

 {
 "name": "threshold_param",
 "interface": "float32",
 "value": 60.0,
 "overridable": true,
 "decorator": {
 "title": "Confidence threshold",
 "description": "The minimum confidence for a classification to be
 recorded."
 }
 }

The application manifest 25

AWS Panorama Developer Guide

The final section of the application manifest, edges, makes connections between nodes. The
camera's video stream and the threshold parameter connect to the input of the code node, and the
video output from the code node connects to the display.

Example graphs/aws-panorama-sample/graph.json – Edges

 "edges": [
 {
 "producer": "camera_node.video_out",
 "consumer": "code_node.video_in"
 },
 {
 "producer": "code_node.video_out",
 "consumer": "output_node.video_in"
 },
 {
 "producer": "threshold_param",
 "consumer": "code_node.threshold"
 }
]

Building with the sample application

You can use the sample application as a starting point for your own application.

The name of each package must be unique in your account. If you and another user in your account
both use a generic package name such as code or model, you might get the wrong version of
the package when you deploy. Change the name of the code package to one that represents your
application.

To rename the code package

1. Rename the package folder: packages/123456789012-SAMPLE_CODE-1.0/.

2. Update the package name in the following locations.

• Application manifest – graphs/aws-panorama-sample/graph.json

• Package configuration – packages/123456789012-SAMPLE_CODE-1.0/package.json

• Build script – 3-build-container.sh

Building with the sample application 26

AWS Panorama Developer Guide

To update the application's code

1. Modify the application code in packages/123456789012-SAMPLE_CODE-1.0/src/
application.py.

2. To build the container, run 3-build-container.sh.

aws-panorama-sample$./3-build-container.sh
TMPDIR=$(pwd) docker build -t code_asset packages/123456789012-SAMPLE_CODE-1.0
Sending build context to Docker daemon 61.44kB
Step 1/2 : FROM public.ecr.aws/panorama/panorama-application
 ---> 9b197f256b48
Step 2/2 : COPY src /panorama
 ---> 55c35755e9d2
Successfully built 55c35755e9d2
Successfully tagged code_asset:latest
docker export --output=code_asset.tar $(docker create code_asset:latest)
gzip -9 code_asset.tar
Updating an existing asset with the same name
{
 "name": "code_asset",
 "implementations": [
 {
 "type": "container",
 "assetUri":
 "98aaxmpl1c1ef64cde5ac13bd3be5394e5d17064beccee963b4095d83083c343.tar.gz",
 "descriptorUri":
 "1872xmpl129481ed053c52e66d6af8b030f9eb69b1168a29012f01c7034d7a8f.json"
 }
]
}
Container asset for the package has been succesfully built at ~/aws-panorama-
sample-dev/
assets/98aaxmpl1c1ef64cde5ac13bd3be5394e5d17064beccee963b4095d83083c343.tar.gz

The CLI automatically deletes the old container asset from the assets folder and updates the
package configuration.

3. To upload the packages, run 4-package-application.py.

4. Open the AWS Panorama console Deployed applications page.

5. Choose an application.

6. Choose Replace.

Building with the sample application 27

https://console.aws.amazon.com/panorama/home#deployed-applications

AWS Panorama Developer Guide

7. Complete the steps to deploy the application. If needed, you can make changes to the
application manifest, camera streams, or parameters.

Changing the computer vision model

The sample application includes a computer vision model. To use your own model, modify the
model node's configuration, and use the AWS Panorama Application CLI to import it as an asset.

The following example uses an MXNet SSD ResNet50 model that you can download from this
guide's GitHub repo: ssd_512_resnet50_v1_voc.tar.gz

To change the sample application's model

1. Rename the package folder to match your model. For example, to
packages/123456789012-SSD_512_RESNET50_V1_VOC-1.0/.

2. Update the package name in the following locations.

• Application manifest – graphs/aws-panorama-sample/graph.json

• Package configuration – packages/123456789012-SSD_512_RESNET50_V1_VOC-1.0/
package.json

3. In the package configuration file (package.json). Change the assets value to a blank array.

{
 "nodePackage": {
 "envelopeVersion": "2021-01-01",
 "name": "SSD_512_RESNET50_V1_VOC",
 "version": "1.0",
 "description": "Compact classification model",
 "assets": [],

4. Open the package descriptor file (descriptor.json). Update the framework and shape
values to match your model.

{
 "mlModelDescriptor": {
 "envelopeVersion": "2021-01-01",
 "framework": "MXNET",
 "inputs": [
 {

Changing the computer vision model 28

https://github.com/awsdocs/aws-panorama-developer-guide/releases/download/v0.1-preview/ssd_512_resnet50_v1_voc.tar.gz

AWS Panorama Developer Guide

 "name": "data",
 "shape": [1, 3, 512, 512]
 }
]
 }
}

The value for shape, 1,3,512,512, indicates the number of images that the model takes as
input (1), the number of channels in each image (3--red, green, and blue), and the dimensions
of the image (512 x 512). The values and order of the array varies among models.

5. Import the model with the AWS Panorama Application CLI. The AWS Panorama Application CLI
copies the model and descriptor files into the assets folder with unique names, and updates
the package configuration.

aws-panorama-sample$ panorama-cli add-raw-model --model-asset-name model-asset \
--model-local-path ssd_512_resnet50_v1_voc.tar.gz \
--descriptor-path packages/123456789012-SSD_512_RESNET50_V1_VOC-1.0/descriptor.json
 \
--packages-path packages/123456789012-SSD_512_RESNET50_V1_VOC-1.0
{
 "name": "model-asset",
 "implementations": [
 {
 "type": "model",
 "assetUri":
 "b1a1589afe449b346ff47375c284a1998c3e1522b418a7be8910414911784ce1.tar.gz",
 "descriptorUri":
 "a6a9508953f393f182f05f8beaa86b83325f4a535a5928580273e7fe26f79e78.json"
 }
]
}

6. To upload the model, run panorama-cli package-application.

$ panorama-cli package-application
Uploading package SAMPLE_CODE
Patch Version 1844d5a59150d33f6054b04bac527a1771fd2365e05f990ccd8444a5ab775809
 already registered, ignoring upload
Uploading package SSD_512_RESNET50_V1_VOC
Patch version for the package
 244a63c74d01e082ad012ebf21e67eef5d81ce0de4d6ad1ae2b69d0bc498c8fd

Changing the computer vision model 29

AWS Panorama Developer Guide

upload: assets/
b1a1589afe449b346ff47375c284a1998c3e1522b418a7be8910414911784ce1.tar.gz to
 s3://arn:aws:s3:us-west-2:454554846382:accesspoint/panorama-123456789012-
wc66m5eishf4si4sz5jefhx
63a/123456789012/nodePackages/SSD_512_RESNET50_V1_VOC/binaries/
b1a1589afe449b346ff47375c284a1998c3e1522b418a7be8910414911784ce1.tar.gz
upload: assets/
a6a9508953f393f182f05f8beaa86b83325f4a535a5928580273e7fe26f79e78.json to
 s3://arn:aws:s3:us-west-2:454554846382:accesspoint/panorama-123456789012-
wc66m5eishf4si4sz5jefhx63
a/123456789012/nodePackages/SSD_512_RESNET50_V1_VOC/binaries/
a6a9508953f393f182f05f8beaa86b83325f4a535a5928580273e7fe26f79e78.json
{
 "ETag": "\"2381dabba34f4bc0100c478e67e9ab5e\"",
 "ServerSideEncryption": "AES256",
 "VersionId": "KbY5fpESdpYamjWZ0YyGqHo3.LQQWUC2"
}
Registered SSD_512_RESNET50_V1_VOC with patch version
 244a63c74d01e082ad012ebf21e67eef5d81ce0de4d6ad1ae2b69d0bc498c8fd
Uploading package SQUEEZENET_PYTORCH_V1
Patch Version 568138c430e0345061bb36f05a04a1458ac834cd6f93bf18fdacdffb62685530
 already registered, ignoring upload

7. Update the application code. Most of the code can be reused. The code specific to the model's
response is in the process_results method.

 def process_results(self, inference_results, stream):
 """Processes output tensors from a computer vision model and annotates a
 video frame."""
 for class_tuple in inference_results:
 indexes = self.topk(class_tuple[0])
 for j in range(2):
 label = 'Class [%s], with probability %.3f.'%
 (self.classes[indexes[j]], class_tuple[0][indexes[j]])
 stream.add_label(label, 0.1, 0.25 + 0.1*j)

Depending on your model, you might also need to update the preprocess method.

Preprocessing images

Before the application sends an image to the model, it prepares it for inference by resizing it and
normalizing color data. The model that the application uses requires a 224 x 224 pixel image with

Preprocessing images 30

AWS Panorama Developer Guide

three color channels, to match the number of inputs in its first layer. The application adjusts each
color value by converting it to a number between 0 and 1, subtracting the average value for that
color, and dividing by the standard deviation. Finally, it combines the color channels and converts it
to a NumPy array that the model can process.

Example application.py – Preprocessing

 def preprocess(self, img, width):
 resized = cv2.resize(img, (width, width))
 mean = [0.485, 0.456, 0.406]
 std = [0.229, 0.224, 0.225]
 img = resized.astype(np.float32) / 255.
 img_a = img[:, :, 0]
 img_b = img[:, :, 1]
 img_c = img[:, :, 2]
 # Normalize data in each channel
 img_a = (img_a - mean[0]) / std[0]
 img_b = (img_b - mean[1]) / std[1]
 img_c = (img_c - mean[2]) / std[2]
 # Put the channels back together
 x1 = [[[], [], []]]
 x1[0][0] = img_a
 x1[0][1] = img_b
 x1[0][2] = img_c
 return np.asarray(x1)

This process gives the model values in a predictable range centered around 0. It matches the
preprocessing applied to images in the training dataset, which is a standard approach but can vary
per model.

Uploading metrics with the SDK for Python

The sample application uses the SDK for Python to upload metrics to Amazon CloudWatch.

Example application.py – SDK for Python

 def process_streams(self):
 """Processes one frame of video from one or more video streams."""
 ...
 logger.info('epoch length: {:.3f} s ({:.3f} FPS)'.format(epoch_time,
 epoch_fps))
 logger.info('avg inference time: {:.3f} ms'.format(avg_inference_time))

Uploading metrics with the SDK for Python 31

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/packages/123456789012-SAMPLE_CODE-1.0/application.py
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/packages/123456789012-SAMPLE_CODE-1.0/application.py

AWS Panorama Developer Guide

 logger.info('max inference time: {:.3f} ms'.format(max_inference_time))
 logger.info('avg frame processing time: {:.3f}
 ms'.format(avg_frame_processing_time))
 logger.info('max frame processing time: {:.3f}
 ms'.format(max_frame_processing_time))
 self.inference_time_ms = 0
 self.inference_time_max = 0
 self.frame_time_ms = 0
 self.frame_time_max = 0
 self.epoch_start = time.time()
 self.put_metric_data('AverageInferenceTime', avg_inference_time)
 self.put_metric_data('AverageFrameProcessingTime',
 avg_frame_processing_time)

 def put_metric_data(self, metric_name, metric_value):
 """Sends a performance metric to CloudWatch."""
 namespace = 'AWSPanoramaApplication'
 dimension_name = 'Application Name'
 dimension_value = 'aws-panorama-sample'
 try:
 metric = self.cloudwatch.Metric(namespace, metric_name)
 metric.put_data(
 Namespace=namespace,
 MetricData=[{
 'MetricName': metric_name,
 'Value': metric_value,
 'Unit': 'Milliseconds',
 'Dimensions': [
 {
 'Name': dimension_name,
 'Value': dimension_value
 },
 {
 'Name': 'Device ID',
 'Value': self.device_id
 }
]
 }]
)
 logger.info("Put data for metric %s.%s", namespace, metric_name)
 except ClientError:
 logger.warning("Couldn't put data for metric %s.%s", namespace,
 metric_name)
 except AttributeError:

Uploading metrics with the SDK for Python 32

AWS Panorama Developer Guide

 logger.warning("CloudWatch client is not available.")

It gets permission from a runtime role that you assign during deployment. The role is defined in
the aws-panorama-sample.yml AWS CloudFormation template.

Example aws-panorama-sample.yml

Resources:
 runtimeRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 -
 Effect: Allow
 Principal:
 Service:
 - panorama.amazonaws.com
 Action:
 - sts:AssumeRole
 Policies:
 - PolicyName: cloudwatch-putmetrics
 PolicyDocument:
 Version: 2012-10-17
 Statement:
 - Effect: Allow
 Action: 'cloudwatch:PutMetricData'
 Resource: '*'
 Path: /service-role/

The sample application installs the SDK for Python and other dependencies with pip. When you
build the application container, the Dockerfile runs commands to install libraries on top of what
comes with the base image.

Example Dockerfile

FROM public.ecr.aws/panorama/panorama-application
WORKDIR /panorama
COPY . .
RUN pip install --no-cache-dir --upgrade pip && \
 pip install --no-cache-dir -r requirements.txt

Uploading metrics with the SDK for Python 33

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/aws-panorama-sample.yml
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/packages/123456789012-SAMPLE_CODE-1.0/Dockerfile

AWS Panorama Developer Guide

To use the AWS SDK in your application code, first modify the template to add permissions for all
API actions that the application uses. Update the AWS CloudFormation stack by running the 1-
create-role.sh each time you make a change. Then, deploy changes to your application code.

For actions that modify or use existing resources, it is a best practice to minimize the scope of this
policy by specifying a name or pattern for the target Resource in a separate statement. For details
on the actions and resources supported by each service, see Action, resources, and condition keys in
the Service Authorization Reference

Next steps

For instructions on using the AWS Panorama Application CLI to build applications and create
packages from scratch, see the CLI's README.

• github.com/aws/aws-panorama-cli

For more sample code and a test utility that you can use to validate your application code prior to
deploying, visit the AWS Panorama samples repository.

• github.com/aws-samples/aws-panorama-samples

Next steps 34

https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://github.com/aws/aws-panorama-cli
https://github.com/aws-samples/aws-panorama-samples

AWS Panorama Developer Guide

Supported computer vision models and cameras

AWS Panorama supports models built with PyTorch, Apache MXNet, and TensorFlow. When you
deploy an application, AWS Panorama compiles your model in SageMaker AI Neo. You can build
models in Amazon SageMaker AI or in your development environment, as long as you use layers
that are compatible with SageMaker AI Neo.

To process video and get images to send to a model, the AWS Panorama Appliance connects to an
H.264 encoded video stream with the RTSP protocol. AWS Panorama tests a variety of common
cameras for compatibility.

Sections

• Supported models

• Supported cameras

Supported models

When you build an application for AWS Panorama, you provide a machine learning model that the
application uses for computer vision. You can use pre-built and pre-trained models provided by
model frameworks, a sample model, or a model that you build and train yourself.

Note

AWS Panorama version 8.0.29 ends support for Sagemaker Neo models. See the section
called “Using AWS Panorama after update 8.0.29” for more information on how to handle
your applications post update.

Note

For a list of pre-built models that have been tested with AWS Panorama, see Model
compatibility.

When you deploy an application, AWS Panorama uses the SageMaker AI Neo compiler to compile
your computer vision model. SageMaker AI Neo is a compiler that optimizes models to run

Supported models and cameras 35

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/resources/model-compatibility.md
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/resources/model-compatibility.md

AWS Panorama Developer Guide

efficiently on a target platform, which can be an instance in Amazon Elastic Compute Cloud
(Amazon EC2), or an edge device such as the AWS Panorama Appliance.

AWS Panorama supports the versions of PyTorch, Apache MXNet, and TensorFlow that are
supported for edge devices by SageMaker AI Neo. When you build your own model, you can use the
framework versions listed in the SageMaker AI Neo release notes. In SageMaker AI, you can use the
built-in image classification algorithm.

For more information about using models in AWS Panorama, see Computer vision models.

Supported cameras

The AWS Panorama Appliance supports H.264 video streams from cameras that output RTSP over
a local network. For camera streams greater than 2 megapixels, the appliance scales down the
image to 1920x1080 pixels or an equivalent size that preserves the stream's aspect ratio.

The following camera models have been tested for compatibility with the AWS Panorama
Appliance:

• Axis – M3057-PLVE, M3058-PLVE, P1448-LE, P3225-LV Mk II

• LaView – LV-PB3040W

• Vivotek – IB9360-H

• Amcrest – IP2M-841B

• Anpviz – IPC-B850W-S-3X, IPC-D250W-S

• WGCC – Dome PoE 4MP ONVIF

For the appliance's hardware specifications, see AWS Panorama Appliance specifications.

Supported cameras 36

https://aws.amazon.com/releasenotes/sagemaker-neo-supported-frameworks-and-operators/
https://docs.aws.amazon.com/sagemaker/latest/dg/image-classification.html
https://www.axis.com/
https://www.laviewsecurity.com/
https://www.vivotek.com/
https://amcrest.com/

AWS Panorama Developer Guide

AWS Panorama Appliance specifications

The AWS Panorama Appliance has the following hardware specifications. For other compatible
devices, refer to the manufacturer's documentation.

Component Specification

Processor and GPU Nvidia Jetson AGX Xavier with 32GB RAM

Ethernet 2x 1000 Base-T (Gigabyte)

USB 1x USB 2.0 and 1x USB 3.0 type-A female

HDMI output 2.0a

Dimensions 7.75” x 9.6” x 1.6” (197mm x 243mm x 40mm)

Weight 3.7lbs (1.7kg)

Power supply 100V-240V 50-60Hz AC 65W

Power input IEC 60320 C6 (3-pin) receptacle

Dust and liquid protection IP-62

EMI/EMC regulatory compliance FCC Part-15 (US)

Thermal touch limits IEC-62368

Operating temperature -20°C to 60°C

Operating humidity 0% to 95% RH

Storage temperature -20°C to 85°C

Storage humidity Uncontrolled for low temperature. 90% RH at
high temperature

Cooling Forced-air heat extraction (fan)

Mounting options Rackmount or free standing

Appliance specifications 37

https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit

AWS Panorama Developer Guide

Component Specification

Power cord 6-foot (1.8 meter)

Power control Push-button

Reset Momentary switch

Status and network LEDs Programmable 3-color RGB LED

Wi-Fi, Bluetooth and SD card storage are present on the appliance but are not usable.

The AWS Panorama Appliance includes two screws for mounting on a server rack. You can mount
two appliances side-by-side on a 19-inch rack.

Appliance specifications 38

AWS Panorama Developer Guide

Service quotas

AWS Panorama applies quotas to the resources that you create in your account and the
applications that you deploy. If you use AWS Panorama in multiple AWS Regions, quotas apply
separately to each Region. AWS Panorama quotas are not adjustable.

Resources in AWS Panorama include devices, application node packages, and application instances.

• Devices – Up to 50 registered appliances per Region.

• Node packages – 50 packages per Region, with up to 20 versions per package.

• Application instances – Up to 10 applications per device. Each application can monitor up to 8
camera streams. Deployments are limited to 200 per day for each device.

When you use the AWS Panorama Application CLI, AWS Command Line Interface, or AWS SDK with
the AWS Panorama service, quotas apply to the number of API calls that you make. You can make
up to 5 requests total per second. A subset of API operations that create or modify resources apply
an additional limit of 1 request per second.

For a complete list of quotas, visit the Service Quotas console, or see AWS Panorama endpoints and
quotas in the Amazon Web Services General Reference.

Quotas 39

https://console.aws.amazon.com/servicequotas/home/services/panorama/quotas
https://docs.aws.amazon.com/general/latest/gr/panorama.html
https://docs.aws.amazon.com/general/latest/gr/panorama.html

AWS Panorama Developer Guide

AWS Panorama permissions

You can use AWS Identity and Access Management (IAM) to manage access to the AWS Panorama
service and resources like appliances and applications. For users in your account that use AWS
Panorama, you manage permissions in a permissions policy that you can apply to IAM roles. To
manage permissions for an application, you create a role and assign it to the application.

To manage permissions for users in your account, use the managed policy that AWS Panorama
provides, or write your own. You need permissions to other AWS services to get application and
appliance logs, view metrics, and assign a role to an application.

An AWS Panorama Appliance also has a role that grants it permission to access AWS services and
resources. The appliance's role is one of the service roles that the AWS Panorama service uses to
access other services on your behalf.

An application role is a separate service role that you create for an application, to grant it
permission to use AWS services with the AWS SDK for Python (Boto). To create an application role,
you need administrative privileges or the help of an administrator.

You can restrict user permissions by the resource an action affects and, in some cases, by additional
conditions. For example, you can specify a pattern for the Amazon Resource Name (ARN) of an
application that requires a user to include their user name in the name of applications that they
create. For the resources and conditions that are supported by each action, see Actions, resources,
and condition keys for AWS Panorama in the Service Authorization Reference.

For more information, see What is IAM? in the IAM User Guide.

Topics

• Identity-based IAM policies for AWS Panorama

• AWS Panorama service roles and cross-service resources

• Granting permissions to an application

40

https://docs.aws.amazon.com/service-authorization/latest/reference/list_awspanorama.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awspanorama.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/

AWS Panorama Developer Guide

Identity-based IAM policies for AWS Panorama

To grant users in your account access to AWS Panorama, you use identity-based policies in AWS
Identity and Access Management (IAM). Apply identity-based policies to IAM roles that are
associated with a user. You can also grant users in another account permission to assume a role in
your account and access your AWS Panorama resources.

AWS Panorama provides managed policies that grant access to AWS Panorama API actions and, in
some cases, access to other services used to develop and manage AWS Panorama resources. AWS
Panorama updates the managed policies as needed, to ensure that your users have access to new
features when they're released.

• AWSPanoramaFullAccess – Provides full access to AWS Panorama, AWS Panorama access points
in Amazon S3, appliance credentials in AWS Secrets Manager, and appliance logs in Amazon
CloudWatch. Includes permission to create a service-linked role for AWS Panorama. View policy

The AWSPanoramaFullAccess policy allows you to tag AWS Panorama resources, but does not
have all tag-related permissions used by the AWS Panorama console. To grant these permissions,
add the following policy.

• ResourceGroupsandTagEditorFullAccess – View policy

The AWSPanoramaFullAccess policy does not include permission to purchase devices from the
AWS Panorama console. To grant these permissions, add the following policy.

• ElementalAppliancesSoftwareFullAccess – View policy

Managed policies grant permission to API actions without restricting the resources that a user can
modify. For finer-grained control, you can create your own policies that limit the scope of a user's
permissions. Use the full-access policy as a starting point for your policies.

Creating service roles

The first time you use the AWS Panorama console, you need permission to create the
service role used by the AWS Panorama Appliance. A service role gives a service permission
to manage resources or interact with other services. Create this role before granting access
to your users.

User policies 41

https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AWSPanoramaFullAccess
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/ResourceGroupsandTagEditorFullAccess
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/ElementalAppliancesSoftwareFullAccess
https://console.aws.amazon.com/panorama/home

AWS Panorama Developer Guide

For details on the resources and conditions that you can use to limit the scope of a user's
permissions in AWS Panorama, see Actions, resources, and condition keys for AWS Panorama in the
Service Authorization Reference.

User policies 42

https://docs.aws.amazon.com/service-authorization/latest/reference/list_awspanorama.html

AWS Panorama Developer Guide

AWS Panorama service roles and cross-service resources

AWS Panorama uses other AWS services to manage the AWS Panorama Appliance, store data,
and import application resources. A service role gives a service permission to manage resources or
interact with other services. When you sign in to the AWS Panorama console for the first time, you
create the following service roles:

• AWSServiceRoleForAWSPanorama – Allows AWS Panorama to manage resources in AWS IoT,
AWS Secrets Manager, and AWS Panorama.

Managed policy: AWSPanoramaServiceLinkedRolePolicy

• AWSPanoramaApplianceServiceRole – Allows an AWS Panorama Appliance to upload logs to
CloudWatch, and to get objects from Amazon S3 access points created by AWS Panorama.

Managed policy: AWSPanoramaApplianceServiceRolePolicy

To view the permissions attached to each role, use the IAM console. Wherever possible, the role's
permissions are restricted to resources that match a naming pattern that AWS Panorama uses. For
example, AWSServiceRoleForAWSPanorama grants only permission for the service to access
AWS IoT resources that have panorama in their name.

Sections

• Securing the appliance role

• Use of other services

Securing the appliance role

The AWS Panorama Appliance uses the AWSPanoramaApplianceServiceRole role to access
resources in your account. The appliance has permission to upload logs to CloudWatch Logs,
read camera stream credentials from AWS Secrets Manager, and to access application artifacts in
Amazon Simple Storage Service (Amazon S3) access points that AWS Panorama creates.

Note

Applications don't use the appliance's permissions. To give your application permission to
use AWS services, create an application role.

Service roles 43

https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/aws-service-role/AWSPanoramaServiceLinkedRolePolicy
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/aws-service-role/AWSPanoramaApplianceServiceRolePolicy
https://console.aws.amazon.com/iam

AWS Panorama Developer Guide

AWS Panorama uses the same service role with all appliances in your account, and does not use
roles across accounts. For an added layer of security, you can modify the appliance role's trust
policy to enforce this explicitly, which is a best practice when you use roles to grant a service
permission to access resources in your account.

To update the appliance role trust policy

1. Open the appliance role in the IAM console: AWSPanoramaApplianceServiceRole

2. Choose Edit trust relationship.

3. Update the policy contents and then choose Update trust policy.

The following trust policy includes a condition that ensures that when AWS Panorama assumes the
appliance role, it is doing so for an appliance in your account. The aws:SourceAccount condition
compares the account ID specified by AWS Panorama to the one that you include in the policy.

Example trust policy – Specific account

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "panorama.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "StringEquals": {
 "aws:SourceAccount": "123456789012"
 }
 }
 }
]
}

If you want to restrict AWS Panorama further, and allow it to only assume the role with a specific
device, you can specify the device by ARN. The aws:SourceArn condition compares the ARN of
the appliance specified by AWS Panorama to the one that you include in the policy.

Securing the appliance role 44

https://console.aws.amazon.com/iam/home#/roles/AWSPanoramaApplianceServiceRole?section=trust

AWS Panorama Developer Guide

Example trust policy – Single appliance

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "panorama.amazonaws.com"
 },
 "Action": "sts:AssumeRole",
 "Condition": {
 "ArnLike": {
 "aws:SourceArn": "arn:aws:panorama:us-east-1:123456789012:device/
device-lk7exmplpvcr3heqwjmesw76ky"
 },
 "StringEquals": {
 "aws:SourceAccount": "123456789012"
 }
 }
 }
]
}

If you reset and reprovision the appliance, you must remove the source ARN condition temporarily
and then add it again with the new device ID.

For more information on these conditions, and security best practices when services use roles to
access resources in your account, see The confused deputy problem in the IAM User Guide.

Use of other services

AWS Panorama creates or accesses resources in the following services:

• AWS IoT – Things, policies, certificates, and jobs for the AWS Panorama Appliance

• Amazon S3 – Access points for staging application models, code, and configurations.

• Secrets Manager – Short-term credentials for the AWS Panorama Appliance.

For information about Amazon Resource Name (ARN) format or permission scopes for each service,
see the topics in the IAM User Guide that are linked to in this list.

Use of other services 45

https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsiot.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazons3.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awssecretsmanager.html

AWS Panorama Developer Guide

Granting permissions to an application

You can create a role for your application to grant it permission to call AWS services. By default,
applications do not have any permissions. You create an application role in IAM and assign it to an
application during deployment. To grant your application only the permissions that it needs, create
a role for it with permissions for specific API actions.

The sample application includes an AWS CloudFormation template and script that create an
application role. It is a service role that AWS Panorama can assume. This role grants permission for
the application to call CloudWatch to upload metrics.

Example aws-panorama-sample.yml – Application role

Resources:
 runtimeRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 -
 Effect: Allow
 Principal:
 Service:
 - panorama.amazonaws.com
 Action:
 - sts:AssumeRole
 Policies:
 - PolicyName: cloudwatch-putmetrics
 PolicyDocument:
 Version: 2012-10-17
 Statement:
 - Effect: Allow
 Action: 'cloudwatch:PutMetricData'
 Resource: '*'
 Path: /service-role/

You can extend this script to grant permissions to other services, by specifying a list of API actions
or patterns for the value of Action.

For more information on permissions in AWS Panorama, see AWS Panorama permissions.

Application role 46

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/aws-panorama-sample.yml

AWS Panorama Developer Guide

Managing the AWS Panorama Appliance

The AWS Panorama Appliance is the hardware that runs your applications. You use the AWS
Panorama console to register an appliance, update its software, and deploy applications to it. The
software on the AWS Panorama Appliance connects to camera streams, sends frames of video to
your application, and displays video output on an attached display.

After setting up your appliance or another compatible device, you register cameras for use with
applications. You manage camera streams in the AWS Panorama console. When you deploy an
application, you choose which camera streams the appliance sends to it for processing.

For tutorials that introduce the AWS Panorama Appliance with a sample application, see Getting
started with AWS Panorama.

Topics

• Managing an AWS Panorama Appliance

• Connecting the AWS Panorama Appliance to your network

• Managing camera streams in AWS Panorama

• Manage applications on an AWS Panorama Appliance

• AWS Panorama Appliance buttons and lights

47

AWS Panorama Developer Guide

Managing an AWS Panorama Appliance

You use the AWS Panorama console to configure, upgrade or deregister the AWS Panorama
Appliance and other compatible devices.

To set up an appliance, follow the instructions in the getting started tutorial. The setup process
creates the resources in AWS Panorama that track your appliance and coordinate updates and
deployments.

To register an appliance with the AWS Panorama API, see Automate device registration.

Sections

• Update the appliance software

• Deregister an appliance

• Reboot an appliance

• Reset an appliance

Update the appliance software

You view and deploy software updates for the appliance in the AWS Panorama console. Updates
can be required or optional. When a required update is available, the console prompts you to apply
it. You can apply optional updates on the appliance Settings page.

To update the appliance software

1. Open the AWS Panorama console Devices page.

2. Choose an appliance.

3. Choose Settings

4. Under System software, choose Install software update.

Managing 48

https://console.aws.amazon.com/panorama/home#devices

AWS Panorama Developer Guide

5. Choose a new version and then choose Install.

Deregister an appliance

If you are done working with an appliance, you can use the AWS Panorama console to deregister it
and delete the associated AWS IoT resources.

To delete an appliance

1. Open the AWS Panorama console Devices page.

2. Choose the appliance's name.

3. Choose Delete.

4. Enter the appliance's name and choose Delete.

When you delete an appliance from the AWS Panorama service, data on the appliance is not
deleted automatically. A deregistered appliance can't connect to AWS services and can't be
registered again until it is reset.

Reboot an appliance

You can reboot an appliance remotely.

To reboot an appliance

1. Open the AWS Panorama console Devices page.

2. Choose the appliance's name.

3. Choose Reboot.

Deregister an appliance 49

https://console.aws.amazon.com/panorama/home#devices
https://console.aws.amazon.com/panorama/home#devices

AWS Panorama Developer Guide

The console sends a message to the appliance to reboot it. To receive the signal, the appliance
must be able to connect to AWS IoT. To reboot an appliance with the AWS Panorama API, see
Reboot appliances.

Reset an appliance

To use an appliance in a different Region or with a different account, you must reset it and
reprovision it with a new certificate. Resetting the device applies the most recent required software
version and deletes all account data.

To start a reset operation, the appliance must be plugged in and powered down. Press and hold
both the power and reset buttons for five seconds. When you release the buttons, the status light
blinks orange. Wait until the status light blinks green before provisioning or disconnecting the
appliance.

You can also reset the appliance software without deleting certificates from the device. For more
information, see Power and reset buttons.

Reset an appliance 50

AWS Panorama Developer Guide

Connecting the AWS Panorama Appliance to your network

The AWS Panorama Appliance requires connectivity to both the AWS cloud and your on-premises
network of IP cameras. You can connect the appliance to a single firewall that grants access to
both, or connect each of the device's two network interfaces to a different subnet. In either case,
you must secure the appliance's network connections to prevent unauthorized access to your
camera streams.

Sections

• Single network configuration

• Dual network configuration

• Configuring service access

• Configuring local network access

• Private connectivity

Single network configuration

The appliance has two Ethernet ports. If you route all traffic to and from the device through a
single router, you can use the second port for redundancy in case the physical connection to the
first port is broken. Configure your router to allow the appliance to connect only to camera streams
and the internet, and to block camera streams from otherwise leaving your internal network.

For details on the ports and endpoints that the appliance needs access to, see Configuring service
access and Configuring local network access.

Network setup 51

AWS Panorama Developer Guide

Dual network configuration

For an extra layer of security, you can place the appliance in an internet-connected network
separate from your camera network. A firewall between your restricted camera network and the
appliance's network only allows the appliance to access video streams. If your camera network was
previously air-gapped for security purposes, you might prefer this method over connecting the
camera network to a router that also grants access to the internet.

The following example shows the appliance connecting to a different subnet on each port. The
router places the eth0 interface on a subnet that routes to the camera network, and eth1 on a
subnet that routes to the internet.

You can confirm the IP address and MAC address of each port in the AWS Panorama console.

Configuring service access

During provisioning, you can configure the appliance to request a specific IP address. Choose an IP
address ahead of time to simplify firewall configuration and ensure that the appliance's address
doesn't change if it's offline for a long period of time.

The appliance uses AWS services to coordinate software updates and deployments. Configure your
firewall to allow the appliance to connect to these endpoints.

Internet access

• AWS IoT (HTTPS and MQTT, ports 443, 8443 and 8883) – AWS IoT Core and device
management endpoints. For details, see AWS IoT Device Management endpoints and quotas in
the Amazon Web Services General Reference.

Dual network configuration 52

https://docs.aws.amazon.com/general/latest/gr/iot_device_management.html

AWS Panorama Developer Guide

• AWS IoT credentials (HTTPS, port 443) – credentials.iot.<region>.amazonaws.com and
subdomains.

• Amazon Elastic Container Registry (HTTPS, port 443) –
api.ecr.<region>.amazonaws.com, dkr.ecr.<region>.amazonaws.com and
subdomains.

• Amazon CloudWatch (HTTPS, port 443) – monitoring.<region>.amazonaws.com.

• Amazon CloudWatch Logs (HTTPS, port 443) – logs.<region>.amazonaws.com.

• Amazon Simple Storage Service (HTTPS, port 443) – s3.<region>.amazonaws.com, s3-
accesspoint.<region>.amazonaws.com and subdomains.

If your application calls other AWS services, the appliance needs access to the endpoints for those
services as well. For more information, see Service endpoints and quotas.

Configuring local network access

The appliance needs access to RTSP video streams locally, but not over the internet. Configure your
firewall to allow the appliance to access RTSP streams on port 554 internally, and to not allow
streams to go out to or come in from the internet.

Local access

• Real-time streaming protocol (RTSP, port 554) – To read camera streams.

• Network time protocol (NTP, port 123) – To keep the appliance's clock in sync. If you don't run
an NTP server on your network, the appliance can also connect to public NTP servers over the
internet.

Private connectivity

The AWS Panorama Appliance does not need internet access if you deploy it in a private VPC
subnet with a VPN connection to AWS. You can use Site-to-Site VPN or AWS Direct Connect to
create a VPN connection between an on-premises router and AWS. Within your private VPC subnet,
you create endpoints that let the appliance connect to Amazon Simple Storage Service, AWS IoT,
and other services. For more information, see Connecting an appliance to a private subnet.

Configuring local network access 53

https://docs.aws.amazon.com/general/latest/gr/aws-service-information.html

AWS Panorama Developer Guide

Managing camera streams in AWS Panorama

To register video streams as data sources for your application, use the AWS Panorama console. An
application can process multiple streams simultaneously and multiple appliances can connect to
the same stream.

Important

An application can connect to any camera stream that is routable from the local network
it connects to. To secure your video streams, configure your network to allow only RTSP
traffic locally. For more information, see Security in AWS Panorama.

To register a camera stream

1. Open the AWS Panorama console Data sources page.

2. Choose Add data source.

3. Configure the following settings.

• Name – A name for the camera stream.

Cameras 54

https://console.aws.amazon.com/panorama/home#data-sources

AWS Panorama Developer Guide

• Description – A short description of the camera, its location, or other details.

• RTSP URL – A URL that specifies the camera's IP address and the path to the stream. For
example, rtsp://192.168.0.77/live/mpeg4/

• Credentials – If the camera stream is password protected, specify the username and
password.

4. Choose Save.

To register a camera stream with the AWS Panorama API, see Automate device registration.

For a list of cameras that are compatible with the AWS Panorama Appliance, see Supported
computer vision models and cameras.

Removing a stream

You can delete a camera stream in the AWS Panorama console.

To remove a camera stream

1. Open the AWS Panorama console Data sources page.

2. Choose a camera stream.

3. Choose Delete data source.

Removing a camera stream from the service does not stop running applications or delete camera
credentials from Secrets Manager. To delete secrets, use the Secrets Manager console.

Removing a stream 55

https://console.aws.amazon.com/panorama/home#data-sources
https://console.aws.amazon.com/secretsmanager/home#!/listSecrets

AWS Panorama Developer Guide

Manage applications on an AWS Panorama Appliance

An application is a combination of code, models, and configuration. From the Devices page in the
AWS Panorama console, you can manage applications on the appliance.

To manage applications on an AWS Panorama Appliance

1. Open the AWS Panorama console Devices page.

2. Choose an appliance.

The Deployed applications page shows applications that have been deployed to the appliance.

Use the options on this page to remove deployed applications from the appliance, or replace a
running application with a new version. You can also clone an application (running or deleted) to
deploy a new copy of it.

Applications 56

https://console.aws.amazon.com/panorama/home#devices

AWS Panorama Developer Guide

AWS Panorama Appliance buttons and lights

The AWS Panorama Appliance has two LED lights above the power button that indicate the device
status and network connectivity.

Status light

The LEDs change color and blink to indicate status. A slow blink is once every three seconds. A fast
blink is once per second.

Status LED states

• Fast blinking green – The appliance is booting up.

• Solid green – The appliance is operating normally.

• Slow blinking blue – The appliance is copying configuration files and attempting to register with
AWS IoT.

• Fast blinking blue – The appliance is copying a log image to a USB drive.

• Fast blinking red – The appliance encountered an error during startup or is overheated.

• Slow blinking orange – The appliance is restoring the latest software version.

• Fast blinking orange – The appliance is restoring the minimum software version.

Network light

The network LED has the following states:

Network LED states

• Solid green – An Ethernet cable is connected.

Buttons and lights 57

AWS Panorama Developer Guide

• Blinking green – The appliance is communicating over the network.

• Solid red – An Ethernet cable is not connected.

Power and reset buttons

The power and reset buttons are on the front of the device underneath a protective cover. The
reset button is smaller and recessed. Use a small screwdriver or paperclip to press it.

To reset an appliance

1. The appliance must be plugged in and powered off. To power off the appliance, hold the power
button for 1 second and wait for the shutdown sequence to complete. The shutdown sequence
takes about 10 seconds.

2. To reset the appliance, use the following button combinations. A short press is 1 second. A
long press is 5 seconds. For operations that require multiple buttons, press and hold both
buttons simultaneously.

• Full reset – Long press power and reset.

Restores the minimum software version and deletes all configuration files and applications.

• Restore latest software version – Short press reset.

Reapplies the latest software update to the appliance.

• Restore minimum software version – Long press reset.

Reapplies the latest required software update to the appliance.

3. Release both buttons. The appliance powers on and the status light blinks orange for several
minutes.

4. When the appliance is ready, the status light blinks green.

Resetting an appliance does not delete it from the AWS Panorama service. For more information,
see Deregister an appliance.

Power and reset buttons 58

AWS Panorama Developer Guide

Managing AWS Panorama applications

Applications run on the AWS Panorama Appliance to perform computer vision tasks on video
streams. You can build computer vision applications by combining Python code and machine
learning models, and deploy them to the AWS Panorama Appliance over the internet. Applications
can send video to a display, or use the AWS SDK to send results to AWS services.

Topics

• Deploy an application

• Managing applications in the AWS Panorama console

• Package configuration

• The AWS Panorama application manifest

• Application nodes

• Application parameters

• Deploy-time configuration with overrides

59

AWS Panorama Developer Guide

Deploy an application

To deploy an application, you use the AWS Panorama Application CLI import it to your account,
build the container, upload and register assets, and create an application instance. This topic goes
into each of these steps in detail and describes what goes on in the background.

If you have not deployed an application yet, see Getting started with AWS Panorama for a
walkthrough.

For more information on customizing and extending the sample application, see Building AWS
Panorama applications.

Sections

• Install the AWS Panorama Application CLI

• Import an application

• Build a container image

• Import a model

• Upload application assets

• Deploy an application with the AWS Panorama console

• Automate application deployment

Install the AWS Panorama Application CLI

To install the AWS Panorama Application CLI and AWS CLI, use pip.

$ pip3 install --upgrade awscli panoramacli

To build application images with the AWS Panorama Application CLI, you need Docker. On Linux,
qemu and related system libraries are required as well. For more information on installing and
configuring the AWS Panorama Application CLI, see the README file in the project's GitHub
repository.

• github.com/aws/aws-panorama-cli

For instructions on setting up a build environment in Windows with WSL2, see Setting up a
development environment in Windows.

Deploy 60

https://github.com/aws/aws-panorama-cli

AWS Panorama Developer Guide

Import an application

If you are working with a sample application or an application provided by a third party, use the
AWS Panorama Application CLI to import the application.

my-app$ panorama-cli import-application

This command renames application packages with your account ID. Package names start with the
account ID of the account to which they are deployed. When you deploy an application to multiple
accounts, you must import and package the application separately for each account.

For example, this guide's sample application a code package and a model package, each named
with a placeholder account ID. The import-application command renames these to use the
account ID that the CLI infers from your workspace's AWS credentials.

/aws-panorama-sample
assets
graphs
my-app
graph.json
packages
 ### 123456789012-SAMPLE_CODE-1.0
 # ### Dockerfile
 # ### application.py
 # ### descriptor.json
 # ### package.json
 # ### requirements.txt
 # ### squeezenet_classes.json
 ### 123456789012-SQUEEZENET_PYTORCH-1.0
 ### descriptor.json
 ### package.json

123456789012 is replaced with your account ID in the package directory names, and in the
application manifest (graph.json), which refers to them. You can confirm your account ID by
calling aws sts get-caller-identity with the AWS CLI.

$ aws sts get-caller-identity
{
 "UserId": "AIDAXMPL7W66UC3GFXMPL",
 "Account": "210987654321",

Import an application 61

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/graphs/my-app/graph.json
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/packages/123456789012-SAMPLE_CODE-1.0
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/packages/123456789012-SQUEEZENET_PYTORCH-1.0

AWS Panorama Developer Guide

 "Arn": "arn:aws:iam::210987654321:user/devenv"
}

Build a container image

Your application code is packaged in a Docker container image, which includes the application code
and libraries that you install in your Dockerfile. Use the AWS Panorama Application CLI build-
container command to build a Docker image and export a filesystem image.

my-app$ panorama-cli build-container --container-asset-name code_asset --package-path
 packages/210987654321-SAMPLE_CODE-1.0
{
 "name": "code_asset",
 "implementations": [
 {
 "type": "container",
 "assetUri":
 "5fa5xmplbc8c16bf8182a5cb97d626767868d3f4d9958a4e49830e1551d227c5.tar.gz",
 "descriptorUri":
 "1872xmpl129481ed053c52e66d6af8b030f9eb69b1168a29012f01c7034d7a8f.json"
 }
]
}
Container asset for the package has been succesfully built at
 assets/5fa5xmplbc8c16bf8182a5cb97d626767868d3f4d9958a4e49830e1551d227c5.tar.gz

This command creates a Docker image named code_asset and exports a filesystem to a .tar.gz
archive in the assets folder. The CLI pulls the application base image from Amazon Elastic
Container Registry (Amazon ECR), as specified in the application's Dockerfile.

In addition to the container archive, the CLI creates an asset for the package descriptor
(descriptor.json). Both files are renamed with a unique identifier that reflects a hash of the
original file. The AWS Panorama Application CLI also adds a block to the package configuration
that records the names of the two assets. These names are used by the appliance during the
deployment process.

Example packages/123456789012-SAMPLE_CODE-1.0/package.json – with asset block

{
 "nodePackage": {
 "envelopeVersion": "2021-01-01",

Build a container image 62

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/packages/123456789012-SAMPLE_CODE-1.0/package.json

AWS Panorama Developer Guide

 "name": "SAMPLE_CODE",
 "version": "1.0",
 "description": "Computer vision application code.",
 "assets": [
 {
 "name": "code_asset",
 "implementations": [
 {
 "type": "container",
 "assetUri":
 "5fa5xmplbc8c16bf8182a5cb97d626767868d3f4d9958a4e49830e1551d227c5.tar.gz",
 "descriptorUri":
 "1872xmpl129481ed053c52e66d6af8b030f9eb69b1168a29012f01c7034d7a8f.json"
 }
]
 }
],
 "interfaces": [
 {
 "name": "interface",
 "category": "business_logic",
 "asset": "code_asset",
 "inputs": [
 {
 "name": "video_in",
 "type": "media"
 },

The name of the code asset, specified in the build-container command, must match the
value of the asset field in the package configuration. In the preceding example, both values are
code_asset.

Import a model

Your application might have a model archive in its assets folder or that you download separately.
If you have a new model, an updated model, or updated model descriptor file, use the add-raw-
model command to import it.

my-app$ panorama-cli add-raw-model --model-asset-name model_asset \
 --model-local-path my-model.tar.gz \
 --descriptor-path packages/210987654321-SQUEEZENET_PYTORCH-1.0/descriptor.json \
 --packages-path packages/210987654321-SQUEEZENET_PYTORCH-1.0

Import a model 63

AWS Panorama Developer Guide

If you just need to update the descriptor file, you can reuse the existing model in the assets
directory. You might need to update the descriptor file to configure features such as floating point
precision mode. For example, the following script shows how to do this with the sample app.

Example util-scripts/update-model-config.sh

#!/bin/bash
set -eo pipefail
MODEL_ASSET=fd1axmplacc3350a5c2673adacffab06af54c3f14da6fe4a8be24cac687a386e
MODEL_PACKAGE=SQUEEZENET_PYTORCH
ACCOUNT_ID=$(ls packages | grep -Eo '[0-9]{12}' | head -1)
panorama-cli add-raw-model --model-asset-name model_asset --model-local-path assets/
${MODEL_ASSET}.tar.gz --descriptor-path packages/${ACCOUNT_ID}-${MODEL_PACKAGE}-1.0/
descriptor.json --packages-path packages/${ACCOUNT_ID}-${MODEL_PACKAGE}-1.0
cp packages/${ACCOUNT_ID}-${MODEL_PACKAGE}-1.0/package.json packages/${ACCOUNT_ID}-
${MODEL_PACKAGE}-1.0/package.json.bup

Changes to the descriptor file in the model package directory are not applied until you reimport it
with the CLI. The CLI updates the model package configuration with the new asset names in-place,
similar to how it updates the configuration for the application code package when you rebuild a
container.

Upload application assets

To upload and register the application's assets, which include the model archive, container
filesystem archive, and their descriptor files, use the package-application command.

my-app$ panorama-cli package-application
Uploading package SQUEEZENET_PYTORCH
Patch version for the package
 5d3cxmplb7113faa1d130f97f619655d8ca12787c751851a0e155e50eb5e3e96
Deregistering previous patch version
 e845xmpl8ea0361eb345c313a8dded30294b3a46b486dc8e7c174ee7aab29362
Asset fd1axmplacc3350a5c2673adacffab06af54c3f14da6fe4a8be24cac687a386e.tar.gz already
 exists, ignoring upload
upload: assets/87fbxmpl6f18aeae4d1e3ff8bbc6147390feaf47d85b5da34f8374974ecc4aaf.json
 to s3://arn:aws:s3:us-east-2:212345678901:accesspoint/
panorama-210987654321-6k75xmpl2jypelgzst7uux62ye/210987654321/nodePackages/
SQUEEZENET_PYTORCH/
binaries/87fbxmpl6f18aeae4d1e3ff8bbc6147390feaf47d85b5da34f8374974ecc4aaf.json
Called register package version for SQUEEZENET_PYTORCH with patch version
 5d3cxmplb7113faa1d130f97f619655d8ca12787c751851a0e155e50eb5e3e96

Upload application assets 64

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts/update-model-config.sh

AWS Panorama Developer Guide

...

If there are no changes to an asset file or the package configuration, the CLI skips it.

Uploading package SAMPLE_CODE
Patch Version ca91xmplca526fe3f07821fb0c514f70ed0c444f34cb9bd3a20e153730b35d70 already
 registered, ignoring upload
Register patch version complete for SQUEEZENET_PYTORCH with patch version
 5d3cxmplb7113faa1d130f97f619655d8ca12787c751851a0e155e50eb5e3e96
Register patch version complete for SAMPLE_CODE with patch version
 ca91xmplca526fe3f07821fb0c514f70ed0c444f34cb9bd3a20e153730b35d70
All packages uploaded and registered successfully

The CLI uploads the assets for each package to an Amazon S3 access point that is specific to your
account. AWS Panorama manages the access point for you, and provides information about it
through the DescribePackage API. The CLI uploads the assets for each package to the location
provided for that package, and registers them with the AWS Panorama service with the settings
described by the package configuration.

Deploy an application with the AWS Panorama console

You can deploy an application with the AWS Panorama console. During the deployment process,
you choose which camera streams to pass to the application code, and configure options provided
by the application's developer.

To deploy an application

1. Open the AWS Panorama console Deployed applications page.

2. Choose Deploy application.

3. Paste the contents of the application manifest, graph.json, into the text editor. Choose
Next.

4. Enter a name and descroption.

5. Choose Proceed to deploy.

6. Choose Begin deployment.

7. If your application uses a role, choose it from the drop-down menu. Choose Next.

8. Choose Select device, and then choose your appliance. Choose Next.

9. On the Select data sources step, choose View input(s), and add your camera stream as a data
source. Choose Next.

Deploy an application with the AWS Panorama console 65

https://docs.aws.amazon.com/panorama/latest/api/API_DescribePackage.html
https://console.aws.amazon.com/panorama/home#deployed-applications

AWS Panorama Developer Guide

10. On the Configure step, configure any application-specific settings defined by the developer.
Choose Next.

11. Choose Deploy, and then choose Done.

12. In the list of deployed applications, choose the application to monitor its status.

The deployment process takes 15-20 minutes. The appliance's output can be blank for an extended
period while the application starts. If you encounter an error, see Troubleshooting.

Automate application deployment

You can automate the application deployment process with the CreateApplicationInstance API. The
API takes two configuration files as input. The application manifest specifies the packages used and
their relationships. The second file is an overrides file that specifies deploy-time overrides of values
in the application manifest. Using an overrides file lets you use the same application manifest to
deploy the application with different camera streams, and configure other application-specific
settings.

For more information, and example scripts for each of the steps in this topic, see Automate
application deployment.

Automate application deployment 66

https://docs.aws.amazon.com/panorama/latest/api/API_CreateApplicationInstance.html

AWS Panorama Developer Guide

Managing applications in the AWS Panorama console

Use the AWS Panorama console to manage deployed applications.

Sections

• Update or copy an application

• Delete versions and applications

Update or copy an application

To update an application, use the Replace option. When you replace an application, you can update
its code or models.

To update an application

1. Open the AWS Panorama console Deployed applications page.

2. Choose an application.

3. Choose Replace.

4. Follow the instructions to create a new version or application.

There is also a Clone option that acts similar to Replace, but doesn't remove the old version of the
application. You can use this option to test changes to an application without stopping the running
version, or to redeploy a version that you've already deleted.

Delete versions and applications

To clean up unused application versions, delete them from your appliances.

To delete an application

1. Open the AWS Panorama console Deployed applications page.

2. Choose an application.

3. Choose Delete from device.

Manage 67

https://console.aws.amazon.com/panorama/home#deployed-applications
https://console.aws.amazon.com/panorama/home#deployed-applications

AWS Panorama Developer Guide

Package configuration

When you use the AWS Panorama Application CLI command panorama-cli package-
application, the CLI uploads your application's assets to Amazon S3 and registers them with
AWS Panorama. Assets include binary files (container images and models) and descriptor files,
which the AWS Panorama Appliance downloads during deployment. To register a package's assets,
you provide a separate package configuration file that defines the package, its assets, and its
interface.

The following example shows a package configuration for a code node with one input and one
output. The video input provides access to image data from a camera stream. The output node
sends processed images out to a display.

Example packages/1234567890-SAMPLE_CODE-1.0/package.json

{
 "nodePackage": {
 "envelopeVersion": "2021-01-01",
 "name": "SAMPLE_CODE",
 "version": "1.0",
 "description": "Computer vision application code.",
 "assets": [
 {
 "name": "code_asset",
 "implementations": [
 {
 "type": "container",
 "assetUri":
 "3d9bxmplbdb67a3c9730abb19e48d78780b507f3340ec3871201903d8805328a.tar.gz",
 "descriptorUri":
 "1872xmpl129481ed053c52e66d6af8b030f9eb69b1168a29012f01c7034d7a8f.json"
 }
]
 }
],
 "interfaces": [
 {
 "name": "interface",
 "category": "business_logic",
 "asset": "code_asset",
 "inputs": [
 {

Packages 68

AWS Panorama Developer Guide

 "name": "video_in",
 "type": "media"
 }
],
 "outputs": [
 {
 "description": "Video stream output",
 "name": "video_out",
 "type": "media"
 }
]
 }
]
 }
}

The assets section specifies the names of artifacts that the AWS Panorama Application CLI
uploaded to Amazon S3. If you import a sample application or an application from another user,
this section can be empty or refer to assets that aren't in your account. When you run panorama-
cli package-application, the AWS Panorama Application CLI populates this section with the
correct values.

Packages 69

AWS Panorama Developer Guide

The AWS Panorama application manifest

When you deploy an application, you provide a configuration file called an application manifest.
This file defines the application as a graph with nodes and edges. The application manifest is part
of the application's source code and is stored in the graphs directory.

Example graphs/aws-panorama-sample/graph.json

{
 "nodeGraph": {
 "envelopeVersion": "2021-01-01",
 "packages": [
 {
 "name": "123456789012::SAMPLE_CODE",
 "version": "1.0"
 },
 {
 "name": "123456789012::SQUEEZENET_PYTORCH_V1",
 "version": "1.0"
 },
 {
 "name": "panorama::abstract_rtsp_media_source",
 "version": "1.0"
 },
 {
 "name": "panorama::hdmi_data_sink",
 "version": "1.0"
 }
],
 "nodes": [
 {
 "name": "code_node",
 "interface": "123456789012::SAMPLE_CODE.interface"
 }
 {
 "name": "model_node",
 "interface": "123456789012::SQUEEZENET_PYTORCH_V1.interface"
 },
 {
 "name": "camera_node",
 "interface": "panorama::abstract_rtsp_media_source.rtsp_v1_interface",
 "overridable": true,
 "overrideMandatory": true,

Application manifest 70

AWS Panorama Developer Guide

 "decorator": {
 "title": "IP camera",
 "description": "Choose a camera stream."
 }
 },
 {
 "name": "output_node",
 "interface": "panorama::hdmi_data_sink.hdmi0"
 },
 {
 "name": "log_level",
 "interface": "string",
 "value": "INFO",
 "overridable": true,
 "decorator": {
 "title": "Logging level",
 "description": "DEBUG, INFO, WARNING, ERROR, or CRITICAL."
 }
 }
 ...
],
 "edges": [
 {
 "producer": "camera_node.video_out",
 "consumer": "code_node.video_in"
 },
 {
 "producer": "code_node.video_out",
 "consumer": "output_node.video_in"
 },
 {
 "producer": "log_level",
 "consumer": "code_node.log_level"
 }
]
 }
}

Nodes are connected by edges, which specify mappings between nodes' inputs and outputs. The
output of one node connects to the input of another, forming a graph.

Application manifest 71

AWS Panorama Developer Guide

JSON schema

The format of application manifest and override documents is defined in a JSON schema. You
can use the JSON schema to validate your configuration documents before deploying. The JSON
schema is available in this guide's GitHub repository.

• JSON schema – aws-panorama-developer-guide/resources

JSON schema 72

https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources

AWS Panorama Developer Guide

Application nodes

Nodes are models, code, camera streams, output, and parameters. A node has an interface,
which defines its inputs and outputs. The interface can be defined in a package in your account, a
package provided by AWS Panorama, or a built-in type.

In the following example, code_node and model_node refer to the sample code and model
packages included with the sample application. camera_node uses a package provided by AWS
Panorama to create a placeholder for a camera stream that you specify during deployment.

Example graph.json – Nodes

 "nodes": [
 {
 "name": "code_node",
 "interface": "123456789012::SAMPLE_CODE.interface"
 },
 {
 "name": "model_node",
 "interface": "123456789012::SQUEEZENET_PYTORCH_V1.interface"
 },
 {
 "name": "camera_node",
 "interface": "panorama::abstract_rtsp_media_source.rtsp_v1_interface",
 "overridable": true,
 "overrideMandatory": true,
 "decorator": {
 "title": "IP camera",
 "description": "Choose a camera stream."
 }
 }
]

Edges

Edges map the output from one node to the input of another. In the following example, the first
edge maps the output from a camera stream node to the input of an application code node. The
names video_in and video_out are defined in the node packages' interfaces.

Example graph.json – edges

 "edges": [

Nodes 73

AWS Panorama Developer Guide

 {
 "producer": "camera_node.video_out",
 "consumer": "code_node.video_in"
 },
 {
 "producer": "code_node.video_out",
 "consumer": "output_node.video_in"
 },

In your application code, you use the inputs and outputs attributes to get images from the input
stream, and send images to the output stream.

Example application.py – Video input and output

 def process_streams(self):
 """Processes one frame of video from one or more video streams."""
 frame_start = time.time()
 self.frame_num += 1
 logger.debug(self.frame_num)
 # Loop through attached video streams
 streams = self.inputs.video_in.get()
 for stream in streams:
 self.process_media(stream)
 ...
 self.outputs.video_out.put(streams)

Abstract nodes

In an application manifest, an abstract node refers to a package defined by AWS Panorama, which
you can use as a placeholder in your application manifest. AWS Panorama provides two types of
abstract node.

• Camera stream – Choose the camera stream that the application uses during deployment.

Package name – panorama::abstract_rtsp_media_source

Interface name – rtsp_v1_interface

• HDMI output – Indicates that the application outputs video.

Package name – panorama::hdmi_data_sink

Abstract nodes 74

AWS Panorama Developer Guide

Interface name – hdmi0

The following example shows a basic set of packages, nodes, and edges for an application that
processes camera streams and outputs video to a display. The camera node, which uses the
interface from the abstract_rtsp_media_source package in AWS Panorama, can accept
multiple camera streams as input. The output node, which references hdmi_data_sink, gives
application code access to a video buffer that is output from the appliance's HDMI port.

Example graph.json – Abstract nodes

{
 "nodeGraph": {
 "envelopeVersion": "2021-01-01",
 "packages": [
 {
 "name": "123456789012::SAMPLE_CODE",
 "version": "1.0"
 },
 {
 "name": "123456789012::SQUEEZENET_PYTORCH_V1",
 "version": "1.0"
 },
 {
 "name": "panorama::abstract_rtsp_media_source",
 "version": "1.0"
 },
 {
 "name": "panorama::hdmi_data_sink",
 "version": "1.0"
 }
],
 "nodes": [
 {
 "name": "camera_node",
 "interface": "panorama::abstract_rtsp_media_source.rtsp_v1_interface",
 "overridable": true,
 "decorator": {
 "title": "IP camera",
 "description": "Choose a camera stream."
 }
 },

Abstract nodes 75

AWS Panorama Developer Guide

 {
 "name": "output_node",
 "interface": "panorama::hdmi_data_sink.hdmi0"
 }
],
 "edges": [
 {
 "producer": "camera_node.video_out",
 "consumer": "code_node.video_in"
 },
 {
 "producer": "code_node.video_out",
 "consumer": "output_node.video_in"
 }
]
 }
}

Abstract nodes 76

AWS Panorama Developer Guide

Application parameters

Parameters are nodes that have a basic type and can be overridden during deployment. A
parameter can have a default value and a decorator, which instructs the application's user how to
configure it.

Parameter types

• string – A string. For example, DEBUG.

• int32 – An integer. For example, 20

• float32 – A floating point number. For example, 47.5

• boolean – true or false.

The following example shows two parameters, a string and a number, which are sent to a code
node as inputs.

Example graph.json – Parameters

 "nodes": [
 {
 "name": "detection_threshold",
 "interface": "float32",
 "value": 20.0,
 "overridable": true,
 "decorator": {
 "title": "Threshold",
 "description": "The minimum confidence percentage for a positive
 classification."
 }
 },
 {
 "name": "log_level",
 "interface": "string",
 "value": "INFO",
 "overridable": true,
 "decorator": {
 "title": "Logging level",
 "description": "DEBUG, INFO, WARNING, ERROR, or CRITICAL."
 }

Parameters 77

AWS Panorama Developer Guide

 }
 ...
],
 "edges": [
 {
 "producer": "detection_threshold",
 "consumer": "code_node.threshold"
 },
 {
 "producer": "log_level",
 "consumer": "code_node.log_level"
 }
 ...
]
 }

You can modify parameters directly in the application manifest, or provide new values at deploy-
time with overrides. For more information, see Deploy-time configuration with overrides.

Parameters 78

AWS Panorama Developer Guide

Deploy-time configuration with overrides

You configure parameters and abstract nodes during deployment. If you use the AWS Panorama
console to deploy, you can specify a value for each parameter and choose a camera stream as
input. If you use the AWS Panorama API to deploy applications, you specify these settings with an
overrides document.

An overrides document is similar in structure to an application manifest. For parameters with basic
types, you define a node. For camera streams, you define a node and a package that maps to a
registered camera stream. Then you define an override for each node that specifies the node from
the application manifest that it replaces.

Example overrides.json

{
 "nodeGraphOverrides": {
 "nodes": [
 {
 "name": "my_camera",
 "interface": "123456789012::exterior-south.exterior-south"
 },
 {
 "name": "my_region",
 "interface": "string",
 "value": "us-east-1"
 }
],
 "packages": [
 {
 "name": "123456789012::exterior-south",
 "version": "1.0"
 }
],
 "nodeOverrides": [
 {
 "replace": "camera_node",
 "with": [
 {
 "name": "my_camera"
 }
]
 },

Overrides 79

AWS Panorama Developer Guide

 {
 "replace": "region",
 "with": [
 {
 "name": "my_region"
 }
]
 }
],
 "envelopeVersion": "2021-01-01"
 }
}

In the preceding example, the document defines overrides for one string parameter and an abstract
camera node. The nodeOverrides tells AWS Panorama which nodes in this document override
which in the application manifest.

Overrides 80

AWS Panorama Developer Guide

Building AWS Panorama applications

Applications run on the AWS Panorama Appliance to perform computer vision tasks on video
streams. You can build computer vision applications by combining Python code and machine
learning models, and deploy them to the AWS Panorama Appliance over the internet. Applications
can send video to a display, or use the AWS SDK to send results to AWS services.

A model analyzes images to detect people, vehicles, and other objects. Based on images that it has
seen during training, the model tells you what it thinks something is, and how confident it is in its
guess. You can train models with your own image data or get started with a sample.

The application's code process still images from a camera stream, sends them to a model, and
processes the result. A model might detect multiple objects and return their shapes and location.
The code can use this information to add text or graphics to the video, or to send results to an AWS
service for storage or further processing.

To get images from a stream, interact with a model, and output video, application code uses the
AWS Panorama Application SDK. The application SDK is a Python library that supports models
generated with PyTorch, Apache MXNet, and TensorFlow.

Note

AWS Panorama version 8.0.28 ends support for Sagemaker Neo models. See the section
called “Using AWS Panorama after update 8.0.29” for more information on how to handle
your applications post update.

Topics

• Computer vision models

• Building an application image

• Calling AWS services from your application code

• The AWS Panorama Application SDK

• Running multiple threads

• Serving inbound traffic

• Using the GPU

• Setting up a development environment in Windows

81

AWS Panorama Developer Guide

• Using AWS Panorama after update 8.0.29

82

AWS Panorama Developer Guide

Computer vision models

A computer vision model is a software program that is trained to detect objects in images. A model
learns to recognize a set of objects by first analyzing images of those objects through training. A
computer vision model takes an image as input and outputs information about the objects that
it detects, such as the type of object and its location. AWS Panorama supports computer vision
models built with PyTorch, Apache MXNet, and TensorFlow.

Note

For a list of pre-built models that have been tested with AWS Panorama, see Model
compatibility.

Sections

• Using models in code

• Building a custom model

• Packaging a model

• Training models

Using models in code

A model returns one or more results, which can include probabilities for detected classes, location
information, and other data.The following example shows how to run inference on an image from a
video stream and send the model's output to a processing function.

Example application.py – Inference

 def process_media(self, stream):
 """Runs inference on a frame of video."""
 image_data = preprocess(stream.image,self.MODEL_DIM)
 logger.debug('Image data: {}'.format(image_data))
 # Run inference
 inference_start = time.time()
 inference_results = self.call({"data":image_data}, self.MODEL_NODE)
 # Log metrics
 inference_time = (time.time() - inference_start) * 1000

Models 83

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/resources/model-compatibility.md
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/resources/model-compatibility.md
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/packages/123456789012-SAMPLE_CODE-1.0/application.py

AWS Panorama Developer Guide

 if inference_time > self.inference_time_max:
 self.inference_time_max = inference_time
 self.inference_time_ms += inference_time
 # Process results (classification)
 self.process_results(inference_results, stream)

The following example shows a function that processes results from basic classification model. The
sample model returns an array of probabilities, which is the first and only value in the results array.

Example application.py – Processing results

 def process_results(self, inference_results, stream):
 """Processes output tensors from a computer vision model and annotates a video
 frame."""
 if inference_results is None:
 logger.warning("Inference results are None.")
 return
 max_results = 5
 logger.debug('Inference results: {}'.format(inference_results))
 class_tuple = inference_results[0]
 enum_vals = [(i, val) for i, val in enumerate(class_tuple[0])]
 sorted_vals = sorted(enum_vals, key=lambda tup: tup[1])
 top_k = sorted_vals[::-1][:max_results]
 indexes = [tup[0] for tup in top_k]

 for j in range(max_results):
 label = 'Class [%s], with probability %.3f.'% (self.classes[indexes[j]],
 class_tuple[0][indexes[j]])
 stream.add_label(label, 0.1, 0.1 + 0.1*j)

The application code finds the values with the highest probabilities and maps them to labels in a
resource file that's loaded during initialization.

Building a custom model

You can use models that you build in PyTorch, Apache MXNet, and TensorFlow in AWS Panorama
applications. As an alternative to building and training models in SageMaker AI, you can use a
trained model or build and train your own model with a supported framework and export it in a
local environment or in Amazon EC2.

Building a custom model 84

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/packages/123456789012-SAMPLE_CODE-1.0/application.py

AWS Panorama Developer Guide

Note

For details about the framework versions and file formats supported by SageMaker AI Neo,
see Supported Frameworks in the Amazon SageMaker AI Developer Guide.

The repository for this guide provides a sample application that demonstrates this workflow for
a Keras model in TensorFlow SavedModel format. It uses TensorFlow 2 and can run locally in a
virtual environment or in a Docker container. The sample app also includes templates and scripts
for building the model on an Amazon EC2 instance.

• Custom model sample application

AWS Panorama uses SageMaker AI Neo to compile models for use on the AWS Panorama
Appliance. For each framework, use the format that's supported by SageMaker AI Neo, and package
the model in a .tar.gz archive.

For more information, see Compile and deploy models with Neo in the Amazon SageMaker AI
Developer Guide.

Building a custom model 85

https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-devices-edge-frameworks.html
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/custom-model
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-compilation-preparing-model.html
https://docs.aws.amazon.com/sagemaker/latest/dg/neo.html

AWS Panorama Developer Guide

Packaging a model

A model package comprises a descriptor, package configuration, and model archive. Like in an
application image package, the package configuration tells the AWS Panorama service where the
model and descriptor are stored in Amazon S3.

Example packages/123456789012-SQUEEZENET_PYTORCH-1.0/descriptor.json

{
 "mlModelDescriptor": {
 "envelopeVersion": "2021-01-01",
 "framework": "PYTORCH",
 "frameworkVersion": "1.8",
 "precisionMode": "FP16",
 "inputs": [
 {
 "name": "data",
 "shape": [
 1,
 3,
 224,
 224
]
 }
]
 }
}

Note

Specify the framework version's major and minor version only. For a list of supported
PyTorch, Apache MXNet, and TensorFlow versions versions, see Supported frameworks.

To import a model, use the AWS Panorama Application CLI import-raw-model command. If
you make any changes to the model or its descriptor, you must rerun this command to update the
application's assets. For more information, see Changing the computer vision model.

For the descriptor file's JSON schema, see assetDescriptor.schema.json.

Packaging a model 86

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/packages/123456789012-SQUEEZENET_PYTORCH-1.0/descriptor.json
https://docs.aws.amazon.com/sagemaker/latest/dg/neo-supported-devices-edge-frameworks.html
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/resources/manifest-schema/ver_2021-01-01/assetDescriptor.schema.json

AWS Panorama Developer Guide

Training models

When you train a model, use images from the target environment, or from a test environment that
closely resembles the target environment. Consider the following factors that can affect model
performance:

• Lighting – The amount of light that is reflected by a subject determines how much detail the
model has to analyze. A model trained with images of well-lit subjects might not work well in a
low-light or backlit environment.

• Resolution – The input size of a model is typically fixed at a resolution between 224 and 512
pixels wide in a square aspect ratio. Before you pass a frame of video to the model, you can
downscale or crop it to fit the required size.

• Image distortion – A camera's focal length and lens shape can cause images to exhibit distortion
away from the center of the frame. The position of a camera also determines which features of a
subject are visible. For example, an overhead camera with a wide angle lens will show the top of
a subject when it's in the center of the frame, and a skewed view of the subject's side as it moves
farther away from center.

To address these issues, you can preprocess images before sending them to the model, and train
the model on a wider variety of images that reflect variances in real-world environments. If a
model needs to operate in a lighting situations and with a variety of cameras, you need more data
for training. In addition to gathering more images, you can get more training data by creating
variations of your existing images that are skewed or have different lighting.

Training models 87

AWS Panorama Developer Guide

Building an application image

The AWS Panorama Appliance runs applications as container filesystems exported from an image
that you build. You specify your application's dependencies and resources in a Dockerfile that uses
the AWS Panorama application base image as a starting point.

To build an application image, you use Docker and the AWS Panorama Application CLI. The
following example from this guide's sample application demonstrates these use cases.

Example packages/123456789012-SAMPLE_CODE-1.0/Dockerfile

FROM public.ecr.aws/panorama/panorama-application
WORKDIR /panorama
COPY . .
RUN pip install --no-cache-dir --upgrade pip && \
 pip install --no-cache-dir -r requirements.txt

The following Dockerfile instructions are used.

• FROM – Loads the application base image (public.ecr.aws/panorama/panorama-
application).

• WORKDIR – Set the working directory on the image. /panorama is used for application code and
related files. This setting only persists during the build and does not affect the working directory
for your application at runtime (/).

• COPY – Copies files from a local path to a path on the image. COPY . . copies the files in
the current directory (the package directory) to the working directory on the image. For
example, the application code is copied from packages/123456789012-SAMPLE_CODE-1.0/
application.py to /panorama/application.py.

• RUN – Runs shell commands on the image during the build. A single RUN operation can run
multiple commands in sequence by using && between commands. This example updates the pip
package manager and then installs the libraries listed in requirements.txt.

You can use other instructions, such as ADD and ARG, that are useful at build time. Instructions that
add runtime information to the container, such as ENV, do not work with AWS Panorama. AWS
Panorama does not run a container from the image. It only uses the image to export a filesystem,
which is transferred to the appliance.

Build an image 88

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/packages/123456789012-SAMPLE_CODE-1.0/Dockerfile

AWS Panorama Developer Guide

Specifying dependencies

requirements.txt is a Python requirements file that specifies libraries used by the application.
The sample application uses Open CV and the AWS SDK for Python (Boto3).

Example packages/123456789012-SAMPLE_CODE-1.0/requirements.txt

boto3==1.24.*
opencv-python==4.6.*

The pip install command in the Dockerfile installs these libraries to the Python dist-
packages directory under /usr/local/lib, so that they can be imported by your application
code.

Local storage

AWS Panorama reserves the /opt/aws/panorama/storage directory for application storage.
Your application can create and modify files at this path. Files created in the storage directory
persist across reboots. Other temporary file locations are cleared on boot.

Building image assets

When you build an image for your application package with the AWS Panorama Application
CLI, the CLI runs docker build in the package directory. This builds an application image that
contains your application code. The CLI then creates a container, exports its filesystem, compresses
it, and stores it in the assets folder.

$ panorama-cli build-container --container-asset-name code_asset --package-path
 packages/123456789012-SAMPLE_CODE-1.0
docker build -t code_asset packages/123456789012-SAMPLE_CODE-1.0 --pull
docker export --output=code_asset.tar $(docker create code_asset:latest)
gzip -1 code_asset.tar
{
 "name": "code_asset",
 "implementations": [
 {
 "type": "container",
 "assetUri":
 "6f67xmpl32743ed0e60c151a02f2f0da1bf70a4ab9d83fe236fa32a6f9b9f808.tar.gz",
 "descriptorUri":
 "1872xmpl129481ed053c52e66d6af8b030f9eb69b1168a29012f01c7034d7a8f.json"

Specifying dependencies 89

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/packages/123456789012-SAMPLE_CODE-1.0/requirements.txt

AWS Panorama Developer Guide

 }
]
}
Container asset for the package has been succesfully built at /home/
user/aws-panorama-developer-guide/sample-apps/aws-panorama-sample/
assets/6f67xmpl32743ed0e60c151a02f2f0da1bf70a4ab9d83fe236fa32a6f9b9f808.tar.gz

The JSON block in the output is an asset definition that the CLI adds to the package configuration
(package.json) and registers with the AWS Panorama service. The CLI also copies the descriptor
file, which specifies the path to the application script (the application's entry point).

Example packages/123456789012-SAMPLE_CODE-1.0/descriptor.json

{
 "runtimeDescriptor":
 {
 "envelopeVersion": "2021-01-01",
 "entry":
 {
 "path": "python3",
 "name": "/panorama/application.py"
 }
 }
}

In the assets folder, the descriptor and application image are named for their SHA-256 checksum.
This name is used as a unique identifier for the asset when it is stored is Amazon S3.

Building image assets 90

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/packages/123456789012-SAMPLE_CODE-1.0/descriptor.json

AWS Panorama Developer Guide

Calling AWS services from your application code

You can use the AWS SDK for Python (Boto) to call AWS services from your application code. For
example, if your model detects something out of the ordinary, you could post metrics to Amazon
CloudWatch, send an notification with Amazon SNS, save an image to Amazon S3, or invoke a
Lambda function for further processing. Most AWS services have a public API that you can use with
the AWS SDK.

The appliance does not have permission to access any AWS services by default. To grant it
permission, create a role for the application, and assign it to the application instance during
deployment.

Sections

• Using Amazon S3

• Using the AWS IoT MQTT topic

Using Amazon S3

You can use Amazon S3 to store processing results and other application data.

import boto3
s3_client=boto3.client("s3")
s3_clients3.upload_file(data_file,
 s3_bucket_name,
 os.path.basename(data_file))

Using the AWS IoT MQTT topic

You can use the SDK for Python (Boto3) to send messages to an MQTT topic in AWS IoT. In the
following example, the application posts to a topic named after the appliance's thing name, which
you can find in AWS IoT console.

import boto3
iot_client=boto3.client('iot-data')
topic = "panorama/panorama_my-appliance_Thing_a01e373b"
iot_client.publish(topic=topic, payload="my message")

AWS SDK 91

https://docs.aws.amazon.com/iot/latest/developerguide/topics.html
https://console.aws.amazon.com/iot/home#/thinghub

AWS Panorama Developer Guide

Choose a name that indicates the device ID or other identifier of your choice. To publish messages,
the application needs permission to call iot:Publish.

To monitor an MQTT queue

1. Open the AWS IoT console Test page.

2. For Subscription topic, enter the name of the topic. For example, panorama/panorama_my-
appliance_Thing_a01e373b.

3. Choose Subscribe to topic.

Using the AWS IoT MQTT topic 92

https://console.aws.amazon.com/iot/home?region=us-east-1#/test

AWS Panorama Developer Guide

The AWS Panorama Application SDK

The AWS Panorama Application SDK is a Python library for developing AWS Panorama
applications. In your application code, you use the AWS Panorama Application SDK to load a
computer vision model, run inference, and output video to a monitor.

Note

To ensure that you have access to the latest functionality of the AWS Panorama Application
SDK, upgrade the appliance software.

For details about the classes that the application SDK defines and their methods, see Application
SDK reference.

Sections

• Adding text and boxes to output video

Adding text and boxes to output video

With the AWS Panorama SDK, you can output a video stream to a display. The video can include
text and boxes that show output from the model, the current state of the application, or other
data.

Each object in the video_in array is an image from a camera stream that is connected to the
appliance. The type of this object is panoramasdk.media. It has methods to add text and
rectangular boxes to the image, which you can then assign to the video_out array.

In the following example, the sample application adds a label for each of the results. Each result is
positioned at the same left position, but at different heights.

 for j in range(max_results):
 label = 'Class [%s], with probability %.3f.'% (self.classes[indexes[j]],
 class_tuple[0][indexes[j]])
 stream.add_label(label, 0.1, 0.1 + 0.1*j)

To add a box to the output image, use add_rect. This method takes 4 values between 0 and 1,
indicating the position of the top left and bottom right corners of the box.

Application SDK 93

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/resources/applicationsdk-reference.md
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/resources/applicationsdk-reference.md

AWS Panorama Developer Guide

 w,h,c = stream.image.shape
 stream.add_rect(x1/w, y1/h, x2/w, y2/h)

Adding text and boxes to output video 94

AWS Panorama Developer Guide

Running multiple threads

You can run your application logic on a processing thread and use other threads for other
background processes. For example, you can create a thread that serves HTTP traffic for
debugging, or a thread that monitors inference results and sends data to AWS.

To run multiple threads, you use the threading module from the Python standard library to create
a thread for each process. The following example shows the main loop of the debug server sample
application, which creates an application object and uses it to run three threads.

Example packages/123456789012-DEBUG_SERVER-1.0/application.py – Main loop

def main():
 panorama = panoramasdk.node()
 while True:
 try:
 # Instantiate application
 logger.info('INITIALIZING APPLICATION')
 app = Application(panorama)
 # Create threads for stream processing, debugger, and client
 app.run_thread = threading.Thread(target=app.run_cv)
 app.server_thread = threading.Thread(target=app.run_debugger)
 app.client_thread = threading.Thread(target=app.run_client)
 # Start threads
 logger.info('RUNNING APPLICATION')
 app.run_thread.start()
 logger.info('RUNNING SERVER')
 app.server_thread.start()
 logger.info('RUNNING CLIENT')
 app.client_thread.start()
 # Wait for threads to exit
 app.run_thread.join()
 app.server_thread.join()
 app.client_thread.join()
 logger.info('RESTARTING APPLICATION')
 except:
 logger.exception('Exception during processing loop.')

When all of the threads exit, the application restarts itself. The run_cv loop processes images from
camera streams. If it receives a signal to stop, it shuts down the debugger process, which runs an
HTTP server and can't shut itself down. Each thread must handle its own errors. If an error is not
caught and logged, the thread exits silently.

Running multiple threads 95

https://docs.python.org/3/library/threading.html
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/debug-server/packages/123456789012-DEBUG_SERVER-1.0/application.py

AWS Panorama Developer Guide

Example packages/123456789012-DEBUG_SERVER-1.0/application.py – Processing loop

 # Processing loop
 def run_cv(self):
 """Run computer vision workflow in a loop."""
 logger.info("PROCESSING STREAMS")
 while not self.terminate:
 try:
 self.process_streams()
 # turn off debug logging after 15 loops
 if logger.getEffectiveLevel() == logging.DEBUG and self.frame_num ==
 15:
 logger.setLevel(logging.INFO)
 except:
 logger.exception('Exception on processing thread.')
 # Stop signal received
 logger.info("SHUTTING DOWN SERVER")
 self.server.shutdown()
 self.server.server_close()
 logger.info("EXITING RUN THREAD")

Threads communicate via the application's self object. To restart the application processing
loop, the debugger thread calls the stop method. This method sets a terminate attribute, which
signals the other threads to shut down.

Example packages/123456789012-DEBUG_SERVER-1.0/application.py – Stop method

 # Interrupt processing loop
 def stop(self):
 """Signal application to stop processing."""
 logger.info("STOPPING APPLICATION")
 # Signal processes to stop
 self.terminate = True
 # HTTP debug server
 def run_debugger(self):
 """Process debug commands from local network."""
 class ServerHandler(SimpleHTTPRequestHandler):
 # Store reference to application
 application = self
 # Get status
 def do_GET(self):
 """Process GET requests."""
 logger.info('Get request to {}'.format(self.path))

Running multiple threads 96

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/debug-server/packages/123456789012-DEBUG_SERVER-1.0/application.py
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/debug-server/packages/123456789012-DEBUG_SERVER-1.0/application.py

AWS Panorama Developer Guide

 if self.path == "/status":
 self.send_200('OK')
 else:
 self.send_error(400)
 # Restart application
 def do_POST(self):
 """Process POST requests."""
 logger.info('Post request to {}'.format(self.path))
 if self.path == '/restart':
 self.send_200('OK')
 ServerHandler.application.stop()
 else:
 self.send_error(400)

Running multiple threads 97

AWS Panorama Developer Guide

Serving inbound traffic

You can monitor or debug applications locally by running an HTTP server alongside your
application code. To serve external traffic, you map ports on the AWS Panorama Appliance to ports
on your application container.

Important

By default, the AWS Panorama Appliance does not accept incoming traffic on any ports.
Opening ports on the appliance has implicit security risk. When you use this feature,
you must take additional steps to secure your appliance from external traffic and secure
communications between authorized clients and the appliance.
The sample code included with this guide is for demonstration purposes and does not
implement authentication, authorization, or encryption.

You can open up ports in the range 8000–9000 on the appliance. These ports, when opened, can
receive traffic from any routable client. When you deploy your application, you specify which ports
to open, and map ports on the appliance to ports on your application container. The appliance
software forwards traffic to the container, and sends responses back to the requestor. Requests are
received on the appliance port that you specify and responses go out on a random ephemeral port.

Configuring inbound ports

You specify port mappings in three places in your application configuration. The code package's
package.json, you specify the port that the code node listens on in a network block. The
following example declares that the node listens on port 80.

Example packages/123456789012-DEBUG_SERVER-1.0/package.json

 "outputs": [
 {
 "description": "Video stream output",
 "name": "video_out",
 "type": "media"
 }
],
 "network": {
 "inboundPorts": [
 {

Serving inbound traffic 98

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/debug-server/packages/123456789012-DEBUG_SERVER-1.0/package.json

AWS Panorama Developer Guide

 "port": 80,
 "description": "http"
 }
]
 }

In the application manifest, you declare a routing rule that maps a port on the appliance to a port
on the application's code container. The following example adds a rule that maps port 8080 on the
device to port 80 on the code_node container.

Example graphs/my-app/graph.json

 {
 "producer": "model_input_width",
 "consumer": "code_node.model_input_width"
 },
 {
 "producer": "model_input_order",
 "consumer": "code_node.model_input_order"
 }
],
 "networkRoutingRules": [
 {
 "node": "code_node",
 "containerPort": 80,
 "hostPort": 8080,
 "decorator": {
 "title": "Listener port 8080",
 "description": "Container monitoring and debug."
 }
 }
]

When you deploy the application, you specify the same rules in the AWS Panorama console, or
with an override document passed to the CreateApplicationInstance API. You must provide this
configuration at deploy time to confirm that you want to open ports on the appliance.

Example graphs/my-app/override.json

 {
 "replace": "camera_node",
 "with": [

Configuring inbound ports 99

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/debug-server/graphs/my-app/graph.json
https://docs.aws.amazon.com/panorama/latest/api/API_CreateApplicationInstance.html
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/debug-server/graphs/my-app/override.json

AWS Panorama Developer Guide

 {
 "name": "exterior-north"
 }
]
 }
],
 "networkRoutingRules":[
 {
 "node": "code_node",
 "containerPort": 80,
 "hostPort": 8080
 }
],
 "envelopeVersion": "2021-01-01"
 }
}

If the device port specified in the application manifest is in use by another application, you can use
the override document to choose a different port.

Serving traffic

With ports open on the container, you can open a socket or run a server to handle incoming
requests. The debug-server sample shows a basic implementation of an HTTP server running
alongside computer vision application code.

Important

The sample implementation is not secure for production use. To avoid making your
appliance vulnerable to attacks, you must implement appropriate security controls in your
code and network configuration.

Example packages/123456789012-DEBUG_SERVER-1.0/application.py – HTTP server

 # HTTP debug server
 def run_debugger(self):
 """Process debug commands from local network."""
 class ServerHandler(SimpleHTTPRequestHandler):
 # Store reference to application
 application = self

Serving traffic 100

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/debug-server/packages/123456789012-DEBUG_SERVER-1.0/application.py

AWS Panorama Developer Guide

 # Get status
 def do_GET(self):
 """Process GET requests."""
 logger.info('Get request to {}'.format(self.path))
 if self.path == '/status':
 self.send_200('OK')
 else:
 self.send_error(400)
 # Restart application
 def do_POST(self):
 """Process POST requests."""
 logger.info('Post request to {}'.format(self.path))
 if self.path == '/restart':
 self.send_200('OK')
 ServerHandler.application.stop()
 else:
 self.send_error(400)
 # Send response
 def send_200(self, msg):
 """Send 200 (success) response with message."""
 self.send_response(200)
 self.send_header('Content-Type', 'text/plain')
 self.end_headers()
 self.wfile.write(msg.encode('utf-8'))
 try:
 # Run HTTP server
 self.server = HTTPServer(("", self.CONTAINER_PORT), ServerHandler)
 self.server.serve_forever(1)
 # Server shut down by run_cv loop
 logger.info("EXITING SERVER THREAD")
 except:
 logger.exception('Exception on server thread.')

The server accepts GET requests at the /status path to retrieve some information about the
application. It also accepts a POST request to /restart to restart the application.

To demonstrate this functionality, the sample application runs an HTTP client on a separate thread.
The client calls the /status path over the local network shortly after startup, and restarts the
application a few minutes later.

Example packages/123456789012-DEBUG_SERVER-1.0/application.py – HTTP client

 # HTTP test client

Serving traffic 101

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/debug-server/packages/123456789012-DEBUG_SERVER-1.0/application.py

AWS Panorama Developer Guide

 def run_client(self):
 """Send HTTP requests to device port to demnostrate debug server functions."""
 def client_get():
 """Get container status"""
 r = requests.get('http://{}:{}/status'.format(self.device_ip,
 self.DEVICE_PORT))
 logger.info('Response: {}'.format(r.text))
 return
 def client_post():
 """Restart application"""
 r = requests.post('http://{}:{}/restart'.format(self.device_ip,
 self.DEVICE_PORT))
 logger.info('Response: {}'.format(r.text))
 return
 # Call debug server
 while not self.terminate:
 try:
 time.sleep(30)
 client_get()
 time.sleep(300)
 client_post()
 except:
 logger.exception('Exception on client thread.')
 # stop signal received
 logger.info("EXITING CLIENT THREAD")

The main loop manages the threads and restarts the application when they exit.

Example packages/123456789012-DEBUG_SERVER-1.0/application.py – Main loop

def main():
 panorama = panoramasdk.node()
 while True:
 try:
 # Instantiate application
 logger.info('INITIALIZING APPLICATION')
 app = Application(panorama)
 # Create threads for stream processing, debugger, and client
 app.run_thread = threading.Thread(target=app.run_cv)
 app.server_thread = threading.Thread(target=app.run_debugger)
 app.client_thread = threading.Thread(target=app.run_client)
 # Start threads
 logger.info('RUNNING APPLICATION')
 app.run_thread.start()

Serving traffic 102

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/debug-server/packages/123456789012-DEBUG_SERVER-1.0/application.py

AWS Panorama Developer Guide

 logger.info('RUNNING SERVER')
 app.server_thread.start()
 logger.info('RUNNING CLIENT')
 app.client_thread.start()
 # Wait for threads to exit
 app.run_thread.join()
 app.server_thread.join()
 app.client_thread.join()
 logger.info('RESTARTING APPLICATION')
 except:
 logger.exception('Exception during processing loop.')

To deploy the sample application, see the instructions in this guide's GitHub repository.

Serving traffic 103

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/debug-server/README.md

AWS Panorama Developer Guide

Using the GPU

You can access the graphics processor (GPU) on the AWS Panorama Appliance to use GPU-
accelerated libraries, or run machine learning models in your application code. To turn on GPU
access, you add GPU access as a requirement to the package configuration after building your
application code container.

Important

If you enable GPU access, you can't run model nodes in any application on the appliance.
For security purposes, GPU access is restricted when the appliance runs a model compiled
with SageMaker AI Neo. With GPU access, you must run your models in application code
nodes, and all applications on the device share access to the GPU.

To turn on GPU access for your application, update the package configuration after you build
the package with the AWS Panorama Application CLI. The following example shows the
requirements block that adds GPU access to the application code node.

Example package.json with requirements block

{
 "nodePackage": {
 "envelopeVersion": "2021-01-01",
 "name": "SAMPLE_CODE",
 "version": "1.0",
 "description": "Computer vision application code.",
 "assets": [
 {
 "name": "code_asset",
 "implementations": [
 {
 "type": "container",
 "assetUri":
 "eba3xmpl71aa387e8f89be9a8c396416cdb80a717bb32103c957a8bf41440b12.tar.gz",
 "descriptorUri":
 "4abdxmpl5a6f047d2b3047adde44704759d13f0126c00ed9b4309726f6bb43400ba9.json",
 "requirements": [
 {
 "type": "hardware_access",
 "inferenceAccelerators": [

Using the GPU 104

AWS Panorama Developer Guide

 {
 "deviceType": "nvhost_gpu",
 "sharedResourcePolicy": {
 "policy" : "allow_all"
 }
 }
]
 }
]
 }
]
 }
],
 "interfaces": [
 ...

Update the package configuration between the build and packaging steps in your development
workflow.

To deploy an application with GPU access

1. To build the application container, use the build-container command.

$ panorama-cli build-container --container-asset-name code_asset --package-path
 packages/123456789012-SAMPLE_CODE-1.0

2. Add the requirements block to the package configuration.

3. To upload the container asset and package configuration, use the package-application
command.

$ panorama-cli package-application

4. Deploy the application.

For sample applications that use GPU access, visit the aws-panorama-samples GitHub repository.

Using the GPU 105

https://github.com/aws-samples/aws-panorama-samples

AWS Panorama Developer Guide

Setting up a development environment in Windows

To build a AWS Panorama application, you use Docker, command-line tools, and Python. In
Windows, you can set up a development environment by using Docker Desktop with Windows
Subsystem for Linux and Ubuntu. This tutorial walks you through the setup process for
a development environment that has been tested with AWS Panorama tools and sample
applications.

Sections

• Prerequisites

• Install WSL 2 and Ubuntu

• Install Docker

• Configure Ubuntu

• Next steps

Prerequisites

To follow this tutorial, you need a version of Windows that supports Windows Subsystem for Linux
2 (WSL 2).

• Windows 10 version 1903 and higher (Build 18362 and higher) or Windows 11

• Windows features

• Windows Subsystem for Linux

• Hyper-V

• Virtual machine platform

This tutorial was developed with the following software versions.

• Ubuntu 20.04

• Python 3.8.5

• Docker 20.10.8

Tutorial – Windows development environment 106

AWS Panorama Developer Guide

Install WSL 2 and Ubuntu

If you have Windows 10 version 2004 and higher (Build 19041 and higher), you can install WSL 2
and Ubuntu 20.04 with the following PowerShell command.

> wsl --install -d Ubuntu-20.04

For older Windows version, follow the instructions in the WSL 2 documentation: Manual
installation steps for older versions

Install Docker

To install Docker Desktop, download and run the installer package from hub.docker.com. If you
encounter issues, follow the instructions on the Docker website: Docker Desktop WSL 2 backend.

Run Docker Desktop and follow the first-run tutorial to build an example container.

Note

Docker Desktop only enables Docker in the default distribution. If you have other
Linux distributions installed prior to running this tutorial, enable Docker in the newly
installed Ubuntu distribution in the Docker Desktop settings menu under Resources, WSL
integration.

Configure Ubuntu

You can now run Docker commands in your Ubuntu virtual machine. To open a command-line
terminal, run the distribution from the start menu. The first time you run it, you configure a
username and password that you can use to run administrator commands.

To complete configuration of your development environment, update the virtual machine's
software and install tools.

To configure the virtual machine

1. Update the software that comes with Ubuntu.

$ sudo apt update && sudo apt upgrade -y && sudo apt autoremove

Install WSL 2 and Ubuntu 107

https://docs.microsoft.com/en-us/windows/wsl/install-manual
https://docs.microsoft.com/en-us/windows/wsl/install-manual
https://hub.docker.com/editions/community/docker-ce-desktop-windows/
https://docs.docker.com/desktop/windows/wsl/

AWS Panorama Developer Guide

2. Install development tools with apt.

$ sudo apt install unzip python3-pip

3. Install Python libraries with pip.

$ pip3 install awscli panoramacli

4. Open a new terminal, and then run aws configure to configure the AWS CLI.

$ aws configure

If you don't have access keys, you can generate them in the IAM console.

Finally, download and import the sample application.

To get the sample application

1. Download and extract the sample application.

$ wget https://github.com/awsdocs/aws-panorama-developer-guide/releases/download/
v1.0-ga/aws-panorama-sample.zip
$ unzip aws-panorama-sample.zip
$ cd aws-panorama-sample

2. Run the included scripts to test compilation, build the application container, and upload
packages to AWS Panorama.

aws-panorama-sample$./0-test-compile.sh
aws-panorama-sample$./1-create-role.sh
aws-panorama-sample$./2-import-app.sh
aws-panorama-sample$./3-build-container.sh
aws-panorama-sample$./4-package-app.sh

The AWS Panorama Application CLI uploads packages and registers them with the AWS Panorama
service. You can now deploy the sample app with the AWS Panorama console.

Configure Ubuntu 108

https://console.aws.amazon.com/iamv2/home?#/users

AWS Panorama Developer Guide

Next steps

To explore and edit the project files, you can use File Explorer or an integrated development
environment (IDE) that supports WSL.

To access the virtual machine's file system, open File explorer and enter \\wsl$ in the navigation
bar. This directory contains a link to the virtual machine's file system (Ubuntu-20.04) and file
systems for Docker's data. Under Ubuntu-20.04, your user directory is at home\username.

Note

To access files in your Windows installation from within Ubuntu, navigate to the /mnt/c
directory. For example, you can list files in your downloads directory by running ls /mnt/
c/Users/windows-username/Downloads.

With Visual Studio Code, you can edit application code in your development environment and run
commands with an integrated terminal. To install Visual Studio Code, visit code.visualstudio.com.
After installation, add the Remote WSL extension.

Windows terminal is an alternative to the standard Ubuntu terminal that you’ve been running
commands in. It supports multiple tabs and can run PowerShell, Command Prompt, and terminals
for any other variety of Linux that you install. It supports copy and paste with Ctrl+C and Ctrl+V,
clickable URLs, and other useful improvements. To install Windows Terminal, visit microsoft.com.

Next steps 109

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.remote-wsl
https://www.microsoft.com/en-us/p/windows-terminal/9n0dx20hk701

AWS Panorama Developer Guide

Using AWS Panorama after update 8.0.29

AWS Panorama version 8.0.29 ends support for SageMaker AI Neo models. This is because
SageMaker AI Neo for Edge Devices has pulled support for the NVIDIA Jetpack SDK. Jetpack 4.6 is
not supported on 8.0.29, although you can still deploy Jetpack 4.6 Neo models on older images. If
your application is currently using SageMaker AI Neo model nodes, you have two choices for how
to proceed:

1. Rebuild your application without the Neo models for use with Jetpack 5.1.1. The recommended
strategy is to run models directly on the GPU instead. See the following section on Running apps
on OpenGPU for more information.

2. Decline the update to 8.0.29 and keep using Neo model nodes.

While the 8.0.29 image is marked as "Mandatory", you will not be forced to upgrade to it. While
using the old image, all regular functions are available including managing (deploying) applications
and OTA from one pre-8.0.29 image to another pre-8.0.29 image. However, you will not be able to
OTA from a post-8.0.29 image to a previous, older image.

The following are examples of which version changes are allowed and not allowed:

• Allowed: 6.0.8 -> 6.2.1

• Allowed: 6.2.1 -> 7.0.13

• Allowed: 7.0.13 -> 8.0.29

• Not allowed: 8.0.29 -> 7.0.13

Application Base Image Changes

The updated base Docker images can be at the following link, for both 1.2.1-arm64v8 and
latest_jetpack5 versions:

Amazon ECR Public Gallery

The application base image changes for 8.0.29 are as follows:

• Change base image from Ubuntu 18 to Ubuntu 20

• Software versions:

1. Python - 3.8.10

Using AWS Panorama after update 8.0.29 110

https://gallery.ecr.aws/panorama/panorama-application

AWS Panorama Developer Guide

2. NumPy - 1.24.4

Running Applications on an OpenGPU framework

If you would like to update to a version of AWS Panorama that has ended support for SageMaker
AI Neo, you can migrate your SageMaker AI Neo apps to a framework that uses OpenGPU. The
advantage of using OpenGPU is that your application has direct GPU and hardware access, giving
you greater flexibility and performance.

The following links are some sample applications that demonstrate how OpenGPU can be used to
run Jetpack 5 apps:

Run Yolov5s with Tensor RT in Panorama

Convert YoloV5s to ONNX and run on Panorma

Run YoloV5s on Panorama with Torch and TorchVision

Running Applications on an OpenGPU framework 111

https://github.com/aws-samples/aws-panorama-samples/tree/main/samples/ONNX2TRT_opengpu
https://github.com/aws-samples/aws-panorama-samples/tree/main/samples/ONNX_opengpu
https://github.com/aws-samples/aws-panorama-samples/tree/main/samples/PT_opengpu

AWS Panorama Developer Guide

The AWS Panorama API

You can use the AWS Panorama service's public API to automate device and application
management workflows. With the AWS Command Line Interface or the AWS SDK, you can develop
scripts or applications that manage resources and deployments. This guide's GitHub repository
includes scripts that you can use as a starting point for your own code.

• aws-panorama-developer-guide/util-scripts

Sections

• Automate device registration

• Manage appliances with the AWS Panorama API

• Automate application deployment

• Manage applications with the AWS Panorama API

• Using VPC endpoints

112

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts

AWS Panorama Developer Guide

Automate device registration

To provision an appliance, use the ProvisionDevice API. The response includes a ZIP file with the
device's configuration and temporary credentials. Decode the file and save it in an archive with the
prefix certificates-omni_.

Example provision-device.sh

if [[$# -eq 1]] ; then
 DEVICE_NAME=$1
else
 echo "Usage: ./provision-device.sh <device-name>"
 exit 1
fi
CERTIFICATE_BUNDLE=certificates-omni_${DEVICE_NAME}.zip
aws panorama provision-device --name ${DEVICE_NAME} --output text --query Certificates
 | base64 --decode > ${CERTIFICATE_BUNDLE}
echo "Created certificate bundle ${CERTIFICATE_BUNDLE}"

The credentials in the configuration archive expire after 5 minutes. Transfer the archive to your
appliance with the included USB drive.

To register a camera, use the CreateNodeFromTemplateJob API. This API takes a map of template
parameters for the camera's username, password, and URL. You can format this map as a JSON
document by using Bash string manipulation.

Example register-camera.sh

if [[$# -eq 3]] ; then
 NAME=$1
 USERNAME=$2
 URL=$3
else
 echo "Usage: ./register-camera.sh <stream-name> <username> <rtsp-url>"
 exit 1
fi
echo "Enter camera stream password: "
read PASSWORD
TEMPLATE='{"Username":"MY_USERNAME","Password":"MY_PASSWORD","StreamUrl": "MY_URL"}'
TEMPLATE=${TEMPLATE/MY_USERNAME/$USERNAME}
TEMPLATE=${TEMPLATE/MY_PASSWORD/$PASSWORD}
TEMPLATE=${TEMPLATE/MY_URL/$URL}

Automate device registration 113

https://docs.aws.amazon.com/panorama/latest/api/API_ProvisionDevice.html
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts/provision-device.sh
https://docs.aws.amazon.com/panorama/latest/api/API_CreateNodeFromTemplateJob.html
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts/register-camera.sh

AWS Panorama Developer Guide

echo ${TEMPLATE}
JOB_ID=$(aws panorama create-node-from-template-job --template-type RTSP_CAMERA_STREAM
 --output-package-name ${NAME} --output-package-version "1.0" --node-name ${NAME} --
template-parameters "${TEMPLATE}" --output text)

Alternatively, you can load the JSON configuration from a file.

--template-parameters file://camera-template.json

Automate device registration 114

AWS Panorama Developer Guide

Manage appliances with the AWS Panorama API

You can automate appliance management tasks with the AWS Panorama API.

View devices

To get a list of appliances with device IDs, use the ListDevices API.

$ aws panorama list-devices
 "Devices": [
 {
 "DeviceId": "device-4tafxmplhtmzabv5lsacba4ere",
 "Name": "my-appliance",
 "CreatedTime": 1652409973.613,
 "ProvisioningStatus": "SUCCEEDED",
 "LastUpdatedTime": 1652410973.052,
 "LeaseExpirationTime": 1652842940.0
 }
]
}

To get more details about an appliance, use the DescribeDevice API.

$ aws panorama describe-device --device-id device-4tafxmplhtmzabv5lsacba4ere
{
 "DeviceId": "device-4tafxmplhtmzabv5lsacba4ere",
 "Name": "my-appliance",
 "Arn": "arn:aws:panorama:us-west-2:123456789012:device/
device-4tafxmplhtmzabv5lsacba4ere",
 "Type": "PANORAMA_APPLIANCE",
 "DeviceConnectionStatus": "ONLINE",
 "CreatedTime": 1648232043.421,
 "ProvisioningStatus": "SUCCEEDED",
 "LatestSoftware": "4.3.55",
 "CurrentSoftware": "4.3.45",
 "SerialNumber": "GFXMPL0013023708",
 "Tags": {},
 "CurrentNetworkingStatus": {
 "Ethernet0Status": {
 "IpAddress": "192.168.0.1/24",
 "ConnectionStatus": "CONNECTED",
 "HwAddress": "8C:XM:PL:60:C5:88"

Manage appliance 115

https://docs.aws.amazon.com/panorama/latest/api/API_ListDevices.html
https://docs.aws.amazon.com/panorama/latest/api/API_DescribeDevice.html

AWS Panorama Developer Guide

 },
 "Ethernet1Status": {
 "IpAddress": "--",
 "ConnectionStatus": "NOT_CONNECTED",
 "HwAddress": "8C:XM:PL:60:C5:89"
 }
 },
 "LeaseExpirationTime": 1652746098.0
}

Upgrade appliance software

If the LatestSoftware version is newer than the CurrentSoftware, you can upgrade the
device. Use the CreateJobForDevices API to create an over-the-air (OTA) update job.

Note

Any updates beyond 8.0.29 will mean that Sagemaker Neo model nodes can’t be run. If you
are currently using model nodes, it’s recommended that direct hardware access is used to
run models directly on the GPU instead, or that you choose not to upgrade. See the section
called “Using AWS Panorama after update 8.0.29”for more information on how to handle
your applications post update.

$ aws panorama create-job-for-devices --device-ids device-4tafxmplhtmzabv5lsacba4ere \
 --device-job-config '{"OTAJobConfig": {"ImageVersion": "4.3.55"}}' --job-type OTA
{
 "Jobs": [
 {
 "JobId": "device-4tafxmplhtmzabv5lsacba4ere-0",
 "DeviceId": "device-4tafxmplhtmzabv5lsacba4ere"
 }
]
}

In a script, you can populate the image version field in the job configuration file with Bash string
manipulation.

Example check-updates.sh

apply_update() {

Upgrade appliance software 116

https://docs.aws.amazon.com/panorama/latest/api/API_CreateJobForDevices.html
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts/check-updates.sh

AWS Panorama Developer Guide

 DEVICE_ID=$1
 NEW_VERSION=$2
 CONFIG='{"OTAJobConfig": {"ImageVersion": "NEW_VERSION"}}'
 CONFIG=${CONFIG/NEW_VERSION/$NEW_VERSION}
 aws panorama create-job-for-devices --device-ids ${DEVICE_ID} --device-job-config
 "${CONFIG}" --job-type OTA
}

The appliance downloads the specified software version and updates itself. Watch the update's
progress with the DescribeDeviceJob API.

$ aws panorama describe-device-job --job-id device-4tafxmplhtmzabv5lsacba4ere-0
{
 "JobId": "device-4tafxmplhtmzabv5lsacba4ere-0",
 "DeviceId": "device-4tafxmplhtmzabv5lsacba4ere",
 "DeviceArn": "arn:aws:panorama:us-west-2:559823168634:device/
device-4tafxmplhtmzabv5lsacba4ere",
 "DeviceName": "my-appliance",
 "DeviceType": "PANORAMA_APPLIANCE",
 "ImageVersion": "4.3.55",
 "Status": "REBOOTING",
 "CreatedTime": 1652410232.465
}

To get a list of all running jobs, use the ListDevicesJobs.

$ aws panorama list-devices-jobs
{
 "DeviceJobs": [
 {
 "DeviceName": "my-appliance",
 "DeviceId": "device-4tafxmplhtmzabv5lsacba4ere",
 "JobId": "device-4tafxmplhtmzabv5lsacba4ere-0",
 "CreatedTime": 1652410232.465
 }
]
}

For a sample script that checks for and applies updates, see check-updates.sh in this guide's GitHub
repository.

Upgrade appliance software 117

https://docs.aws.amazon.com/panorama/latest/api/API_DescribeDeviceJob.html
https://docs.aws.amazon.com/panorama/latest/api/API_ListDevicesJobs.html
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts/check-updates.sh

AWS Panorama Developer Guide

Reboot appliances

To reboot an appliance, use the CreateJobForDevices API.

$ aws panorama create-job-for-devices --device-ids device-4tafxmplhtmzabv5lsacba4ere --
job-type REBOOT
{
 "Jobs": [
 {
 "JobId": "device-4tafxmplhtmzabv5lsacba4ere-0",
 "DeviceId": "device-4tafxmplhtmzabv5lsacba4ere"
 }
]
}

In a script, you can get a list of devices and choose one to reboot interactively.

Example reboot-device.sh – usage

$./reboot-device.sh
Getting devices...
0: device-53amxmplyn3gmj72epzanacniy my-se70-1
1: device-6talxmpl5mmik6qh5moba6jium my-manh-24
Choose a device
1
Reboot device device-6talxmpl5mmik6qh5moba6jium? (y/n)y
{
 "Jobs": [
 {
 "DeviceId": "device-6talxmpl5mmik6qh5moba6jium",
 "JobId": "device-6talxmpl5mmik6qh5moba6jium-8"
 }
]
}

Reboot appliances 118

https://docs.aws.amazon.com/panorama/latest/api/API_CreateJobForDevices.html
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts/reboot-device.sh

AWS Panorama Developer Guide

Automate application deployment

To deploy an application, you use both the AWS Panorama Application CLI and AWS Command Line
Interface. After building the application container, you upload it and other assets to an Amazon S3
access point. You then deploy the application with the CreateApplicationInstance API.

For more context and instructions for using the scripts shown, follow the instructions in the sample
application README.

Sections

• Build the container

• Upload the container and register nodes

• Deploy the application

• Monitor the deployment

Build the container

To build the application container, use the build-container command. This command builds a
Docker container and saves it as a compressed file system in the assets folder.

Example 3-build-container.sh

CODE_PACKAGE=SAMPLE_CODE
ACCOUNT_ID=$(aws sts get-caller-identity --output text --query 'Account')
panorama-cli build-container --container-asset-name code_asset --package-path packages/
${ACCOUNT_ID}-${CODE_PACKAGE}-1.0

You can also use command-line completion to fill in the path argument by typing part of the path,
and then pressing TAB.

$ panorama-cli build-container --package-path packages/TAB

Upload the container and register nodes

To upload the application, use the package-application command. This command uploads
assets from the assets folder to an Amazon S3 access point that AWS Panorama manages.

Automate application deployment 119

https://docs.aws.amazon.com/panorama/latest/api/API_CreateApplicationInstance.html
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/README.md
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/README.md
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/3-build-container.sh

AWS Panorama Developer Guide

Example 4-package-app.sh

panorama-cli package-application

The AWS Panorama Application CLI uploads container and descriptor assets referenced by the
package configuration (package.json) in each package, and registers the packages as nodes
in AWS Panorama. You then refer to these nodes in your application manifest (graph.json) to
deploy the application.

Deploy the application

To deploy the application, you use the CreateApplicationInstance API. This action takes the
following parameters, among others.

• ManifestPayload – The application manifest (graph.json) that defines the application's
nodes, packages, edges, and parameters.

• ManifestOverridesPayload – A second manifest that overrides parameters in the first. The
application manifest can be considered as a static resource in the application source, where the
override manifest provides deploy-time settings that customize the deployment.

• DefaultRuntimeContextDevice – The target device.

• RuntimeRoleArn – The ARN of an IAM role that the application uses to access AWS services and
resources.

• ApplicationInstanceIdToReplace – The ID of an existing application instance to remove
from the device.

The manifest and override payloads are JSON documents that must be provided as a string value
nested inside of another document. To do this, the script loads the manifests from a file as a string
and uses the jq tool to construct the nested document.

Example 5-deploy.sh – compose manifests

GRAPH_PATH="graphs/my-app/graph.json"
OVERRIDE_PATH="graphs/my-app/override.json"
application manifest
GRAPH=$(cat ${GRAPH_PATH} | tr -d '\n' | tr -d '[:blank:]')
MANIFEST="$(jq --arg value "${GRAPH}" '.PayloadData="\($value)"' <<< {})"
manifest override

Deploy the application 120

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/4-package-app.sh
https://docs.aws.amazon.com/panorama/latest/api/API_CreateApplicationInstance.html
https://stedolan.github.io/jq/
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/5-deploy.sh

AWS Panorama Developer Guide

OVERRIDE=$(cat ${OVERRIDE_PATH} | tr -d '\n' | tr -d '[:blank:]')
MANIFEST_OVERRIDE="$(jq --arg value "${OVERRIDE}" '.PayloadData="\($value)"' <<< {})"

The deploy script uses the ListDevices API to get a list of registered devices in the current Region,
and saves the users choice to a local file for subsequent deployments.

Example 5-deploy.sh – find a device

 echo "Getting devices..."
 DEVICES=$(aws panorama list-devices)
 DEVICE_NAMES=($((echo ${DEVICES} | jq -r '.Devices |=sort_by(.LastUpdatedTime) |
 [.Devices[].Name] | @sh') | tr -d \'\"))
 DEVICE_IDS=($((echo ${DEVICES} | jq -r '.Devices |=sort_by(.LastUpdatedTime) |
 [.Devices[].DeviceId] | @sh') | tr -d \'\"))
 for ((c=0; c<${#DEVICE_NAMES[@]}; c++))
 do
 echo "${c}: ${DEVICE_IDS[${c}]} ${DEVICE_NAMES[${c}]}"
 done
 echo "Choose a device"
 read D_INDEX
 echo "Deploying to device ${DEVICE_IDS[${D_INDEX}]}"
 echo -n ${DEVICE_IDS[${D_INDEX}]} > device-id.txt
 DEVICE_ID=$(cat device-id.txt)

The application role is created by another script (1-create-role.sh). The deploy script gets the ARN
of this role from AWS CloudFormation. If the application is already deployed to the device, the
script gets the ID of that application instance from a local file.

Example 5-deploy.sh – role ARN and replacement arguments

application role
STACK_NAME=panorama-${NAME}
ROLE_ARN=$(aws cloudformation describe-stacks --stack-name panorama-${PWD##*/} --query
 'Stacks[0].Outputs[?OutputKey==`roleArn`].OutputValue' --output text)
ROLE_ARG="--runtime-role-arn=${ROLE_ARN}"

existing application instance id
if [-f "application-id.txt"]; then
 EXISTING_APPLICATION=$(cat application-id.txt)
 REPLACE_ARG="--application-instance-id-to-replace=${EXISTING_APPLICATION}"
 echo "Replacing application instance ${EXISTING_APPLICATION}"

Deploy the application 121

https://docs.aws.amazon.com/panorama/latest/api/API_ListDevices.html
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/5-deploy.sh
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/1-create-role.sh
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/5-deploy.sh

AWS Panorama Developer Guide

fi

Finally, the script puts all of the pieces together to create an application instance and deploy the
application to the device. The service responds with an instance ID which the script stores for later
use.

Example 5-deploy.sh – deploy application

APPLICATION_ID=$(aws panorama create-application-instance ${REPLACE_ARG} --manifest-
payload="${MANIFEST}" --default-runtime-context-device=${DEVICE_ID} --name=${NAME}
 --description="command-line deploy" --tags client=sample --manifest-overrides-
payload="${MANIFEST_OVERRIDE}" ${ROLE_ARG} --output text)
echo "New application instance ${APPLICATION_ID}"
echo -n $APPLICATION_ID > application-id.txt

Monitor the deployment

To monitor a deployment, use the ListApplicationInstances API. The monitor script gets the device
ID and application instance ID from files in the application directory and uses them to construct a
CLI command. It then calls in a loop.

Example 6-monitor-deployment.sh

APPLICATION_ID=$(cat application-id.txt)
DEVICE_ID=$(cat device-id.txt)
QUERY="ApplicationInstances[?ApplicationInstanceId==\`APPLICATION_ID\`]"
QUERY=${QUERY/APPLICATION_ID/$APPLICATION_ID}
MONITOR_CMD="aws panorama list-application-instances --device-id ${DEVICE_ID} --query
 ${QUERY}"
MONITOR_CMD=${MONITOR_CMD/QUERY/$QUERY}
while true; do
 $MONITOR_CMD
 sleep 60
done

When the deployment completes, you can view logs by calling the Amazon CloudWatch Logs API.
The view logs script uses the CloudWatch Logs GetLogEvents API.

Example view-logs.sh

GROUP="/aws/panorama/devices/MY_DEVICE_ID/applications/MY_APPLICATION_ID"

Monitor the deployment 122

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/5-deploy.sh
https://docs.aws.amazon.com/panorama/latest/api/API_ListApplicationInstances.html
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/6-monitor-deployment.sh
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts/view-logs.sh

AWS Panorama Developer Guide

GROUP=${GROUP/MY_DEVICE_ID/$DEVICE_ID}
GROUP=${GROUP/MY_APPLICATION_ID/$APPLICATION_ID}
echo "Getting logs for group ${GROUP}."
#set -x
while true
do
 LOGS=$(aws logs get-log-events --log-group-name ${GROUP} --log-stream-name
 code_node --limit 150)
 readarray -t ENTRIES < <(echo $LOGS | jq -c '.events[].message')
 for ENTRY in "${ENTRIES[@]}"; do
 echo "$ENTRY" | tr -d \"
 done
 sleep 20
done

Monitor the deployment 123

AWS Panorama Developer Guide

Manage applications with the AWS Panorama API

You can monitor and manage applications with the AWS Panorama API.

View applications

To get a list of applications running on an appliance, use the ListApplicationInstances API.

$ aws panorama list-application-instances
 "ApplicationInstances": [
 {
 "Name": "aws-panorama-sample",
 "ApplicationInstanceId": "applicationInstance-ddaxxmpl2z7bg74ywutd7byxuq",
 "DefaultRuntimeContextDevice": "device-4tafxmplhtmzabv5lsacba4ere",
 "DefaultRuntimeContextDeviceName": "my-appliance",
 "Description": "command-line deploy",
 "Status": "DEPLOYMENT_SUCCEEDED",
 "HealthStatus": "RUNNING",
 "StatusDescription": "Application deployed successfully.",
 "CreatedTime": 1661902051.925,
 "Arn": "arn:aws:panorama:us-east-2:123456789012:applicationInstance/
applicationInstance-ddaxxmpl2z7bg74ywutd7byxuq",
 "Tags": {
 "client": "sample"
 }
 },
]
}

To get more details about an application instance's nodes, use the
ListApplicationInstanceNodeInstances API.

$ aws panorama list-application-instance-node-instances --application-instance-id
 applicationInstance-ddaxxmpl2z7bg74ywutd7byxuq
{
 "NodeInstances": [
 {
 "NodeInstanceId": "code_node",
 "NodeId": "SAMPLE_CODE-1.0-fd3dxmpl-interface",
 "PackageName": "SAMPLE_CODE",
 "PackageVersion": "1.0",

Manage applications 124

https://docs.aws.amazon.com/panorama/latest/api/API_ListApplicationInstances.html
https://docs.aws.amazon.com/panorama/latest/api/API_ListApplicationInstanceNodeInstances.html

AWS Panorama Developer Guide

 "PackagePatchVersion":
 "fd3dxmpl2bdfa41e6fe1be290a79dd2c29cf014eadf7416d861ce7715ad5e8a8",
 "NodeName": "interface",
 "CurrentStatus": "RUNNING"
 },
 {
 "NodeInstanceId": "camera_node_override",
 "NodeId": "warehouse-floor-1.0-9eabxmpl-warehouse-floor",
 "PackageName": "warehouse-floor",
 "PackageVersion": "1.0",
 "PackagePatchVersion":
 "9eabxmple89f0f8b2f2852cca2a6e7971aa38f1629a210d069045e83697e42a7",
 "NodeName": "warehouse-floor",
 "CurrentStatus": "RUNNING"
 },
 {
 "NodeInstanceId": "output_node",
 "NodeId": "hdmi_data_sink-1.0-9c23xmpl-hdmi0",
 "PackageName": "hdmi_data_sink",
 "PackageVersion": "1.0",
 "PackagePatchVersion":
 "9c23xmplc4c98b92baea4af676c8b16063d17945a3f6bd8f83f4ff5aa0d0b394",
 "NodeName": "hdmi0",
 "CurrentStatus": "RUNNING"
 },
 {
 "NodeInstanceId": "model_node",
 "NodeId": "SQUEEZENET_PYTORCH-1.0-5d3cabda-interface",
 "PackageName": "SQUEEZENET_PYTORCH",
 "PackageVersion": "1.0",
 "PackagePatchVersion":
 "5d3cxmplb7113faa1d130f97f619655d8ca12787c751851a0e155e50eb5e3e96",
 "NodeName": "interface",
 "CurrentStatus": "RUNNING"
 }
]
}

Manage camera streams

You can pause and resume camera stream nodes with the SignalApplicationInstanceNodeInstances
API.

Manage camera streams 125

https://docs.aws.amazon.com/panorama/latest/api/API_SignalApplicationInstanceNodeInstances.html

AWS Panorama Developer Guide

$ aws panorama signal-application-instance-node-instances --application-instance-id
 applicationInstance-ddaxxmpl2z7bg74ywutd7byxuq \
 --node-signals '[{"NodeInstanceId": "camera_node_override", "Signal":
 "PAUSE"}]'
{
 "ApplicationInstanceId": "applicationInstance-ddaxxmpl2z7bg74ywutd7byxuq"
}

In a script, you can get a list of nodes and choose one to pause or resume interactively.

Example pause-camera.sh – usage

my-app$./pause-camera.sh

Getting nodes...
0: SAMPLE_CODE RUNNING
1: warehouse-floor RUNNING
2: hdmi_data_sink RUNNING
3: entrance-north PAUSED
4: SQUEEZENET_PYTORCH RUNNING
Choose a node
1
Signalling node warehouse-floor
+ aws panorama signal-application-instance-node-instances --application-instance-id
 applicationInstance-r3a7xmplcbmpjqeds7vj4b6pjy --node-signals '[{"NodeInstanceId":
 "warehouse-floor", "Signal": "PAUSE"}]'
{
 "ApplicationInstanceId": "applicationInstance-r3a7xmplcbmpjqeds7vj4b6pjy"
}

By pausing and resuming camera nodes, you can cycle through a larger number of camera streams
than can be processed simultaneously. To do this, map multiple camera streams to the same input
node in your override manifest.

In the following example, the override manifest maps two camera streams, warehouse-floor
and entrance-north to the same input node (camera_node). The warehouse-floor stream is
active when the application starts and the entrance-north node waits for a signal to turn on.

Example override-multicam.json

 "nodeGraphOverrides": {

Manage camera streams 126

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts/pause-camera.sh
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/graphs/my-app/override-multicam.json

AWS Panorama Developer Guide

 "nodes": [
 {
 "name": "warehouse-floor",
 "interface": "123456789012::warehouse-floor.warehouse-floor",
 "launch": "onAppStart"
 },
 {
 "name": "entrance-north",
 "interface": "123456789012::entrance-north.entrance-north",
 "launch": "onSignal"
 },
 ...
 "packages": [
 {
 "name": "123456789012::warehouse-floor",
 "version": "1.0"
 },
 {
 "name": "123456789012::entrance-north",
 "version": "1.0"
 }
],
 "nodeOverrides": [
 {
 "replace": "camera_node",
 "with": [
 {
 "name": "warehouse-floor"
 },
 {
 "name": "entrance-north"
 }
]
 }

For details on deploying with the API, see Automate application deployment.

Manage camera streams 127

AWS Panorama Developer Guide

Using VPC endpoints

If you work in a VPC without internet access, you can create a VPC endpoint for use with AWS
Panorama. A VPC endpoint lets clients running in a private subnet connect to an AWS service
without an internet connection.

For details on ports and endpoints used by the AWS Panorama Appliance, see ???.

Sections

• Creating a VPC endpoint

• Connecting an appliance to a private subnet

• Sample AWS CloudFormation templates

Creating a VPC endpoint

To establish a private connection between your VPC and AWS Panorama, create a VPC endpoint.
A VPC endpoint is not required to use AWS Panorama. You only need to create a VPC endpoint if
you work in a VPC without internet access. When the AWS CLI or SDK attempts to connect to AWS
Panorama, the traffic is routed through the VPC endpoint.

Create a VPC endpoint for AWS Panorama using the following settings:

• Service name – com.amazonaws.us-west-2.panorama

• Type – Interface

A VPC endpoint uses the service's DNS name to get traffic from AWS SDK clients without any
additional configuration. For more information about using VPC endpoints, see Interface VPC
endpoints in the Amazon VPC User Guide.

Connecting an appliance to a private subnet

The AWS Panorama Appliance can connect to AWS over a private VPN connection with AWS Site-
to-Site VPN or AWS Direct Connect. With these services, you can create a private subnet that
extends to your data center. The appliance connects to the private subnet and accesses AWS
services through VPC endpoints.

Using VPC endpoints 128

https://console.aws.amazon.com//vpc/home#CreateVpcEndpoint:
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html

AWS Panorama Developer Guide

Site-to-Site VPN and AWS Direct Connect are services for connecting your data center to Amazon
VPC securely. With Site-to-Site VPN, you can use commercially available network devices to
connect. AWS Direct Connect uses an AWS device to connect.

• Site-to-Site VPN – What is AWS Site-to-Site VPN?

• AWS Direct Connect – What is AWS Direct Connect?

After you've connected your local network to a private subnet in a VPC, create VPC endpoints for
the following services.

• Amazon Simple Storage Service – AWS PrivateLink for Amazon S3

• AWS IoT Core – Using AWS IoT Core with interface VPC endpoints (data plane and credential
provider)

• Amazon Elastic Container Registry – Amazon Elastic Container Registry interface VPC endpoints

• Amazon CloudWatch – Using CloudWatch with interface VPC endpoints

• Amazon CloudWatch Logs – Using CloudWatch Logs with interface VPC endpoints

The appliance does not need connectivity to the AWS Panorama service. It communicates with AWS
Panorama through a messaging channel in AWS IoT.

In addition to VPC endpoints, Amazon S3 and AWS IoT require the use of Amazon Route 53 private
hosted zones. The private hosted zone routes traffic from subdomains, including subdomains for
Amazon S3 access points and MQTT topics, to the correct VPC endpoint. For information on private
hosted zones, see Working with private hosted zones in the Amazon Route 53 Developer Guide.

For a sample VPC configuration with VPC endpoints and private hosted zones, see Sample AWS
CloudFormation templates.

Sample AWS CloudFormation templates

The GitHub repository for this guide provides AWS CloudFormation templates that you can use to
create resources for use with AWS Panorama. The templates create a VPC with two private subnets,
a public subnet, and a VPC endpoint. You can use the private subnets in the VPC to host resources
that are isolated from the internet. Resources in the public subnet can communicate with the
private resources, but the private resources can't be accessed from the internet.

Sample AWS CloudFormation templates 129

https://docs.aws.amazon.com/vpn/latest/s2svpn/
https://docs.aws.amazon.com/directconnect/latest/UserGuide/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/privatelink-interface-endpoints.html
https://docs.aws.amazon.com/iot/latest/developerguide/IoTCore-VPC.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/vpc-endpoints.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch-and-interface-VPC.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/cloudwatch-logs-and-interface-VPC.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/hosted-zones-private.html

AWS Panorama Developer Guide

Example vpc-endpoint.yml – Private subnets

AWSTemplateFormatVersion: 2010-09-09
Resources:
 vpc:
 Type: AWS::EC2::VPC
 Properties:
 CidrBlock: 172.31.0.0/16
 EnableDnsHostnames: true
 EnableDnsSupport: true
 Tags:
 - Key: Name
 Value: !Ref AWS::StackName
 privateSubnetA:
 Type: AWS::EC2::Subnet
 Properties:
 VpcId: !Ref vpc
 AvailabilityZone:
 Fn::Select:
 - 0
 - Fn::GetAZs: ""
 CidrBlock: 172.31.3.0/24
 MapPublicIpOnLaunch: false
 Tags:
 - Key: Name
 Value: !Sub ${AWS::StackName}-subnet-a
 ...

The vpc-endpoint.yml template shows how to create a VPC endpoint for AWS Panorama. You
can use this endpoint to manage AWS Panorama resources with the AWS SDK or AWS CLI.

Example vpc-endpoint.yml – VPC endpoint

 panoramaEndpoint:
 Type: AWS::EC2::VPCEndpoint
 Properties:
 ServiceName: !Sub com.amazonaws.${AWS::Region}.panorama
 VpcId: !Ref vpc
 VpcEndpointType: Interface
 SecurityGroupIds:
 - !GetAtt vpc.DefaultSecurityGroup
 PrivateDnsEnabled: true
 SubnetIds:

Sample AWS CloudFormation templates 130

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/cloudformation-templates/vpc-endpoint.yml
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/cloudformation-templates/vpc-endpoint.yml

AWS Panorama Developer Guide

 - !Ref privateSubnetA
 - !Ref privateSubnetB
 PolicyDocument:
 Version: 2012-10-17
 Statement:
 - Effect: Allow
 Principal: "*"
 Action:
 - "panorama:*"
 Resource:
 - "*"

The PolicyDocument is a resource-based permissions policy that defines the API calls that can be
made with the endpoint. You can modify the policy to restrict the actions and resources that can be
accessed through the endpoint. For more information, see Controlling access to services with VPC
endpoints in the Amazon VPC User Guide.

The vpc-appliance.yml template shows how to create VPC endpoints and private hosted zones
for services used by the AWS Panorama Appliance.

Example vpc-appliance.yml – Amazon S3 access point endpoint with private hosted zone

 s3Endpoint:
 Type: AWS::EC2::VPCEndpoint
 Properties:
 ServiceName: !Sub com.amazonaws.${AWS::Region}.s3
 VpcId: !Ref vpc
 VpcEndpointType: Interface
 SecurityGroupIds:
 - !GetAtt vpc.DefaultSecurityGroup
 PrivateDnsEnabled: false
 SubnetIds:
 - !Ref privateSubnetA
 - !Ref privateSubnetB
...
 s3apHostedZone:
 Type: AWS::Route53::HostedZone
 Properties:
 Name: !Sub s3-accesspoint.${AWS::Region}.amazonaws.com
 VPCs:
 - VPCId: !Ref vpc
 VPCRegion: !Ref AWS::Region
 s3apRecords:

Sample AWS CloudFormation templates 131

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/cloudformation-templates/vpc-appliance.yml

AWS Panorama Developer Guide

 Type: AWS::Route53::RecordSet
 Properties:
 HostedZoneId: !Ref s3apHostedZone
 Name: !Sub "*.s3-accesspoint.${AWS::Region}.amazonaws.com"
 Type: CNAME
 TTL: 600
 # first DNS entry, split on :, second value
 ResourceRecords:
 - !Select [1, !Split [":", !Select [0, !GetAtt s3Endpoint.DnsEntries]]]

The sample templates demonstrate the creation of Amazon VPC and Route 53 resources with a
sample VPC. You can adapt these for your use case by removing the VPC resources and replacing
the references to subnet, security group, and VPC IDs with the IDs of your resources.

Sample AWS CloudFormation templates 132

AWS Panorama Developer Guide

Sample applications, scripts, and templates

The GitHub repository for this guide provides sample applications, scripts, and templates for
AWS Panorama devices. Use these samples to learn best practices and automate development
workflows.

Sections

• Sample applications

• Utility scripts

• AWS CloudFormation templates

• More samples and tools

Sample applications

Sample applications demonstrate use of AWS Panorama features and common computer
vision tasks. These sample applications include scripts and templates that automate setup and
deployment. With minimal configuration, you can deploy and update applications from the
command line.

• aws-panorama-sample – Basic computer vision with a classification model. Use the AWS SDK
for Python (Boto) to upload metrics to CloudWatch, instrument preprocessing and inference
methods, and configure logging.

• debug-server – Open inbound ports on the device and forward traffic to an application code
container. Use multithreading to run application code, an HTTP server, and an HTTP client
simultaneously.

• custom-model – Export models from code and compile with SageMaker AI Neo to test
compatibility with the AWS Panorama Appliance. Build locally in a Python development, in a
Docker container, or on an Amazon EC2 instance. Export and compile all built-in application
models in Keras for a specific TensorFlow or Python version.

For more sample applications, also visit the aws-panorama-samples repository.

Sample applications 133

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/debug-server
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/custom-model
https://github.com/aws-samples/aws-panorama-samples

AWS Panorama Developer Guide

Utility scripts

The scripts in the util-scripts directory manage AWS Panorama resources or automate
development workflows.

• provision-device.sh – Provision a device.

• check-updates.sh – Check for and apply appliance software updates.

• reboot-device.sh – Reboot a device.

• register-camera.sh – Register a camera.

• deregister-camera.sh – Delete a camera node.

• view-logs.sh – View logs for an application instance.

• pause-camera.sh – Pause or resume a camera stream.

• push.sh – Build, upload, and deploy an application.

• rename-package.sh – Rename a node package. Updates directory names, configuration files, and
the application manifest.

• samplify.sh – Replace your account ID with an example account ID, and restore backup
configurations to remove local configuration.

• update-model-config.sh – Re-add the model to the application after updating the descriptor file.

• cleanup-patches.sh – Deregister old patch versions and delete their manifests from Amazon S3.

For usage details, see the README.

AWS CloudFormation templates

Use the AWS CloudFormation templates in the cloudformation-templates directory to create
resources for AWS Panorama applications.

• alarm-application.yml – Create an alarm that monitors an application for errors. If the
application instance raises errors or stops running for 5 minutes, the alarm sends a notification
email.

• alarm-device.yml – Create an alarm that monitors a device's connectivity. If the device stops
sending metrics for 5 minutes, the alarm sends a notification email.

Utility scripts 134

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts/provision-device.sh
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts/check-updates.sh
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts/reboot-device.sh
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts/register-camera.sh
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts/deregister-camera.sh
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts/view-logs.sh
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts/pause-camera.sh
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts/push.sh
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts/rename-package.sh
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts/samplify.sh
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts/update-model-config.sh
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts/cleanup-patches.sh
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/util-scripts
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/cloudformation-templates/alarm-application.yml
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/cloudformation-templates/alarm-device.yml

AWS Panorama Developer Guide

• application-role.yml – Create an application role. The role includes permission to send metrics
to CloudWatch. Add permissions to the policy statement for other API operations that your
application uses.

• vpc-appliance.yml – Create a VPC with private subnet service access for the AWS Panorama
Appliance. To connect the appliance to a VPC, use AWS Direct Connect or AWS Site-to-Site VPN.

• vpc-endpoint.yml – Create a VPC with private subnet service access to the AWS Panorama
service. Resources inside of the VPC can connect to AWS Panorama to monitor and manage AWS
Panorama resources without connecting to the internet.

The create-stack.sh script in this directory creates AWS CloudFormation stacks. It takes a
variable number of arguments. The first argument is the name of the template, and the remaining
arguments are overrides for parameters in the template.

For example, the following command creates an application role.

$./create-stack.sh application-role

More samples and tools

The aws-panorama-samples repository has more sample applications and useful tools.

• Applications – Sample applications for various model architectures and use cases.

• Camera stream validation – Validate camera streams.

• PanoJupyter – Run JupyterLab on an AWS Panorama Appliance.

• Sideloading – Update application code without building or deploying an application container.

The AWS community has also developed tools and guidance for AWS Panorama. Check out the
following open source projects on GitHub.

• cookiecutter-panorama – A Cookiecutter template for AWS Panorama applications.

• backpack – Python modules for accessing runtime environment details, profiling, and additional
video output options.

More samples and tools 135

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/cloudformation-templates/application-role.yml
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/cloudformation-templates/vpc-appliance.yml
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/cloudformation-templates/vpc-endpoint.yml
https://github.com/aws-samples/aws-panorama-samples
https://github.com/aws-samples/aws-panorama-samples/tree/main/samples
https://github.com/aws-samples/aws-panorama-samples/tree/main/tools/camera_stream_validation
https://github.com/aws-samples/aws-panorama-samples/tree/main/tools/pano_jupyter
https://github.com/aws-samples/aws-panorama-samples/tree/main/tools/sideloading
https://github.com/mrtj/cookiecutter-panorama
https://github.com/Neosperience/backpack

AWS Panorama Developer Guide

Monitoring AWS Panorama resources and applications

You can monitor AWS Panorama resources in the AWS Panorama console and with Amazon
CloudWatch. The AWS Panorama Appliance connects to the AWS Cloud over the internet to report
its status and the status of connected cameras. While it is on, the appliance also sends logs to
CloudWatch Logs in real time.

The appliance gets permission to use AWS IoT, CloudWatch Logs, and other AWS services from
a service role that you create the first time that you use the AWS Panorama console. For more
information, see AWS Panorama service roles and cross-service resources.

For help troubleshooting specific errors, see Troubleshooting.

Topics

• Monitoring in the AWS Panorama console

• Viewing AWS Panorama logs

• Monitoring appliances and applications with Amazon CloudWatch

136

AWS Panorama Developer Guide

Monitoring in the AWS Panorama console

You can use the AWS Panorama console to monitor your AWS Panorama Appliance and cameras.
The console uses AWS IoT to monitor the state of the appliance.

To monitor your appliance in the AWS Panorama console

1. Open the AWS Panorama console.

2. Open the AWS Panorama console Devices page.

3. Choose an appliance.

4. To see the status of an application instance, choose it from the list.

5. To see the status of the appliance's network interfaces, choose Settings.

The overall status of the appliance appears at the top of the page. If the status is Online, then the
appliance is connected to AWS and sending regular status updates.

AWS Panorama console 137

https://console.aws.amazon.com/panorama/home
https://console.aws.amazon.com/panorama/home#devices

AWS Panorama Developer Guide

Viewing AWS Panorama logs

AWS Panorama reports application and system events to Amazon CloudWatch Logs. When you
encounter issues, you can use the event logs to help debug your AWS Panorama application or
troubleshoot the application's configuration.

To view logs in CloudWatch Logs

1. Open the Log groups page of the CloudWatch Logs console.

2. Find AWS Panorama application and appliance logs in the following groups:

• Device logs – /aws/panorama/devices/device-id

• Application logs – /aws/panorama/devices/device-id/applications/instance-
id

When you reprovision an appliance after updating the system software, you can also view logs on
the provisioning USB drive.

Sections

• Viewing device logs

• Viewing application logs

• Configuring application logs

• Viewing provisioning logs

• Egressing logs from a device

Viewing device logs

The AWS Panorama Appliance creates a log group for the device, and a group for each application
instance that you deploy. The device logs contain information about application status, software
upgrades, and system configuration.

Device logs – /aws/panorama/devices/device-id

• occ_log – Output from the controller process. This process coordinates application
deployments and reports on the status of each application instance's nodes.

• ota_log – Output from the process that coordinates over-the-air (OTA) software upgrades.

Logs 138

https://console.aws.amazon.com/cloudwatch/home#logsV2:log-groups

AWS Panorama Developer Guide

• syslog – Output from the device's syslog process, which captures messages sent between
processes.

• kern_log – Events from the device's Linux kernel.

• logging_setup_logs – Output from the process that configures the CloudWatch Logs agent.

• cloudwatch_agent_logs – Output from the CloudWatch Logs agent.

• shadow_log – Output from the AWS IoT device shadow.

Viewing application logs

An application instance's log group contains a log stream for each node, named after the node.

Application logs – /aws/panorama/devices/device-id/applications/instance-id

• Code – Output from your application code and the AWS Panorama Application SDK. Aggregates
application logs from /opt/aws/panorama/logs.

• Model – Output from the process that coordinates inference requests with a model.

• Stream – Output from the process that decodes video from a camera stream.

• Display – Output from the process that renders video output for the HDMI port.

• mds – Logs from the appliance metadata server.

• console_output – Captures standard output and error streams from code containers.

If you don't see logs in CloudWatch Logs, confirm that you are in the correct AWS Region. If you
are, there might be an issue with the appliance's connection to AWS or with permissions on the
appliance's AWS Identity and Access Management (IAM) role.

Configuring application logs

Configure a Python logger to write log files to /opt/aws/panorama/logs. The appliance streams
logs from this location to CloudWatch Logs. To avoid using too much disk space, use a maximum
file size of 10 MiB and a backup count of 1. The following example shows a method that creates a
logger.

Example application.py – Logger configuration

def get_logger(name=__name__,level=logging.INFO):

Viewing application logs 139

https://docs.aws.amazon.com/iot/latest/developerguide/iot-device-shadows.html
https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/packages/123456789012-SAMPLE_CODE-1.0/application.py#L181

AWS Panorama Developer Guide

 logger = logging.getLogger(name)
 logger.setLevel(level)
 LOG_PATH = '/opt/aws/panorama/logs'
 handler = RotatingFileHandler("{}/app.log".format(LOG_PATH), maxBytes=10000000,
 backupCount=1)
 formatter = logging.Formatter(fmt='%(asctime)s %(levelname)-8s %(message)s',
 datefmt='%Y-%m-%d %H:%M:%S')
 handler.setFormatter(formatter)
 logger.addHandler(handler)
 return logger

Initialize the logger at the global scope and use it throughout your application code.

Example application.py – Initialize logger

def main():
 try:
 logger.info("INITIALIZING APPLICATION")
 app = Application()
 logger.info("PROCESSING STREAMS")
 while True:
 app.process_streams()
 # turn off debug logging after 150 loops
 if logger.getEffectiveLevel() == logging.DEBUG and app.frame_num == 150:
 logger.setLevel(logging.INFO)
 except:
 logger.exception('Exception during processing loop.')

logger = get_logger(level=logging.INFO)
main()

Viewing provisioning logs

During provisioning, the AWS Panorama Appliance copies logs to the USB drive that you use to
transfer the configuration archive to the appliance. Use these logs to troubleshoot provisioning
issues on appliances with the latest software version.

Important

Provisioning logs are available for appliances updated to software version 4.3.23 or newer.

Viewing provisioning logs 140

https://github.com/awsdocs/aws-panorama-developer-guide/blob/main/sample-apps/aws-panorama-sample/packages/123456789012-SAMPLE_CODE-1.0/application.py#L205

AWS Panorama Developer Guide

Application logs

• /panorama/occ.log – AWS Panorama controller software logs.

• /panorama/ota_agent.log – AWS Panorama over-the-air update agent logs.

• /panorama/syslog.log – Linux system logs.

• /panorama/kern.log – Linux kernel logs.

Egressing logs from a device

If your device and application logs don't appear in CloudWatch Logs, you can use a USB drive to get
an encrypted log image off of the device. The AWS Panorama service team can decrypt the logs on
your behalf and assist in debugging.

Prerequisites

To follow the procedure you will need the following hardware:

• USB drive – A FAT32-formatted USB flash memory drive with at least 1 GB of storage, for
transferring the log files off the AWS Panorama Appliance.

To egress logs from the device

1. Prepare a USB drive with a managed_logs folder inside of a panorama folder.

/
 ### panorama
 ### managed_logs

2. Connect the USB drive to the device.

3. Power off the AWS Panorama Appliance.

4. Power on the AWS Panorama Appliance.

5. The device copies logs to the device. The status LED blinks blue while this is in progress.

6. Log files can then be found inside managed_logs directory with the format
panorama_device_log_v1_dd_hh_mm.img

You can't decrypt the log image yourself. Work with customer support, a technical account
manager for AWS Panorama, or a solutions architect to coordinate with the service team.

Egressing logs from a device 141

AWS Panorama Developer Guide

Monitoring appliances and applications with Amazon
CloudWatch

When an appliance is online, AWS Panorama sends metrics to Amazon CloudWatch. You can build
graphs and dashboards with these metrics in the CloudWatch console to monitor appliance activity,
and set alarms that notify you when devices go offline or applications encounter errors.

To view metrics in the CloudWatch console

1. Open the AWS Panorama console Metrics page (PanoramaDeviceMetrics namespace).

2. Choose a dimension schema.

3. Choose metrics to add them to the graph.

4. To choose a different statistic and customize the graph, use the options on the Graphed
metrics tab. By default, graphs use the Average statistic for all metrics.

Pricing

CloudWatch has an Always Free tier. Beyond the free tier threshold, CloudWatch charges
for metrics, dashboards, alarms, logs, and insights. For details, see CloudWatch pricing.

For more information about CloudWatch, see the Amazon CloudWatch User Guide.

Sections

• Using device metrics

• Using application metrics

• Configuring alarms

Using device metrics

When an appliance is online, it sends metrics to Amazon CloudWatch. You can use these metrics to
monitor device activity and trigger an alarm if devices go offline.

• DeviceActive – Sent periodically when the device is active.

Dimensions – DeviceId and DeviceName.

CloudWatch metrics 142

https://console.aws.amazon.com/cloudwatch/home#metricsV2:graph=~();namespace=~'PanoramaDeviceMetrics
https://aws.amazon.com/cloudwatch/pricing/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/

AWS Panorama Developer Guide

View the DeviceActive metric with the Average statistic.

Using application metrics

When an application encounters an error, it sends metrics to Amazon CloudWatch. You can use
these metrics to trigger an alarm if an application stops running.

• ApplicationErrors – The number of application errors recorded.

Dimensions – ApplicationInstanceName and ApplicationInstanceId.

View the application metrics with the Sum statistic.

Configuring alarms

To get notifications when a metric exceeds a threshold, create an alarm. For example, you can
create an alarm that sends a notification when the sum of the ApplicationErrors metric stays
at 1 for 20 minutes.

To create an alarm

1. Open the Amazon CloudWatch console Alarms page.

2. Choose Create alarm.

3. Choose Select metric and locate a metric for your device, such as ApplicationErrors for
applicationInstance-gk75xmplqbqtenlnmz4ehiu7xa,my-application.

4. Follow the instructions to configure a condition, action, and name for the alarm.

For detailed instructions, see Create a CloudWatch alarm in the Amazon CloudWatch User Guide.

Using application metrics 143

https://console.aws.amazon.com/cloudwatch/home#alarmsV2:
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ConsoleAlarms.html

AWS Panorama Developer Guide

Troubleshooting

The following topics provide troubleshooting advice for errors and issues that you might encounter
when using the AWS Panorama console, appliance, or SDK. If you find an issue that is not listed
here, use the Provide feedback button on this page to report it.

You can find logs for your appliance in the Amazon CloudWatch Logs console. The appliance
uploads logs from your application code, the appliance software, and AWS IoT processes as they
are generated. For more information, see Viewing AWS Panorama logs.

Provisioning

Issue: (macOS) My computer doesn't recognize the included USB drive with a USB-C adapter.

This can occur if you plug the USB drive into a USB-C adapter that is already connected to your
computer. Try disconnecting the adapter and reconnecting it with the USB drive already attached.

Issue: Provisioning fails when I use my own USB drive.

Issue: Provisioning fails when I use the appliance's USB 2.0 port.

The AWS Panorama Appliance is compatible with USB flash memory devices between 1 and 32
GB, but not all are compatible. Some issues have been observed when using the USB 2.0 port for
provisioning. For consistent results, use the included USB drive with the USB 3.0 port (next to the
HDMI port).

For the Lenovo ThinkEdge® SE70, a USB drive is not included with the appliance. Use a USB 3.0
drive with at least 1 GB of storage.

Appliance configuration

Issue: The appliance shows a blank screen during boot up.

After completing the initial boot sequence, which takes about one minute, the appliance shows a
blank screen for a minute or more while it loads your model and starts your application. Also, the
appliance does not output video if you connect a display after it turns on.

Issue: The appliance doesn't respond when I hold the power button down to turn it off.

Provisioning 144

https://console.aws.amazon.com/cloudwatch/home#logsV2:log-groups

AWS Panorama Developer Guide

The appliance takes up to 10 seconds to shut down safely. You need to hold the power button
down for only 1 second to start the shutdown sequence. For a complete list of button operations,
see AWS Panorama Appliance buttons and lights.

Issue: I need to generate a new configuration archive to change settings or replace a lost certificate.

AWS Panorama does not store the device certificate or network configuration after you download
it, and you can't reuse configuration archives. Delete the appliance using the AWS Panorama
console and create a new one with a new configuration archive.

Application configuration

Issue: When I run multiple applications, I can't control which uses the HDMI output.

When you deploy multiple applications that have output nodes, the application that started
most recently uses the HDMI output. If this application stops running, another application can
use the output. To give only one application access to the output, remove the output node and
corresponding edge from the other application's application manifest and redeploy.

Issue: Application output doesn't appear in logs

Configure a Python logger to write log files to /opt/aws/panorama/logs. These are captured
in a log stream for the code container node. Standard output and error streams are captured in a
separate log stream called console-output. If you use print, use the flush=True option to
keep messages from getting stuck in the output buffer.

Error: You've reached the maximum number of versions for package SAMPLE_CODE. Deregister
unused package versions and try again.

Source: AWS Panorama service

Each time you deploy a change to an application, you register a patch version that represents the
package configuration and asset files for each package that it uses. Use the cleanup patches script
to deregister unused patch versions.

Camera streams

Error: liveMedia0: Failed to get SDP description: Connection to server failed: Connection timed out
(-115)

Application configuration 145

AWS Panorama Developer Guide

Error: liveMedia0: Failed to get SDP description: 404 Not Found; with the result code: 404

Error: liveMedia0: Failed to get SDP description: DESCRIBE send() failed: Broken pipe; with the result
code: -32

Source: Camera node log

The appliance can't connect to the application's camera stream. When this happens, the video
output is blank or freezes on the last processed frame while the application waits for a frame of
video from the AWS Panorama Application SDK. The appliance software attempts to connect to the
camera stream and logs timeout errors in the camera node log. Verify that your camera stream URL
is correct and that RTSP traffic is routable between the camera and appliance within your network.
For more information, see Connecting the AWS Panorama Appliance to your network.

Error: ERROR finalizeInterface(35) Camera credential fetching for port [username] failed

Source: OCC log

The AWS Secrets Manager secret with the camera stream's credentials can't be found. Delete the
camera stream and recreate it.

Error: Camera did not provide an H264 encoded stream

Source: Camera node log

The camera stream has an encoding other than H.264, such as H.265. Redeploy the application
with an H.264 camera stream. For details on supported cameras, see Supported cameras.

Camera streams 146

AWS Panorama Developer Guide

Security in AWS Panorama

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
compliance programs. To learn about the compliance programs that apply to AWS Panorama, see
AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using AWS Panorama. The following topics show you how to configure AWS Panorama to meet
your security and compliance objectives. You also learn how to use other AWS services that help
you to monitor and secure your AWS Panorama resources.

Topics

• AWS Panorama Appliance security features

• AWS Panorama Appliance security best practices

• Data protection in AWS Panorama

• Identity and access management for AWS Panorama

• Compliance validation for AWS Panorama

• Infrastructure security in AWS Panorama

• Runtime environment software in AWS Panorama

147

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

AWS Panorama Developer Guide

AWS Panorama Appliance security features

To protect your applications, models, and hardware against malicious code and other exploits, the
AWS Panorama Appliance implements an extensive set of security features. These include but are
not limited to the following.

• Full-disk encryption – The appliance implements Linux unified key setup (LUKS2) full-disk
encryption. All system software and application data are encrypted with a key that is specific to
your device. Even with physical access to the device, an attacker cannot inspect the contents of
its storage.

• Memory layout randomization – To protect against attacks that target executable code loaded
into memory, the AWS Panorama Appliance uses address space layout randomization (ASLR).
ASLR randomizes the location of operating system code as it is loaded into memory. This
prevents the use of exploits that attempt to overwrite or run specific sections of code by
predicting where it is stored at runtime.

• Trusted execution environment – The appliance uses a trusted execution environment (TEE)
based on ARM TrustZone, with isolated storage, memory, and processing resources. Keys and
other sensitive data stored in the trust zone can only be accessed by a trusted application, which
runs in a separate operating system within the TEE. The AWS Panorama Appliance software runs
in the untrusted Linux environment alongside application code. It can only access cryptographic
operations by making a request to the secure application.

• Secure provisioning – When you provision an appliance, the credentials (keys, certificates, and
other cryptographic material) that you transfer to the device are only valid for a short time.
The appliance uses the short-lived credentials to connect to AWS IoT and requests a certificate
for itself that's valid for a longer time. The AWS Panorama service generates credentials and
encrypts them with a key that is hardcoded on the device. Only the device that requested the
certificate can decrypt it and communicate with AWS Panorama.

• Secure boot – When the device starts up, each software component is authenticated before
it runs. The boot ROM, software hardcoded in the processor that can't be modified, uses a
hardcoded encryption key to decrypt the bootloader, which validates the trusted execution
environment kernel, and so forth.

• Signed kernel – Kernel modules are signed with an asymmetric encryption key. The operating
system kernel decrypts the signature with the public key and verifies that it matches the
module's signature before loading the module into memory.

Security features 148

AWS Panorama Developer Guide

• dm-verity – Similar to how kernel modules are validated, the appliance uses the Linux Device
Mapper's dm-verity feature to verify the integrity of the appliance software image before
mounting it. If the appliance software is modified, it won't run.

• Rollback prevention – When you update the appliance software, the appliance blows an
electronic fuse on the SoC (system on a chip). Each software version expects an increasing
number of fuses to be blown, and can't run if more are blown.

Security features 149

AWS Panorama Developer Guide

AWS Panorama Appliance security best practices

Keep in mind the following best practices when using the AWS Panorama appliance.

• Physically secure the appliance – Install the appliance in an enclosed server rack or secure room.
Limit physical access to the device to authorized personnel.

• Secure the appliance's network connection – Connect the appliance to a router that limits
access to internal and external resources. The appliance needs to connect to cameras, which can
be on a secure internal network. It also needs to connect to AWS. Use the second Ethernet port
only for physical redundancy, and configure the router to allow only required traffic.

Use one of the recommended network configurations to plan your network layout. For more
information, see Connecting the AWS Panorama Appliance to your network.

• Format the USB drive – After provisioning an appliance, remove the USB drive and format it. The
appliance does not use the USB drive after it registers with the AWS Panorama service. Format
the drive to remove temporary credentials, configuration files, and provisioning logs.

• Keep the appliance up to date – Apply appliance software updates in a timely manner. When
you view an appliance in the AWS Panorama console, the console notifies you if a software
update is available. For more information, see Managing an AWS Panorama Appliance.

With the DescribeDevice API operation, you can automate checking for updates by comparing
the LatestSoftware and CurrentSoftware fields. When the latest software version differs
from the current version, apply the update with the console or by using the CreateJobForDevices
operation.

• If you stop using an appliance, reset it – Before you move the appliance out of your secure data
center, fully reset it. With the appliance powered down and plugged in, press both the power and
reset button simultaneously for 5 seconds. This deletes account credentials, applications, and
logs from the appliance.

For more information, see AWS Panorama Appliance buttons and lights.

• Limit access to AWS Panorama and other AWS services – The AWSPanoramaFullAccess provides
access to all AWS Panorama API operations and, as necessary, access to other services. Where
possible, the policy limits access to resources based on naming conventions. For example, it
provides access to AWS Secrets Manager secrets that have names starting with panorama. For
users that need read-only access, or access to a more specific set of resources, use the managed
policy as a starting point for your least-privilege policies.

Best practices 150

https://docs.aws.amazon.com/panorama/latest/api/API_DescribeDevice.html
https://docs.aws.amazon.com/panorama/latest/api/API_CreateJobForDevices.html
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/

AWS Panorama Developer Guide

For more information, see Identity-based IAM policies for AWS Panorama.

Best practices 151

AWS Panorama Developer Guide

Data protection in AWS Panorama

The AWS shared responsibility model applies to data protection in AWS Panorama. As described
in this model, AWS is responsible for protecting the global infrastructure that runs all of the
AWS Cloud. You are responsible for maintaining control over your content that is hosted on this
infrastructure. You are also responsible for the security configuration and management tasks for
the AWS services that you use. For more information about data privacy, see the Data Privacy FAQ.
For information about data protection in Europe, see the AWS Shared Responsibility Model and
GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail. For information about using CloudTrail
trails to capture AWS activities, see Working with CloudTrail trails in the AWS CloudTrail User
Guide.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-3 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-3.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with AWS Panorama or other AWS services using the console, API, AWS CLI, or AWS
SDKs. Any data that you enter into tags or free-form text fields used for names may be used for
billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend that
you do not include credentials information in the URL to validate your request to that server.

Sections

• Encryption in transit

Data protection 152

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-trails.html
https://aws.amazon.com/compliance/fips/

AWS Panorama Developer Guide

• AWS Panorama Appliance

• Applications

• Other services

Encryption in transit

AWS Panorama API endpoints support secure connections only over HTTPS. When you manage
AWS Panorama resources with the AWS Management Console, AWS SDK, or the AWS Panorama
API, all communication is encrypted with Transport Layer Security (TLS). Communication between
the AWS Panorama Appliance and AWS is also encrypted with TLS. Communication between the
AWS Panorama Appliance and cameras over RTSP is not encrypted.

For a complete list of API endpoints, see AWS Regions and endpoints in the AWS General Reference.

AWS Panorama Appliance

The AWS Panorama Appliance has physical ports for Ethernet, HDMI video, and USB storage. The
SD card slot, Wi-Fi, and Bluetooth are not usable. The USB port is only used during provisioning to
transfer a configuration archive to the appliance.

The contents of the configuration archive, which includes the appliance's provisioning certificate
and network configuration, are not encrypted. AWS Panorama does not store these files; they can
only be retrieved when you register an appliance. After you transfer the configuration archive to an
appliance, delete it from your computer and USB storage device.

The entire file system of the appliance is encrypted. Additionally, the appliance applies several
system-level protections, including rollback protection for required software updates, signed
kernel and bootloader, and software integrity verification.

When you stop using the appliance, perform a full reset to delete your application data and reset
the appliance software.

Applications

You control the code that you deploy to your appliance. Validate all application code for security
issues before deploying it, regardless of its source. If you use 3rd party libraries in your application,
carefully consider the licensing and support policies for those libraries.

Encryption in transit 153

https://docs.aws.amazon.com/general/latest/gr/rande.html

AWS Panorama Developer Guide

Application CPU, memory, and disk usage are not constrained by the appliance software. An
application using too many resources can negatively impact other applications and the device’s
operation. Test applications separately before combining or deploying to production environments.

Application assets (codes and models) are not isolated from access within your account, appliance,
or build environment. The container images and model archives generated by the AWS Panorama
Application CLI are not encrypted. Use separate accounts for production workloads and only allow
access on an as-needed basis.

Other services

To store your models and application containers securely in Amazon S3, AWS Panorama uses
server-side encryption with a key that Amazon S3 manages. For more information, see Protecting
data using encryption in the Amazon Simple Storage Service User Guide.

Camera stream credentials are encrypted at rest in AWS Secrets Manager. The appliance's IAM role
grants it permission to retrieve the secret in order to access the stream's username and password.

The AWS Panorama Appliance sends log data to Amazon CloudWatch Logs. CloudWatch Logs
encrypts this data by default, and can be configured to use a customer managed key. For more
information, see Encrypt log data in CloudWatch Logs using AWS KMS in the Amazon CloudWatch
Logs User Guide.

Other services 154

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingEncryption.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/encrypt-log-data-kms.html

AWS Panorama Developer Guide

Identity and access management for AWS Panorama

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use AWS Panorama resources. IAM is an AWS service that you
can use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How AWS Panorama works with IAM

• AWS Panorama identity-based policy examples

• AWS managed policies for AWS Panorama

• Using service-linked roles for AWS Panorama

• Cross-service confused deputy prevention

• Troubleshooting AWS Panorama identity and access

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in AWS Panorama.

Service user – If you use the AWS Panorama service to do your job, then your administrator
provides you with the credentials and permissions that you need. As you use more AWS Panorama
features to do your work, you might need additional permissions. Understanding how access is
managed can help you request the right permissions from your administrator. If you cannot access
a feature in AWS Panorama, see Troubleshooting AWS Panorama identity and access.

Service administrator – If you're in charge of AWS Panorama resources at your company, you
probably have full access to AWS Panorama. It's your job to determine which AWS Panorama
features and resources your service users should access. You must then submit requests to your IAM
administrator to change the permissions of your service users. Review the information on this page
to understand the basic concepts of IAM. To learn more about how your company can use IAM with
AWS Panorama, see How AWS Panorama works with IAM.

Identity and access management 155

AWS Panorama Developer Guide

IAM administrator – If you're an IAM administrator, you might want to learn details about how you
can write policies to manage access to AWS Panorama. To view example AWS Panorama identity-
based policies that you can use in IAM, see AWS Panorama identity-based policy examples.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see AWS Signature Version 4 for API requests in
the IAM User Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in
the AWS IAM Identity Center User Guide and AWS Multi-factor authentication in IAM in the IAM User
Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For

Authenticating with identities 156

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html

AWS Panorama Developer Guide

the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see Use cases for IAM users in
the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. To temporarily assume an IAM role in the
AWS Management Console, you can switch from a user to an IAM role (console). You can assume a
role by calling an AWS CLI or AWS API operation or by using a custom URL. For more information
about methods for using roles, see Methods to assume a role in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Create a role for a third-party identity provider
(federation) in the IAM User Guide. If you use IAM Identity Center, you configure a permission set.
To control what your identities can access after they authenticate, IAM Identity Center correlates
the permission set to a role in IAM. For information about permissions sets, see Permission sets
in the AWS IAM Identity Center User Guide.

Authenticating with identities 157

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/gs-identities-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html

AWS Panorama Developer Guide

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Create a role to delegate permissions to an AWS service in the IAM User
Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Use an
IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM User
Guide.

Authenticating with identities 158

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html

AWS Panorama Developer Guide

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choose between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific

Managing access using policies 159

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html

AWS Panorama Developer Guide

resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see Service
control policies in the AWS Organizations User Guide.

• Resource control policies (RCPs) – RCPs are JSON policies that you can use to set the maximum
available permissions for resources in your accounts without updating the IAM policies attached

Managing access using policies 160

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html

AWS Panorama Developer Guide

to each resource that you own. The RCP limits permissions for resources in member accounts
and can impact the effective permissions for identities, including the AWS account root
user, regardless of whether they belong to your organization. For more information about
Organizations and RCPs, including a list of AWS services that support RCPs, see Resource control
policies (RCPs) in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How AWS Panorama works with IAM

Before you use IAM to manage access to AWS Panorama, you should understand what IAM features
are available to use with AWS Panorama. To get a high-level view of how AWS Panorama and other
AWS services work with IAM, see AWS services that work with IAM in the IAM User Guide.

For an overview of permissions, policies, and roles as they are used by AWS Panorama, see AWS
Panorama permissions.

AWS Panorama identity-based policy examples

By default, IAM users and roles don't have permission to create or modify AWS Panorama
resources. They also can't perform tasks using the AWS Management Console, AWS CLI, or AWS
API. An IAM administrator must create IAM policies that grant users and roles permission to
perform specific API operations on the specified resources they need. The administrator must then
attach those policies to the IAM users or groups that require those permissions.

To learn how to create an IAM identity-based policy using these example JSON policy documents,
see Creating policies on the JSON tab in the IAM User Guide.

Topics

How AWS Panorama works with IAM 161

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-json-editor

AWS Panorama Developer Guide

• Policy best practices

• Using the AWS Panorama console

• Allow users to view their own permissions

Policy best practices

Identity-based policies determine whether someone can create, access, or delete AWS Panorama
resources in your account. These actions can incur costs for your AWS account. When you create or
edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see Validate policies with IAM Access Analyzer in the
IAM User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users or
a root user in your AWS account, turn on MFA for additional security. To require MFA when API
operations are called, add MFA conditions to your policies. For more information, see Secure API
access with MFA in the IAM User Guide.

Identity-based policy examples 162

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html

AWS Panorama Developer Guide

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the AWS Panorama console

To access the AWS Panorama console, you must have a minimum set of permissions. These
permissions must allow you to list and view details about the AWS Panorama resources in your
AWS account. If you create an identity-based policy that is more restrictive than the minimum
required permissions, the console won't function as intended for entities (IAM users or roles) with
that policy.

For more information, see Identity-based IAM policies for AWS Panorama

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",

Identity-based policy examples 163

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

AWS Panorama Developer Guide

 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

AWS managed policies for AWS Panorama

An AWS managed policy is a standalone policy that is created and administered by AWS. AWS
managed policies are designed to provide permissions for many common use cases so that you can
start assigning permissions to users, groups, and roles.

Keep in mind that AWS managed policies might not grant least-privilege permissions for your
specific use cases because they're available for all AWS customers to use. We recommend that you
reduce permissions further by defining customer managed policies that are specific to your use
cases.

You cannot change the permissions defined in AWS managed policies. If AWS updates the
permissions defined in an AWS managed policy, the update affects all principal identities (users,
groups, and roles) that the policy is attached to. AWS is most likely to update an AWS managed
policy when a new AWS service is launched or new API operations become available for existing
services.

For more information, see AWS managed policies in the IAM User Guide.

AWS Panorama provides the following managed policies. For the full contents and change history
of each policy, see the linked pages in the IAM console.

• AWSPanoramaFullAccess – Provides full access to AWS Panorama, AWS Panorama access points
in Amazon S3, appliance credentials in AWS Secrets Manager, and appliance logs in Amazon
CloudWatch. Includes permission to create a service-linked role for AWS Panorama.

• AWSPanoramaServiceLinkedRolePolicy – Allows AWS Panorama to manage resources in AWS IoT,
AWS Secrets Manager, and AWS Panorama.

• AWSPanoramaApplianceServiceRolePolicy – Allows an AWS Panorama Appliance to upload logs
to CloudWatch, and to get objects from Amazon S3 access points created by AWS Panorama.

AWS managed policies 164

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AWSPanoramaFullAccess
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/service-role/AWSPanoramaServiceLinkedRolePolicy
https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/service-role/AWSPanoramaApplianceServiceRolePolicy

AWS Panorama Developer Guide

AWS Panorama updates to AWS managed policies

The following table describes updates to managed policies for AWS Panorama.

Change Description Date

AWSPanoramaFullAccess –
Update to an existing policy

Added permissions to the
user policy to allow users
to view log groups in the
CloudWatch Logs console.

2022-01-13

AWSPanoramaFullAccess –
Update to an existing policy

Added permissions to the
user policy to allow users to
manage the AWS Panorama
service-linked role, and
to access AWS Panorama
resources in other services
including IAM, Amazon S3,
CloudWatch, and Secrets
Manager.

2021-10-20

AWSPanoramaApplian
ceServiceRolePolicy – New
policy

New policy for the AWS
Panorama Appliance service
role

2021-10-20

AWSPanoramaService
LinkedRolePolicy – New policy

New policy for the AWS
Panorama service-linked role.

2021-10-20

AWS Panorama started
tracking changes

AWS Panorama started
tracking changes for its AWS
managed policies.

2021-10-20

Using service-linked roles for AWS Panorama

AWS Panorama uses AWS Identity and Access Management (IAM) service-linked roles. A service-
linked role is a unique type of IAM role that is linked directly to AWS Panorama. Service-linked roles
are predefined by AWS Panorama and include all the permissions that the service requires to call
other AWS services on your behalf.

Using service-linked roles 165

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role

AWS Panorama Developer Guide

A service-linked role makes setting up AWS Panorama easier because you don’t have to manually
add the necessary permissions. AWS Panorama defines the permissions of its service-linked roles,
and unless defined otherwise, only AWS Panorama can assume its roles. The defined permissions
include the trust policy and the permissions policy, and that permissions policy cannot be attached
to any other IAM entity.

You can delete a service-linked role only after first deleting their related resources. This protects
your AWS Panorama resources because you can't inadvertently remove permission to access the
resources.

For information about other services that support service-linked roles, see AWS services that work
with IAM and look for the services that have Yes in the Service-linked role column. Choose a Yes
with a link to view the service-linked role documentation for that service.

Sections

• Service-linked role permissions for AWS Panorama

• Creating a service-linked role for AWS Panorama

• Editing a service-linked role for AWS Panorama

• Deleting a service-linked role for AWS Panorama

• Supported Regions for AWS Panorama service-linked roles

Service-linked role permissions for AWS Panorama

AWS Panorama uses the service-linked role named AWSServiceRoleForAWSPanorama – Allows
AWS Panorama to manage resources in AWS IoT, AWS Secrets Manager, and AWS Panorama..

The AWSServiceRoleForAWSPanorama service-linked role trusts the following services to assume
the role:

• panorama.amazonaws.com

The role permissions policy allows AWS Panorama to complete the following actions:

• Monitor AWS Panorama resources

• Manage AWS IoT resources for the AWS Panorama Appliance

• Access AWS Secrets Manager secrets to get camera credentials

Using service-linked roles 166

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

AWS Panorama Developer Guide

For a full list of permissions, view the AWSPanoramaServiceLinkedRolePolicy policy in the IAM
console.

You must configure permissions to allow an IAM entity (such as a user, group, or role) to create,
edit, or delete a service-linked role. For more information, see Service-linked role permissions in
the IAM User Guide.

Creating a service-linked role for AWS Panorama

You don't need to manually create a service-linked role. When you register an appliance in the AWS
Management Console, the AWS CLI, or the AWS API, AWS Panorama creates the service-linked role
for you.

If you delete this service-linked role, and then need to create it again, you can use the same process
to recreate the role in your account. When you register an appliance, AWS Panorama creates the
service-linked role for you again.

Editing a service-linked role for AWS Panorama

AWS Panorama does not allow you to edit the AWSServiceRoleForAWSPanorama service-linked
role. After you create a service-linked role, you cannot change the name of the role because various
entities might reference the role. However, you can edit the description of the role using IAM. For
more information, see Editing a service-linked role in the IAM User Guide.

Deleting a service-linked role for AWS Panorama

If you no longer need to use a feature or service that requires a service-linked role, we recommend
that you delete that role. That way you don’t have an unused entity that is not actively monitored
or maintained. However, you must clean up the resources for your service-linked role before you
can manually delete it.

To delete the AWS Panorama resources used by the AWSServiceRoleForAWSPanorama, use the
procedures in the following sections of this guide.

• Delete versions and applications

• Deregister an appliance

Using service-linked roles 167

https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/service-role/AWSPanoramaServiceLinkedRolePolicy
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role

AWS Panorama Developer Guide

Note

If the AWS Panorama service is using the role when you try to delete the resources, then
the deletion might fail. If that happens, wait for a few minutes and try the operation again.

To delete the AWSServiceRoleForAWSPanorama service-linked role, use the IAM console, the AWS
CLI, or the AWS API. For more information, see Deleting a service-linked role in the IAM User Guide.

Supported Regions for AWS Panorama service-linked roles

AWS Panorama supports using service-linked roles in all of the regions where the service is
available. For more information, see AWS Regions and endpoints.

Cross-service confused deputy prevention

The confused deputy problem is a security issue where an entity that doesn't have permission to
perform an action can coerce a more-privileged entity to perform the action. In AWS, cross-service
impersonation can result in the confused deputy problem. Cross-service impersonation can occur
when one service (the calling service) calls another service (the called service). The calling service
can be manipulated to use its permissions to act on another customer's resources in a way it should
not otherwise have permission to access. To prevent this, AWS provides tools that help you protect
your data for all services with service principals that have been given access to resources in your
account.

We recommend using the aws:SourceArn and aws:SourceAccount global condition context
keys in resource policies to limit the permissions that AWS Panorama gives another service to the
resource. If you use both global condition context keys, the aws:SourceAccount value and the
account in the aws:SourceArn value must use the same account ID when used in the same policy
statement.

The value of aws:SourceArn must be the ARN of an AWS Panorama device.

The most effective way to protect against the confused deputy problem is to use the
aws:SourceArn global condition context key with the full ARN of the resource. If you don't know
the full ARN of the resource or if you are specifying multiple resources, use the aws:SourceArn
global context condition key with wildcards (*) for the unknown portions of the ARN. For example,
arn:aws:servicename::123456789012:*.

Cross-service confused deputy prevention 168

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount

AWS Panorama Developer Guide

For instructions on securing the service role that AWS Panorama uses to give permission to the
AWS Panorama Appliance, see Securing the appliance role.

Troubleshooting AWS Panorama identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with AWS Panorama and IAM.

Topics

• I am not authorized to perform an action in AWS Panorama

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my AWS Panorama resources

I am not authorized to perform an action in AWS Panorama

If the AWS Management Console tells you that you're not authorized to perform an action, then
you must contact your administrator for assistance. Your administrator is the person that provided
you with your user name and password.

The following example error occurs when the mateojackson IAM user tries to use the console to
view details about an appliance but does not have panorama:DescribeAppliance permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 panorama:DescribeAppliance on resource: my-appliance

In this case, Mateo asks his administrator to update his policies to allow him to access the my-
appliance resource using the panorama:DescribeAppliance action.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to AWS Panorama.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the
console to perform an action in AWS Panorama. However, the action requires the service to have

Troubleshooting 169

AWS Panorama Developer Guide

permissions that are granted by a service role. Mary does not have permissions to pass the role to
the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my AWS Panorama
resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether AWS Panorama supports these features, see How AWS Panorama works with
IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

Troubleshooting 170

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

AWS Panorama Developer Guide

Compliance validation for AWS Panorama

To learn whether an AWS service is within the scope of specific compliance programs, see AWS
services in Scope by Compliance Program and choose the compliance program that you are
interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security Compliance & Governance – These solution implementation guides discuss architectural
considerations and provide steps for deploying security and compliance features.

• Architecting for HIPAA Security and Compliance on Amazon Web Services – This whitepaper
describes how companies can use AWS to create HIPAA-eligible applications.

Note

Not all AWS services are HIPAA eligible. For more information, see the HIPAA Eligible
Services Reference.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the
lens of compliance. The guides summarize the best practices for securing AWS services and map
the guidance to security controls across multiple frameworks (including National Institute of
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and
International Organization for Standardization (ISO)).

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your
compliance against security industry standards and best practices. For a list of supported services
and controls, see Security Hub controls reference.

Compliance validation 171

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/solutions/security/security-compliance-governance/
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/architecting-hipaa-security-and-compliance-on-aws.html
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html

AWS Panorama Developer Guide

• Amazon GuardDuty – This AWS service detects potential threats to your AWS accounts,
workloads, containers, and data by monitoring your environment for suspicious and malicious
activities. GuardDuty can help you address various compliance requirements, like PCI DSS, by
meeting intrusion detection requirements mandated by certain compliance frameworks.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify
how you manage risk and compliance with regulations and industry standards.

Additional considerations for when people are present

Below are some best practices to consider when using AWS Panorama for scenarios where people
might be present:

• Ensure that you are aware of and compliant with all applicable laws and regulations for your use
case. This may include laws related to the positioning and field of view of your cameras, notice
and signage requirements when placing and using cameras, and the rights of people that may be
present in your videos, including their privacy rights.

• Take into account the effect of your cameras on people and their privacy. In addition to legal
requirements, consider whether it would be appropriate to place notice in areas where your
cameras are located, and whether cameras should be placed in plain sight and free of any
occlusions, so people are not surprised that they may be on camera.

• Have appropriate policies and procedures in place for the operation of your cameras and review
of data obtained from the cameras.

• Consider appropriate access controls, usage limitations, and retention periods for the data
obtained from your cameras.

Additional considerations for when people are present 172

https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html

AWS Panorama Developer Guide

Infrastructure security in AWS Panorama

As a managed service, AWS Panorama is protected by AWS global network security. For
information about AWS security services and how AWS protects infrastructure, see AWS Cloud
Security. To design your AWS environment using the best practices for infrastructure security, see
Infrastructure Protection in Security Pillar AWS Well‐Architected Framework.

You use AWS published API calls to access AWS Panorama through the network. Clients must
support the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Deploying the AWS Panorama Appliance in your datacenter

The AWS Panorama Appliance needs internet access to communicate with AWS services. It also
needs access to your internal network of cameras. It is important to consider your network
configuration carefully and only provide each device the access that it needs. Be careful if your
configuration allows the AWS Panorama Appliance to act as a bridge to a sensitive IP camera
network.

You are responsible for the following:

• The physical and logical network security of the AWS Panorama Appliance.

• Securely operating the network-attached cameras when you use the AWS Panorama Appliance.

• Keeping the AWS Panorama Appliance and camera software updated.

• Complying with any applicable laws or regulations associated with the content of the videos and
images you gather from your production environments, including those related to privacy.

Infrastructure security 173

https://aws.amazon.com/security/
https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/STS/latest/APIReference/welcome.html

AWS Panorama Developer Guide

The AWS Panorama Appliance uses unencrypted RTSP camera streams. For more information on
connecting the AWS Panorama Appliance to your network, see Connecting the AWS Panorama
Appliance to your network. For details on encryption, see Data protection in AWS Panorama.

Deploying the AWS Panorama Appliance in your datacenter 174

AWS Panorama Developer Guide

Runtime environment software in AWS Panorama

AWS Panorama provides software that runs your application code in an Ubuntu Linux–based
environment on the AWS Panorama Appliance. AWS Panorama is responsible for keeping software
in the appliance image up to date. AWS Panorama regularly releases software updates, which you
can apply by using the AWS Panorama console.

You can use libraries in your application code by installing them in the application's Dockerfile.
To ensure application stability across builds, choose a specific version of each library. Update your
dependencies regularly to address security issues.

Runtime environment 175

AWS Panorama Developer Guide

Releases

The following table shows when features and software updates were released for the AWS
Panorama service, software, and documentation. To ensure that you have access to all features,
update your AWS Panorama Appliance to the latest software version. For more information on a
release, see the linked topic.

Change Description Date

Application base image
update

Version 1.2.1 updates the
base Docker image to Ubuntu
20, for compatibility with
Jetpack 5. For more informati
on, see the change log.

September 26, 2024

Appliance software update Version 8.0.29 is a major
version update that brings
Jetpack 5 support on Ubuntu
20. It also ends support for
Jetpack 4 and SageMaker Neo
models. For more informati
on, see the change log.

September 26, 2024

Appliance software update Version 7.0.13 is a major
version update that changes
how the appliance manages
software updates. If you
restrict network communica
tion outbound from the
appliance, or connect it to a
private VPC subnet, you must
allow access to additional
endpoints and ports before
applying the update. For more
information, see the change
log.

December 28, 2023

176

https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md

AWS Panorama Developer Guide

Appliance software update Version 6.2.1 includes bug
fixes. For more information,
see the change log.

September 6, 2023

Appliance software update Version 6.0.8 includes bug
fixes and security improveme
nts. For more information, see
the change log.

July 6, 2023

Appliance software update Version 5.1.7 includes bug
fixes and error handling
improvements. For more
information, see the change
log.

March 31, 2023

Console update You can now purchase the
AWS Panorama Appliance
from the management
console. To grant a user
permission to purchase
devices, see Identity-
based IAM policies for AWS
Panorama.

February 2, 2023

Appliance software update Version 5.0.74 includes bug
fixes and error handling
improvements. For more
information, see the change
log.

January 23, 2023

API update Added AllowMajo
rVersionUpdate option
to OTAJobConfig to make
appliance software major
version updates opt-in.
For more information, see
CreateJobForDevices.

January 19, 2023

177

https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://console.aws.amazon.com/panorama/home#get-device-quote
https://console.aws.amazon.com/panorama/home#get-device-quote
https://console.aws.amazon.com/panorama/home#get-device-quote
https://console.aws.amazon.com/panorama/home#get-device-quote
https://docs.aws.amazon.com/panorama/latest/dev/permissions-user.html
https://docs.aws.amazon.com/panorama/latest/dev/permissions-user.html
https://docs.aws.amazon.com/panorama/latest/dev/permissions-user.html
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://docs.aws.amazon.com/panorama/latest/api/API_CreateJobForDevices.html

AWS Panorama Developer Guide

New tool for developers A new tool, "sideloading",
is available in the AWS
Panorama samples GitHub
repository. You can use this
tool to update application
code without building and
deploying a container. For
more information, see the
README.

November 16, 2022

Application base image
update

Version 1.2.0 adds a timeout
option to video_in.get() ,
sets the AWS_REGION
environment variable, and
improves error handling. For
more information, see the
change log.

November 16, 2022

Appliance software update Version 5.0.42 includes bug
fixes and security updates.
For more information, see the
change log.

November 16, 2022

Appliance software update Version 5.0.7 adds support
for rebooting appliances
remotely and pausing camera
streams remotely. For more
information, see the change
log.

October 13, 2022

Appliance software update Version 4.3.93 adds support
for retrieving logs from an
offline device. For more
information, see the change
log.

August 24, 2022

178

https://github.com/aws-samples/aws-panorama-samples/tree/main/tools/sideloading
https://github.com/aws-samples/aws-panorama-samples/tree/main/tools/sideloading
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://docs.aws.amazon.com/panorama/latest/dev/appliance-manage.html#appliance-manage-reboot
https://docs.aws.amazon.com/panorama/latest/dev/appliance-manage.html#appliance-manage-reboot
https://docs.aws.amazon.com/panorama/latest/dev/api-applications.html#api-applications-cameras
https://docs.aws.amazon.com/panorama/latest/dev/api-applications.html#api-applications-cameras
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://docs.aws.amazon.com/panorama/latest/dev/monitoring-logging.html#monitoring-logging-egress
https://docs.aws.amazon.com/panorama/latest/dev/monitoring-logging.html#monitoring-logging-egress
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md

AWS Panorama Developer Guide

Appliance software update Version 4.3.72 includes bug
fixes and security updates.
For more information, see the
change log.

June 23, 2022

AWS PrivateLink support AWS Panorama supports VPC
endpoints for managing AWS
Panorama resources from
a private subnet. For more
information, see Using VPC
endpoints.

June 2, 2022

Appliance software update Version 4.3.55 improves
storage utilization for the
console_output log. For
more information, see the
change log.

May 5, 2022

Lenovo ThinkEdge® SE70 A new appliance for AWS
Panorama is available
from Lenovo. The Lenovo
ThinkEdge® SE70, powered
by Nvidia Jetson Xavier NX,
supports the same features as
the AWS Panorama Appliance
. For more information, see
Compatible devices.

April 6, 2022

Application base image
update

Version 1.1.0 improves
performance when running
background threads and adds
a flag (is_cached) to media
objects that indicates if the
image is fresh. For more
information, see gallery.e
cr.aws.

March 29, 2022

179

https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://docs.aws.amazon.com/panorama/latest/dev/api-endpoints.html
https://docs.aws.amazon.com/panorama/latest/dev/api-endpoints.html
https://docs.aws.amazon.com/panorama/latest/dev/monitoring-logging.html
https://docs.aws.amazon.com/panorama/latest/dev/monitoring-logging.html
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://docs.aws.amazon.com/panorama/latest/dev/gettingstarted-concepts.html#gettingstarted-concepts-devices
https://docs.aws.amazon.com/panorama/latest/dev/applications-threading
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/applicationsdk-reference.md#media
https://gallery.ecr.aws/panorama/panorama-application
https://gallery.ecr.aws/panorama/panorama-application

AWS Panorama Developer Guide

Appliance software update Version 4.3.45 adds support
for GPU access and inbound
ports. For more information,
see the change log.

March 24, 2022

Appliance software update Version 4.3.35 improves
security and performance.
For more information, see the
change log.

February 22, 2022

Updated managed policies AWS Identity and Access
Management managed
policies for AWS Panorama
have been updated. For
details, see AWS managed
policies.

January 13, 2022

Provisioning logs With appliance software
4.3.23, the appliance writes
logs to a USB drive during
provisioning. For more
information, see Logs.

January 13, 2022

NTP server configuration You can now configure the
AWS Panorama Appliance
to use a specific NTP server
for clock syncronization.
Configure NTP settings during
appliance setup with other
networking settings. For more
information, see Setting up.

January 13, 2022

Additional regions AWS Panorama is now
available in the Asia Pacific
(Singapore) and Asia Pacific
(Sydney) Regions.

January 13, 2022

180

https://docs.aws.amazon.com/panorama/latest/dev/applications-gpuaccess.html
https://docs.aws.amazon.com/panorama/latest/dev/applications-ports.html
https://docs.aws.amazon.com/panorama/latest/dev/applications-ports.html
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://docs.aws.amazon.com/panorama/latest/dev/security-iam-awsmanpol.html
https://docs.aws.amazon.com/panorama/latest/dev/security-iam-awsmanpol.html
https://docs.aws.amazon.com/panorama/latest/dev/monitoring-logging.html
https://docs.aws.amazon.com/panorama/latest/dev/gettingstarted-setup.html

AWS Panorama Developer Guide

Appliance software update Version 4.3.4 adds support for
the precisionMode setting
for models and updates
logging behavior. For more
information, see the change
log.

November 8, 2021

Updated managed policies AWS Identity and Access
Management managed
policies for AWS Panorama
have been updated. For
details, see AWS managed
policies.

October 20, 2021

General availability AWS Panorama is now
available to all customers
in the US East (N. Virginia)
, US West (Oregon), Europe
(Ireland), and Canada
(Central) Regions. To purchase
an AWS Panorama Appliance,
visit AWS Panorama.

October 20, 2021

Preview AWS Panorama is available
by invitation in the US East
(N. Virginia) and US West
(Oregon) Regions.

December 1, 2020

181

https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://github.com/awsdocs/aws-panorama-developer-guide/tree/main/resources/appliance-changelog.md
https://docs.aws.amazon.com/panorama/latest/dev/security-iam-awsmanpol.html
https://docs.aws.amazon.com/panorama/latest/dev/security-iam-awsmanpol.html
https://aws.amazon.com/panorama

	AWS Panorama
	Table of Contents
	What is AWS Panorama?
	Getting started with AWS Panorama
	AWS Panorama concepts
	The AWS Panorama Appliance
	Compatible devices
	Applications
	Nodes
	Models

	Setting up the AWS Panorama Appliance
	Prerequisites
	Register and configure the AWS Panorama Appliance
	Upgrade the appliance software
	Add a camera stream
	Next steps

	Deploying the AWS Panorama sample application
	Prerequisites
	Import the sample application
	Deploy the application
	View the output
	Enable the SDK for Python
	Clean up
	Next steps

	Developing AWS Panorama applications
	The application manifest
	Building with the sample application
	Changing the computer vision model
	Preprocessing images
	Uploading metrics with the SDK for Python
	Next steps

	Supported computer vision models and cameras
	Supported models
	Supported cameras

	AWS Panorama Appliance specifications
	Service quotas

	AWS Panorama permissions
	Identity-based IAM policies for AWS Panorama
	AWS Panorama service roles and cross-service resources
	Securing the appliance role
	Use of other services

	Granting permissions to an application

	Managing the AWS Panorama Appliance
	Managing an AWS Panorama Appliance
	Update the appliance software
	Deregister an appliance
	Reboot an appliance
	Reset an appliance

	Connecting the AWS Panorama Appliance to your network
	Single network configuration
	Dual network configuration
	Configuring service access
	Configuring local network access
	Private connectivity

	Managing camera streams in AWS Panorama
	Removing a stream

	Manage applications on an AWS Panorama Appliance
	AWS Panorama Appliance buttons and lights
	Status light
	Network light
	Power and reset buttons

	Managing AWS Panorama applications
	Deploy an application
	Install the AWS Panorama Application CLI
	Import an application
	Build a container image
	Import a model
	Upload application assets
	Deploy an application with the AWS Panorama console
	Automate application deployment

	Managing applications in the AWS Panorama console
	Update or copy an application
	Delete versions and applications

	Package configuration
	The AWS Panorama application manifest
	JSON schema

	Application nodes
	Edges
	Abstract nodes

	Application parameters
	Deploy-time configuration with overrides

	Building AWS Panorama applications
	Computer vision models
	Using models in code
	Building a custom model
	Packaging a model
	Training models

	Building an application image
	Specifying dependencies
	Local storage
	Building image assets

	Calling AWS services from your application code
	Using Amazon S3
	Using the AWS IoT MQTT topic

	The AWS Panorama Application SDK
	Adding text and boxes to output video

	Running multiple threads
	Serving inbound traffic
	Configuring inbound ports
	Serving traffic

	Using the GPU
	Setting up a development environment in Windows
	Prerequisites
	Install WSL 2 and Ubuntu
	Install Docker
	Configure Ubuntu
	Next steps

	Using AWS Panorama after update 8.0.29
	Application Base Image Changes
	Running Applications on an OpenGPU framework

	The AWS Panorama API
	Automate device registration
	Manage appliances with the AWS Panorama API
	View devices
	Upgrade appliance software
	Reboot appliances

	Automate application deployment
	Build the container
	Upload the container and register nodes
	Deploy the application
	Monitor the deployment

	Manage applications with the AWS Panorama API
	View applications
	Manage camera streams

	Using VPC endpoints
	Creating a VPC endpoint
	Connecting an appliance to a private subnet
	Sample AWS CloudFormation templates

	Sample applications, scripts, and templates
	Sample applications
	Utility scripts
	AWS CloudFormation templates
	More samples and tools

	Monitoring AWS Panorama resources and applications
	Monitoring in the AWS Panorama console
	Viewing AWS Panorama logs
	Viewing device logs
	Viewing application logs
	Configuring application logs
	Viewing provisioning logs
	Egressing logs from a device
	Prerequisites

	Monitoring appliances and applications with Amazon CloudWatch
	Using device metrics
	Using application metrics
	Configuring alarms

	Troubleshooting
	Provisioning
	Appliance configuration
	Application configuration
	Camera streams

	Security in AWS Panorama
	AWS Panorama Appliance security features
	AWS Panorama Appliance security best practices
	Data protection in AWS Panorama
	Encryption in transit
	AWS Panorama Appliance
	Applications
	Other services

	Identity and access management for AWS Panorama
	Audience
	Authenticating with identities
	AWS account root user
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How AWS Panorama works with IAM
	AWS Panorama identity-based policy examples
	Policy best practices
	Using the AWS Panorama console
	Allow users to view their own permissions

	AWS managed policies for AWS Panorama
	AWS Panorama updates to AWS managed policies

	Using service-linked roles for AWS Panorama
	Service-linked role permissions for AWS Panorama
	Creating a service-linked role for AWS Panorama
	Editing a service-linked role for AWS Panorama
	Deleting a service-linked role for AWS Panorama
	Supported Regions for AWS Panorama service-linked roles

	Cross-service confused deputy prevention
	Troubleshooting AWS Panorama identity and access
	I am not authorized to perform an action in AWS Panorama
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my AWS Panorama resources

	Compliance validation for AWS Panorama
	Additional considerations for when people are present

	Infrastructure security in AWS Panorama
	Deploying the AWS Panorama Appliance in your datacenter

	Runtime environment software in AWS Panorama

	Releases

