
Implementation Guide

Distributed Load Testing on AWS

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Distributed Load Testing on AWS Implementation Guide

Distributed Load Testing on AWS: Implementation Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Distributed Load Testing on AWS Implementation Guide

Table of Contents

Solution overview .. 1
Features .. 2
Benefits ... 3
Use cases .. 4
Concepts and definitions .. 5

Architecture overview ... 7
Architecture overview .. 7
AWS Well-Architected design considerations ... 8

Operational excellence ... 9
Security .. 9
Reliability ... 9
Performance efficiency .. 10
Cost optimization .. 10
Sustainability .. 11

Architecture details ... 12
Front end ... 12

Load testing API .. 12
Web console ... 12

Backend .. 13
Container image pipeline .. 13
Testing infrastructure ... 13
Load testing engine ... 14

AWS services in this solution ... 14
How Distributed Load Testing on AWS works ... 16
Design considerations .. 18

Supported applications .. 18
JMeter script support ... 18
Scheduling tests .. 19
Concurrent tests .. 19
User management .. 19
Regional deployment ... 20

Plan your deployment ... 21
Cost ... 21
Security ... 22

iii

Distributed Load Testing on AWS Implementation Guide

IAM roles ... 22
Amazon CloudFront .. 22
AWS Fargate security group ... 23
Network stress test ... 23
Restricting access to the public user interface ... 23

Supported AWS Regions ... 23
Quotas .. 24

Quotas for AWS services in this solution .. 24
AWS CloudFormation quotas ... 24
Load testing quotas ... 25
Concurrent tests .. 19
Amazon EC2 testing policy ... 25
Amazon CloudFront load testing policy .. 25

Deploy the solution ... 27
Deployment process overview ... 27
AWS CloudFormation template ... 27
Launch the stack .. 28

Multi-Region deployment ... 31
Monitor the solution with Service Catalog AppRegistry ... 34

Activate CloudWatch Application Insights .. 34
Confirm cost tags associated with the solution .. 36
Activate cost allocation tags associated with the solution .. 36
AWS Cost Explorer ... 37

Update the solution .. 38
When updating from DLT versions older than v3.2.6 to latest, updating the stack fails 38

Troubleshooting ... 40
Known issue resolution ... 40
AWS Support ... 40

Create case ... 40
How can we help? .. 41
Additional information .. 41
Help us resolve your case faster ... 41
Solve now or contact us .. 41

Uninstall the solution ... 42
Using the AWS Management Console ... 42
Using AWS Command Line Interface ... 42

iv

Distributed Load Testing on AWS Implementation Guide

Deleting the Amazon S3 buckets ... 42
Use the solution .. 44

Test results ... 44
Test scheduling workflow ... 45
Determine the number of users ... 45
Live data ... 46
Test cancellation workflow .. 47

Developer guide ... 48
Source code ... 48
Container image customization .. 48
Distributed load testing API .. 54

GET /scenarios ... 55
POST /scenarios ... 55
OPTIONS /scenarios ... 57
GET /scenarios/{testId} .. 58
POST /scenarios/{testId} ... 59
DELETE /scenarios/{testId} ... 60
OPTIONS /scenarios/{testId} .. 60
GET /tasks ... 62
OPTIONS /tasks ... 62
GET /regions ... 62
OPTIONS /regions ... 63

Increase the container resources .. 64
Create a new task definition revision ... 64
Update the DynamoDB table ... 65

Reference .. 66
Anonymized data collection .. 66
Contributors ... 67

Revisions ... 68
Notices .. 72

v

Distributed Load Testing on AWS Implementation Guide

Automate the testing of your software applications at
scale

Publication date: November 2019 (last update: November 2024)

Distributed Load Testing on AWS helps you automate the testing of your software applications at
scale and at load to identify bottlenecks before you release your application. This solution creates
and simulates thousands of connected users generating transactional records at a constant pace
without the need to provision servers.

This solution leverages Amazon Elastic Container Service (Amazon ECS) on AWS Fargate to deploy
containers that can run all of your simulations and offers the following features:

• Deploy Amazon ECS on AWS Fargate containers that can run independently to test the load
capabilities of the software being tested.

• Simulate tens of thousands of connected users, across multiple AWS Regions, generating
transactional records at a continuous pace.

• Customize your application tests by creating custom JMeter scripts.

• Schedule load tests to either automatically begin at a future date or on recurring dates.

• Run your application load tests concurrently or run multiple tests simultaneously.

This implementation guide provides an overview of the Distributed Load Testing on AWS
solution, its reference architecture and components, considerations for planning the deployment,
configuration steps for deploying the solution to the Amazon Web Services (AWS) Cloud. It includes
links to an AWS CloudFormation template that launches and configures the AWS services required
to deploy this solution using AWS best practices for security and availability.

The intended audience for using this solution’s features and capabilities in their environment
includes IT infrastructure architects, administrators, and DevOps professionals who have practical
experience architecting in the AWS Cloud.

Use this navigation table to quickly find answers to these questions:

If you want to . . . Read . . .

Know the cost for running this solution. Cost

1

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/AWS_Fargate.html
https://jmeter.apache.org/
https://aws.amazon.com/cloudformation/

Distributed Load Testing on AWS Implementation Guide

If you want to . . . Read . . .

The estimated cost for running this solution in the US East (N. Virginia)
Region is USD $ 30.90 per month for AWS resources.

Understand the security considerations for this solution. Security

Know how to plan for quotas for this solution. Quotas

Know which AWS Regions support this solution. Supported AWS
Regions

View or download the AWS CloudFormation template included in
this solution to automatically deploy the infrastructure resources (the
“stack”) for this solution.

AWS CloudForm
ation template

Access the source code and optionally use the AWS Cloud Development
Kit (AWS CDK) to deploy the solution.

GitHub repository

Features

The solution provides the following features:

Out-of-the-Box Configurable Performance Tests

Includes pre-configured performance tests available for immediate use.

Customizable Application Tests

Allows for flexible and precise test customization to identify potential issues. Tailors tests to
specific requirements and scenarios using JMeter scripts.

Simulates High User Load

Capable of simulating tens of thousands of connected users to stress test your application.

Continuous Transaction Generation

Generates transactional records continuously to evaluate performance under constant load.

Real-Time Monitoring

Features 2

https://github.com/aws-solutions/distributed-load-testing-on-aws

Distributed Load Testing on AWS Implementation Guide

Provides real-time monitoring of test progress and results. Schedule tests to start automatically on
specified dates or at recurring intervals.

Regional Request Simulation

Simulate user requests from any region to assess global performance.

Endpoint Flexibility

Test any endpoint across AWS regions, on-premises environments, or other cloud providers.

Detailed Test Results

View comprehensive test results, including average response time, number of concurrent users,
successful requests, and failed requests.

Intuitive Web Console

Offers an easy-to-use web console for managing and monitoring tests.

Supports Multiple Protocols

Compatible with various protocols such as WebSocket, HTTP, HTTPS, JDBC, JMS, FTP, and gRPC.

Integration with AWS Service Catalog AppRegistry and Application Manager, a capability of
AWS Systems Manager

This solution includes a Service Catalog AppRegistry resource to register the solution’s
CloudFormation template and its underlying resources as an application in both Service Catalog
AppRegistry and Application Manager . With this integration, centrally manage the solution’s
resources and enable application search, reporting, and management actions.

Benefits

The solution provides the following benefits:

Supports Comprehensive Performance Testing

Facilitates load, stress, and endurance testing for thorough application evaluation.

Early Detection of Performance Issues

Benefits 3

https://docs.aws.amazon.com/servicecatalog/latest/arguide/intro-app-registry.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/application-manager.html

Distributed Load Testing on AWS Implementation Guide

Identifies performance issues and bottlenecks prior to production release.

Real-World Usage Simulation

Accurately mirrors real-world usage patterns to highlight bottlenecks and optimization areas.

Detailed Performance Insights

Provides insights into software performance and resilience under significant load.

Automated Performance Assessment

Enables regular performance evaluations without manual intervention.

Cost-Efficient Testing

Offers a pay-as-you-go model, eliminating the need for a dedicated testing infrastructure and
subscription fees.

Use cases

Simulate Production Load

Test web and mobile applications under production-like conditions before launching a new version.

Validate Application Performance

Ensure your application can handle expected user traffic without degradation. Test application
limits using default resources and assess infrastructure scalability.

Manage Peak Loads

Verify that your infrastructure can manage peak loads or unexpected traffic spikes, ensuring
stability under high demand.

Optimize Performance

Understand your application's performance profile and identify bottlenecks such as inefficient code
execution, database queries, and network latency.

Quick Testing Start-Up

Begin testing quickly with out-of-the-box performance tests.

Use cases 4

Distributed Load Testing on AWS Implementation Guide

Customizable Tests

Tailor tests to specific scenarios and requirements, adjusting the number of concurrent users and
tasks launched.

Scheduled Testing

Schedule tests for regression testing and continuous performance monitoring, ensuring consistent
application performance.

Geographical Performance Evaluation

Evaluate application performance across different geographical regions to ensure global efficiency.

CI/CD Pipeline Integration

Integrate performance testing into your CI/CD pipeline for seamless and automated testing during
development cycles.

Concepts and definitions

This section describes key concepts and defines terminology specific to this solution:

scenario

Test definition including test’s name, description, task count, concurrency, AWS Region, ramp up,
hold for, test type, schedule date, and recurrence configurations.

task count

Number of containers that will be launched in the Fargate cluster to run the test scenario.
Additional tasks will not be created once the account limit on Fargate resources has been reached.
However, tasks already running will continue.

concurrency

The number of concurrent virtual users generated per task. The recommended limit based on
default settings is 200 virtual users. Concurrency is limited by CPU and memory.

ramp up

The time to reach target concurrency.

Concepts and definitions 5

Distributed Load Testing on AWS Implementation Guide

hold for

Time to hold target concurrency.

For a general reference of AWS terms, see the AWS Glossary.

Concepts and definitions 6

https://docs.aws.amazon.com/general/latest/gr/glos-chap.html

Distributed Load Testing on AWS Implementation Guide

Architecture overview

Architecture diagram

Deploying this solution with the default parameters deploys the following components in your
AWS account.

Distributed Load Testing on AWS architecture on AWS

Note

AWS CloudFormation resources are created from AWS Cloud Development Kit (AWS CDK)
constructs.

The high-level process flow for the solution components deployed with the AWS CloudFormation
template is as follows:

1. A distributed load tester API, which leverages Amazon API Gateway to invoke the solution's
microservices (AWS Lambda functions).

2. The microservices provide the business logic to manage test data and run the tests.

Architecture overview 7

https://aws.amazon.com/api-gateway
https://aws.amazon.com/lambda

Distributed Load Testing on AWS Implementation Guide

3. These microservices interact with Amazon Simple Storage Service (Amazon S3), Amazon
DynamoDB, and AWS Step Functions to provide storage for the test scenario details and results
and run test scenarios.

4. An Amazon Virtual Private Cloud (Amazon VPC) network topology is deployed containing the
solution’s Amazon Elastic Container Service (Amazon ECS) containers running on AWS Fargate.

5. The containers include the Taurus load testing Open Container Initiative (OCI) compliant
container image, which is used to generate load for testing your application’s performance.
Taurus is an open-source test automation framework. The container image is hosted by AWS
in an Amazon Elastic Container Registry (Amazon ECR) public repository. For more information
about the ECR image repository, refer to Container image customization.

6. A web console powered by AWS Amplify is deployed it into an Amazon S3 bucket configured for
static web hosting.

7. Amazon CloudFront provides secure, public access to the solution’s website bucket contents.

8. During initial configuration, this solution also creates a default solution administrator role (IAM
role) and sends an access invite to a customer-specified user email address.

9. An Amazon Cognito user pool manages user access to the console and the distributed load
tester API.

10.After you deploy this solution, you can use the web console to create a test scenario that defines
a series of tasks.

11.The microservices use this test scenario to run Amazon ECS on AWS Fargate tasks in the Regions
specified.

12.In addition to storing the results in Amazon S3 and DynamoDB, once the test is complete the
output is logged in Amazon CloudWatch.

13.If you select the live data option, the solution sends the Amazon CloudWatch logs for the AWS
Fargate tasks to a Lambda function during the test, for each Region in which the test was run.

14.The Lambda function then publishes the data to the corresponding topic in AWS IoT Core in the
Region where the main stack was deployed. The web console subscribes to the topic, and you
can see the data while the test runs in the web console.

AWS Well-Architected design considerations

This solution uses the best practices from the AWS Well-Architected Framework, which helps
customers design and operate reliable, secure, efficient, and cost-effective workloads in the cloud.

AWS Well-Architected design considerations 8

https://aws.amazon.com/s3
https://aws.amazon.com/dynamodb
https://aws.amazon.com/dynamodb
https://aws.amazon.com/step-functions
https://aws.amazon.com/vpc
https://aws.amazon.com/ecs
https://aws.amazon.com/fargate
https://gettaurus.org/
https://opencontainers.org/
https://aws.amazon.com/ecr
https://docs.aws.amazon.com/solutions/latest/distributed-load-testing-on-aws/container-image.html
https://aws.amazon.com/amplify
https://aws.amazon.com/cloudfront
https://aws.amazon.com/cognito
https://aws.amazon.com/cloudwatch
https://aws.amazon.com/iot-core
https://aws.amazon.com/architecture/well-architected/

Distributed Load Testing on AWS Implementation Guide

This section describes how the design principles and best practices of the Well-Architected
Framework benefit this solution.

Operational excellence

This section describes how we architected this solution using the principles and best practices of
the operational excellence pillar.

• Resources defined as infrastructure as code using CloudFormation.

• The Solution pushes metrics to Amazon CloudWatch at various stages to provide observability
into the infrastructure; Lambda functions, Amazon ECS tasks, Amazon S3 buckets, and the rest of
the solution components.

Security

This section describes how we architected this solution using the principles and best practices of
the security pillar.

• Amazon Cognito authenticates and authorizes web UI app users.

• All interservice communications use applicable AWS Identity and Access Management (IAM)
roles.

• All roles used by the solution follow least privilege access. They only contain the minimum
permissions required to accomplish the transfer.

• All data storage, including the S3 buckets, encrypts the data at rest.

• An Amazon Cognito user pool manages user access to the console and the distributed load tester
API Gateway endpoints.

• Logging, tracing, and versioning is turned on where applicable.

• Network access is private by default with Amazon Virtual Private Cloud (Amazon VPC) endpoints
being turned on where available.

Reliability

This section describes how we architected this solution using the principles and best practices of
the reliability pillar.

Operational excellence 9

https://docs.aws.amazon.com/wellarchitected/latest/operational-excellence-pillar/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/welcome.html
https://aws.amazon.com/iam/
https://aws.amazon.com/vpc/
https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/welcome.html

Distributed Load Testing on AWS Implementation Guide

• The Solution uses AWS Serverless Services wherever possible (examples Lambda, API Gateway,
Amazon S3, AWS Step Functions, Amazon DynamoDB, and AWS Fargate) to ensure high
availability and recovery from service failure.

• All compute processing uses Lambda functions or Amazon ECS on AWS Fargate.

• Data is stored in DynamoDB and Amazon S3, so it persists in multiple Availability Zones by
default.

Performance efficiency

This section describes how we architected this solution using the principles and best practices of
the performance efficiency pillar.

• The solution uses a serverless architecture with the ability to scale horizontally as needed.

• The solution can be launched in any region that supports AWS services in this solution such as:
AWS Lambda, Amazon API Gateway, AWS S3, AWS Step Functions, Amazon DynamoDB, Amazon
ECS, AWS Fargate, and Amazon Cognito.

• The solution uses managed services throughout to reduce the operational burden of resource
provisioning and management.

• The solution is automatically tested and deployed daily to achieve consistency as AWS services
change. As well as reviewed by solution architects and subject matter experts for areas to
experiment and improve.

Cost optimization

This section describes how we architected this solution using the principles and best practices of
the cost optimization pillar.

• The Solution uses serverless architecture therefore, customers only get charged for what they
use.

• Amazon DynamoDB scales capacity on demand, so you only pay for the capacity you use.

• AWS ECS on AWS Fargate allows you to pay only for the compute resources you use, with no
upfront expenses.

Performance efficiency 10

https://docs.aws.amazon.com/wellarchitected/latest/performance-efficiency-pillar/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/cost-optimization-pillar/welcome.html

Distributed Load Testing on AWS Implementation Guide

Sustainability

This section describes how we architected this solution using the principles and best practices of
the sustainability pillar.

• The solution uses managed serverless services to minimize the environmental impact of the
backend services compared to continually operating on-premises services.

• Serverless services allow you to scale up or down as needed.

Sustainability 11

https://docs.aws.amazon.com/wellarchitected/latest/sustainability-pillar/sustainability-pillar.html

Distributed Load Testing on AWS Implementation Guide

Architecture details

This section describes the components and AWS services that make up this solution and the
architecture details on how these components work together.

The Distributed Load Testing on AWS solution consists of two high-level components: a front end
and a backend.

Front end

The front end consists of a load testing API and web console you use to interact with the solution’s
backend.

Load testing API

Distributed Load Testing on AWS configures Amazon API Gateway to host the solution’s RESTful
API. Users can interact with testing data securely through the included web console and RESTful
API. The API acts as a “front door” for access to testing data stored in Amazon DynamoDB. You can
also use the APIs to access any extended functionality you build into the solution.

This solution takes advantage of the user authentication features of Amazon Cognito user pools.
After successfully authenticating a user, Amazon Cognito issues a JSON web token that is used
to allow the console to submit requests to the solution’s APIs (Amazon API Gateway endpoints).
HTTPS requests are sent by the console to the APIs with the authorization header that includes the
token.

Based on the request, API Gateway invokes the appropriate AWS Lambda function to perform the
necessary tasks on the data stored in the DynamoDB tables, store test scenarios as JSON objects
in Amazon S3, retrieve Amazon CloudWatch metrics images, and submit test scenarios to the AWS
Step Functions state machine.

For more information on the solution’s API, refer to the Distributed load testing API section of this
guide.

Web console

This solution includes a web console that you can use to configure and run tests, monitor running
tests, and view detailed test results. The console is a ReactJS application hosted in Amazon S3 and

Front end 12

https://docs.aws.amazon.com/solutions/latest/distributed-load-testing-on-aws/distributed-load-testing-api.html

Distributed Load Testing on AWS Implementation Guide

accessed through Amazon CloudFront. The application leverages AWS Amplify to integrate with
Amazon Cognito to authenticate users. The web console also contains an option to view live data
for a running test, in which it subscribes to the corresponding topic in AWS IoT Core.

The web console is designed to demonstrate how you can interact with this load testing solution.
In a production environment, we recommend customizing the web console to meet your specific
needs or building your own console.

The web console URL is the CloudFront distribution domain name which can be found in the
CloudFormation outputs as Console. After you launch the CloudFormation template, you will also
receive an email that contains the web console URL and the one-time password to log into it.

Backend

The backend consists of a container image pipeline and load testing engine you use to generate
load for the tests. You interact with the backend through the front end. Additionally, Amazon ECS
on AWS Fargate tasks launched for each test are tagged with a unique test identifier (ID). These
test ID tags can be used to help you monitor costs for this solution. For additional information,
refer to User-Defined Cost Allocation Tags in the AWS Billing and Cost Management User Guide.

Container image pipeline

This solution leverages a container image of the Taurus load testing framework. This image is
hosted in an Amazon Elastic Container Registry (Amazon ECR) public repository. The image is used
to run tasks in the Amazon ECS on AWS Fargate cluster.

For more information, refer to the Container image customization section of this guide.

Testing infrastructure

In addition to the main template, the solution creates a secondary template to launch the required
resources to run tests in multiple Regions. The template is stored in Amazon S3, and a link to the
template is provided in the web console. The secondary templates create a VPC, an AWS Fargate
cluster, and a Lambda function for processing live data.

For more information on how to launch a secondary Region, refer to the Multi-Region
deployment section of this guide.

Backend 13

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/custom-tags.html
https://gettaurus.org/
https://docs.aws.amazon.com/solutions/latest/distributed-load-testing-on-aws/container-image.html
https://docs.aws.amazon.com/solutions/latest/distributed-load-testing-on-aws/multi-region-deployment.html
https://docs.aws.amazon.com/solutions/latest/distributed-load-testing-on-aws/multi-region-deployment.html

Distributed Load Testing on AWS Implementation Guide

Load testing engine

The Distributed Load Testing solution uses Amazon Elastic Container Service (Amazon ECS) and
AWS Fargate to simulate thousands of connected users, across multiple Regions, generating a
select number of transactions per second.

You define the parameters for the tasks that will be run as part of the test using the included
web console. The solution uses these parameters to generate a JSON test scenario and stores it in
Amazon S3.

An AWS Step Functions state machine runs and monitors Amazon ECS tasks in an AWS Fargate
cluster. The AWS Step Functions state machine includes an ecr-checker AWS Lambda function,
a task-status-checker AWS Lambda function, a task-runner AWS Lambda function, a task-
canceler AWS Lambda function, and a results-parser AWS Lambda function. For more information
on the workflow, refer to the Test workflow section of this guide. For more information on test
results, refer to the Test results section of this guide. For more information on the test cancellation
workflow, refer to the Test cancellation workflow section of this guide.

If you select live data, the solution initiates a real-time-data-publisher Lambda function in each
Region by the CloudWatch logs that correspond to the Fargate tasks in that Region. The solution
then processes and publishes the data to a topic in AWS IoT Core within the Region where you
launched the main stack. For more information, refer to the Live data section of this guide.

AWS services in this solution

The following AWS services are included in this solution:

AWS service Description

Amazon API Gateway Core. Hosts REST API endpoints in the solution.

AWS CloudFormation Core. Manages deployments for the solution infrastructure.

Amazon CloudFront Core. Serves the web content hosted in Amazon S3.

Amazon CloudWatch Core. Stores the solution logs and metrics.

Amazon Cognito Core. Handles user management and authentication for the API.

Load testing engine 14

https://docs.aws.amazon.com/solutions/latest/distributed-load-testing-on-aws/test-workflow.html
https://docs.aws.amazon.com/solutions/latest/distributed-load-testing-on-aws/test-results.html
https://docs.aws.amazon.com/solutions/latest/distributed-load-testing-on-aws/test-cancel-workflow.html
https://docs.aws.amazon.com/solutions/latest/distributed-load-testing-on-aws/live-data.html
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudfront/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cognito/

Distributed Load Testing on AWS Implementation Guide

AWS service Description

Amazon DynamoDB Core. Stores deployment information and tests scenario details and
results.

Amazon Elastic
Container Service

Core. Deploys and manages independent Amazon ECS tasks on AWS
Fargate containers.

AWS Fargate Core. Hosts solution’s Amazon ECS containers

AWS Identity and
Access Management

Core. Handles user role and permissions management.

AWS Lambda Core. Provides logic for APIs implementation, tests results parsing,
and launching workers/leader tasks.

AWS Step Functions Core. Orchestrates the provisioning of Amazon ECS containers on
AWS Fargate tasks in the specified regions

AWS Amplify Supporting. Provides a web console powered by AWS Amplify.

Amazon CloudWatch
Events

Supporting. Schedules tests to automatically begin at a specified
date or on recurring dates.

Amazon Elastic
Container Registry

Supporting. Hosts the container image in a public ECR repository.

AWS IoT Core Supporting. Enables viewing live data for a running test by subscribi
ng to the corresponding topic in AWS IoT Core.

AWS Systems Manager Supporting. Provides application-level resource monitoring and
visualization of resource operations and cost data.

Amazon S3 Supporting. Hosts the static web content, logs, metrics, and tests
data.

Amazon Virtual Private
Cloud

Supporting. Contains the solution’s Amazon ECS containers running
on AWS Fargate.

AWS services in this solution 15

https://aws.amazon.com/dynamodb/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/fargate/
https://aws.amazon.com/iam/
https://aws.amazon.com/iam/
https://aws.amazon.com/lambda/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/amplify/
https://aws.amazon.com/amplify
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/WhatIsCloudWatchEvents.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/WhatIsCloudWatchEvents.html
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/
https://aws.amazon.com/iot-core/
https://aws.amazon.com/systems-manager/
https://aws.amazon.com/s3/
https://aws.amazon.com/vpc/
https://aws.amazon.com/vpc/

Distributed Load Testing on AWS Implementation Guide

How Distributed Load Testing on AWS works

The following detailed breakdown shows the steps involved in running a test scenario.

1. You use the web console to submit a test scenario that includes the configuration details to the
solution’s API.

2. The test scenario configuration is uploaded to the Amazon Simple Storage Service (Amazon S3)
as a JSON file (s3://<bucket-name>/test-scenarios/<$TEST_ID>/<$TEST_ID>.json).

3. An AWS Step Functions state machine runs using the test ID, task count, test type, and file type
as the AWS Step Functions state machine input. If the test is scheduled, it will first create a
CloudWatch Events rule, which triggers AWS Step Functions on the specified date. For more
details on the scheduling workflow, refer to the Test scheduling workflow section of this guide.

4. Configuration details are stored in the scenarios Amazon DynamoDB table.

5. In the AWS Step Functions task runner workflow, the task-status-checker AWS Lambda function
checks if Amazon Elastic Container Service (Amazon ECS) tasks are already running for the
same test ID. If tasks with the same test ID are found running, it causes an error. If there are
no Amazon ECS tasks running in the AWS Fargate cluster, the function returns the test ID, task
count, and test type.

6. The task-runner AWS Lambda function gets the task details from the previous step and
runs the Amazon ECS worker tasks in the AWS Fargate cluster. The Amazon ECS API uses
the RunTask action to run the worker tasks. These worker tasks are launched and then wait for a
start message from the leader task in order to begin the test. The RunTask action is limited to 10

How Distributed Load Testing on AWS works 16

https://docs.aws.amazon.com/solutions/latest/distributed-load-testing-on-aws/test-scheduling-workflow.html

Distributed Load Testing on AWS Implementation Guide

tasks per definition. If your task count is more than 10, the task definition will run multiple times
until all worker tasks have been started. The function also generates a prefix to distinguish the
current test in the results-parser AWS Lambda function.

7. The task-status-checker AWS Lambda function checks if all the Amazon ECS worker tasks are
running with the same test ID. If tasks are still provisioning, it waits for one minute and checks
again. Once all Amazon ECS tasks are running, it returns the test ID, task count, test type, all task
IDs and prefix and passes it to the task-runner function.

8. The task-runner AWS Lambda function runs again, this time launching a single Amazon ECS task
to act as the leader node. This ECS task sends a start test message to each of the worker tasks in
order to start the tests simultaneously.

9. The task-status-checker AWS Lambda function again checks if Amazon ECS tasks are running
with the same test ID. If tasks are still running, it waits for one minute and checks again. Once
there are no running Amazon ECS tasks, it returns the test ID, task count, test type, and prefix.

10.When the task-runner AWS Lambda function runs the Amazon ECS tasks in the AWS Fargate
cluster, each task downloads the test configuration from Amazon S3 and starts the test.

11.Once the tests are running the average response time, number of concurrent users, number
of successful requests, and number of failed requests for each task is logged in Amazon
CloudWatch and can be viewed in a CloudWatch dashboard.

12.If you included live data in the test, the solution filters real-time test results in CloudWatch using
a subscription filter. Then the solution passes the data to a Lambda function.

13.The Lambda function then structures the data received and publishes it to an AWS IoT Core
topic.

14.The web console subscribes the AWS IoT Core topic for the test and receives the data published
to the topic to graph the real-time data while the test is running.

15.When the test is complete, the container images export a detail report as an XML file to Amazon
S3. Each file is given a UUID for the filename. For example, s3://dlte-bucket/test-scenarios/<
$TEST_ID>/results/<$UUID>.json.

16.When the XML files are uploaded to Amazon S3, the results-parser AWS Lambda function reads
the results in the XML files starting with the prefix and parses and aggregates all the results into
one summarized result.

17.The results-parser AWS Lambda function writes the aggregate result to an Amazon DynamoDB
table.

How Distributed Load Testing on AWS works 17

Distributed Load Testing on AWS Implementation Guide

Design considerations

Supported applications

This solution supports cloud-based applications, and on-premises applications as long as you have
a network connection from your AWS account to your application. The solution supports APIs that
use either HTTP or HTTPS. You also have control over the HTTP request headers, so you can add
authorization or custom headers to pass tokens or API keys.

JMeter script support

When creating a test scenario using this solution’s user interface (UI), you can use a JMeter
test script. After selecting the JMeter script file, it is uploaded to the <stack-name>-
scenariosbucket Amazon Simple Storage Service (Amazon S3) bucket. When Amazon Elastic
Container Service (Amazon ECS) tasks are running, the JMeter script downloads from the <stack-
name>-scenariosbucket Amazon S3 bucket and the test runs.

If you have JMeter input files, you can zip the input files together with the JMeter script. You can
choose the zip file when you create a test scenario.

If you would like to include plugins, any .jar files that are included in a /plugins subdirectory in the
bundled zip file will be copied to the JMeter extensions directory and be available for load testing.

Note

If you include JMeter input files with your JMeter script file, you must include the relative
path of the input files in your JMeter script file. In addition, the input files must be at the
relative path. For example, when your JMeter input files and script file are in the /home/
user directory and you refer to the input files in the JMeter script file, the path of input
files must be ./INPUT_FILES. If you use /home/user/INPUT_FILES instead, the test will fail
because it will not be able to find the input files.

If you include JMeter plugins, the .jar files must be bundled in a subdirectory named /
plugins within the root of the zip file. Relative to the root of the zip file, the path to the jar files
must be ./plugins/BUNDLED_PLUGIN.jar.

For more information about how to use JMeter scripts, refer to JMeter User's Manual.

Design considerations 18

https://jmeter.apache.org/usermanual/index.html

Distributed Load Testing on AWS Implementation Guide

Scheduling tests

You can schedule tests to run at a future date or use the Run Now option. You can schedule a test
as a one-time run in the future or set up a recurring test in which you specify a first run date, and
planned recurrence. The options for recurrence include: daily, weekly, bi-weekly, and monthly. For
more information on how scheduling works, refer to the Test scheduling workflow section of this
guide.

Starting in version 3.3.0, Distributed Load Testing on AWS allows users to schedule load tests using
cron expressions. Select Run of Schedule and then the CRON tab to either manually enter a cron
value or use the drop-down fields. The cronExpiryDate must match the scheduled test run date.
Review the Next Run Dates (UTC) to confirm your schedule.

Note

• Test duration: Consider the total duration of tests when scheduling. For example, a test
with a 10-minute ramp-up time and 40-minute hold time will take approximately 80
minutes to complete.

• Minimum interval: Ensure the interval between scheduled tests is longer than the
estimated test duration. For example, if the test takes about 80 minutes, schedule it to
run no more frequently than every 3 hours.

• Hourly limitation: The system does not allow tests to be scheduled with only a one-hour
difference even if the estimated test duration is less than an hour.

Concurrent tests

This solution includes an Amazon CloudWatch dashboard for each test and displays the combined
output of all tasks running for that test in the Amazon ECS cluster in real-time. The CloudWatch
dashboard displays the average response time, the number of concurrent users, the number of
successful requests, and the number of failed requests. Each metric is aggregated by the second,
and the dashboard is updated every minute.

User management

During initial configuration, you provide a username and email address that Amazon Cognito
uses to grant you access to the solution’s web console. The console does not provide user

Scheduling tests 19

https://docs.aws.amazon.com/solutions/latest/distributed-load-testing-on-aws/test-scheduling-workflow.html

Distributed Load Testing on AWS Implementation Guide

administration. To add additional users, you must use the Amazon Cognito console. For more
information, refer to Managing Users in User Pools in the Amazon Cognito Developer Guide.

Regional deployment

This solution uses Amazon Cognito which is available in specific AWS Regions only. Therefore, you
must deploy this solution in a region where Amazon Cognito is available. For the most current
service availability by Region, refer to the AWS Regional Services List.

Regional deployment 20

https://docs.aws.amazon.com/cognito/latest/developerguide/managing-users.html
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/

Distributed Load Testing on AWS Implementation Guide

Plan your deployment

This section describes the cost, security, Regions, and other considerations prior to deploying the
solution.

Cost

You are responsible for the cost of the AWS services used while running this solution. The total
cost for running this solution depends on the number of load tests run, the duration of those load
tests, and the amount of data used as a part of the tests. As of this revision, the cost for running
this solution with default settings in the US East (N. Virginia) Region is approximately $30.90 per
month.

The following table provides a sample cost breakdown for deploying this solution with the default
parameters in the US East (N. Virginia) Region for one month.

AWS service Dimensions Cost [USD]

AWS Fargate 10 on-demand tasks (using two vCPUs and 4 GB
memory) running for 30 hours

$29.62

Amazon
DynamoDB

1,000 on-demand write capacity units

1,000 on-demand read capacity units

$0.0015

AWS Lambda 1,000 requests

10 minutes total duration

$1.25

AWS Step
Functions

1,000 state transitions $0.025

Total: $30.90 per month

We recommend creating a budget through AWS Cost Explorer to help manage costs. Prices are
subject to change. For full details, see the pricing webpage for each AWS service used in this
solution.

Cost 21

https://docs.aws.amazon.com/cost-management/latest/userguide/budgets-create.html
http://aws.amazon.com/aws-cost-management/aws-cost-explorer/

Distributed Load Testing on AWS Implementation Guide

Important

Starting in version 1.3.0, the CPU is increased to 2 vCPU and the memory is increased
to 4 GB. These changes increase the estimated cost compared to previous versions of
this solution. If your load tests do not require these increases to your AWS resources,
you can reduce them. For additional information, refer to the Increase the container
resources section in this guide.

Note

This solution provides the option to include live data when running a test. This feature
requires an additional AWS Lambda function and AWS IoT Core topic that incur extra costs.

Prices are subject to change. For full details, see the pricing webpage for each AWS service you will
be using in this solution.

Security

When you build systems on AWS infrastructure, security responsibilities are shared between you
and AWS. This shared responsibility model reduces your operational burden because AWS operates,
manages, and controls the components including the host operating system, the virtualization
layer, and the physical security of the facilities in which the services operate. For more information
about AWS security, visit AWS Cloud Security.

IAM roles

AWS Identity and Access Management (IAM) roles allow customers to assign granular access
policies and permissions to services and users on the AWS Cloud. This solution creates IAM roles
that grant the solution’s AWS Lambda functions access to create Regional resources.

Amazon CloudFront

This solution deploys a web console hosted in an Amazon Simple Storage Service (Amazon S3)
bucket. To help reduce latency and improve security, this solution includes an Amazon CloudFront
distribution with an origin access identity, which is a CloudFront user that provides public access to

Security 22

https://docs.aws.amazon.com/solutions/latest/distributed-load-testing-on-aws/increase-container-resources.html
https://docs.aws.amazon.com/solutions/latest/distributed-load-testing-on-aws/increase-container-resources.html
https://aws.amazon.com/compliance/shared-responsibility-model/
http://aws.amazon.com/security/
https://docs.aws.amazon.com/AmazonS3/latest/dev/WebsiteHosting.html

Distributed Load Testing on AWS Implementation Guide

the solution’s website bucket contents. For more information, see Restricting Access to Amazon S3
Content by Using an Origin Access Identity in the Amazon CloudFront Developer Guide.

AWS Fargate security group

By default, this solution opens the outbound rule of the AWS Fargate security group to the public.
If you want to block AWS Fargate from sending traffic to everywhere, then change the outbound
rule to a specific Classless Inter-Domain Routing (CIDR).

This security group also includes an inbound rule that allows local traffic on port 50,000 to
any source that belongs to the same security group. This is used to allow the containers to
communicate with one another.

Network stress test

You are responsible for using this solution under the Network Stress Test policy. This policy
covers situations such as if you are planning on running high volume network tests directly
from your Amazon EC2 instances to other locations such as other Amazon EC2 instances, AWS
properties/services, or external endpoints. These tests are sometimes called stress tests, load tests,
or gameday tests. Most customer testing will not fall under this policy, however, refer to this policy
if you believe you will be generating traffic that sustains, in aggregate, for more than 1 minute,
over 1 Gbps (1 billion bits per second) or over 1 Gpps (1 billion packets per second).

Restricting access to the public user interface

To restrict access to the public-facing user interface beyond the authentication and authorization
mechanisms provided by IAM and Amazon Cognito, use the AWS WAF (web application firewall)
Security Automations solution.

This solution automatically deploys a set of AWS WAF rules that filter common web-based attacks.
Users can select from preconfigured protective features that define the rules included in an AWS
WAF web access control list (web ACL).

Supported AWS Regions

This solution uses the Amazon Cognito service, which is not currently available in all AWS Regions.
For the most current availability of AWS services by Region, see the AWS Regional Services List.

Distributed Load Testing on AWS is available in the following AWS Regions:

AWS Fargate security group 23

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html
https://aws.amazon.com/ec2/testing/
https://aws.amazon.com/solutions/implementations/aws-waf-security-automations/
https://aws.amazon.com/solutions/implementations/aws-waf-security-automations/
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/

Distributed Load Testing on AWS Implementation Guide

Region name

US East (Ohio) Asia Pacific (Tokyo)

US East (N. Virginia) Canada (Central)

US West (Northern California) Europe (Frankfurt)

US West (Oregon) Europe (Ireland)

Asia Pacific (Mumbai) Europe (London)

Asia Pacific (Osaka) Europe (Paris)

Asia Pacific (Seoul) Europe (Stockholm)

Asia Pacific (Singapore) South America (São Paulo)

Asia Pacific (Sydney)

Quotas

Service quotas, also referred to as limits, are the maximum number of service resources or
operations for your AWS account.

Quotas for AWS services in this solution

Make sure you have sufficient quota for each of the services implemented in this solution. For more
information, see AWS service quotas.

Use the following links to go to the page for that service. To view the service quotas for all AWS
services in the documentation without switching pages, view the information in the Service
endpoints and quotas page in the PDF instead.

AWS CloudFormation quotas

Your AWS account has AWS CloudFormation quotas that you should be aware of when launching
the stack in this solution. By understanding these quotas, you can avoid limitation errors that
would prevent you from deploying this solution successfully. For more information, see AWS
CloudFormation quotas in the in the AWS CloudFormation User’s Guide.

Quotas 24

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://docs.aws.amazon.com/general/latest/gr/aws-general.pdf#aws-service-information
https://docs.aws.amazon.com/general/latest/gr/aws-general.pdf#aws-service-information
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cloudformation-limits.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cloudformation-limits.html

Distributed Load Testing on AWS Implementation Guide

Load testing quotas

The maximum number of tasks that can be running in Amazon ECS using the AWS Fargate launch
type is based on the vCPU size of the tasks. The default task size in Distributed Load Testing on
AWS is 2 vCPU. To see the current default quotas, refer to Amazon ECS service quotas. Current
account quotas may differ from the listed quotas. To check quotas specific to an account, check
the service quota for Fargate on-demand vCPU resource count in the AWS Management Console.
For instructions on how to request an increase, refer to AWS service quotas in the AWS General
Reference Guide.

The Taurus load testing container image does not limit concurrent connections per task, but
that does not mean that it can support an unlimited number of users. To determine the number
of concurrent users the containers can generate for a test, refer to Determine the number of
users section of this guide.

Note

The recommended limit for concurrent users based on default settings is 200 users.

Concurrent tests

This solution includes an Amazon CloudWatch dashboard for each test and displays the combined
output of all tasks running for that test in the Amazon ECS cluster in real-time. The CloudWatch
dashboard displays the average response time, the number of concurrent users, the number of
successful requests, and the number of failed requests. Each metric is aggregated by the second,
and the dashboard is updated every minute.

Amazon EC2 testing policy

You do not need approval from AWS to run load tests using this solution as long as your network
traffic stays below 1 Gbps. If your test will generate more than 1 Gbps, contact AWS. For more
information, refer to the Amazon EC2 Testing Policy.

Amazon CloudFront load testing policy

If you plan on load testing a CloudFront endpoint, refer to the load testing guidelines in
the Amazon CloudFront Developer Guide. We also recommended spreading the traffic across

Load testing quotas 25

https://docs.aws.amazon.com/AmazonECS/latest/userguide/service-quotas.html
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://docs.aws.amazon.com/solutions/latest/distributed-load-testing-on-aws/determine-number-of-users.html
https://docs.aws.amazon.com/solutions/latest/distributed-load-testing-on-aws/determine-number-of-users.html
https://aws.amazon.com/ec2/testing/
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/load-testing.html

Distributed Load Testing on AWS Implementation Guide

multiple tasks and Regions. Provide at least 30 minutes of ramp-up time for the load test. For
load tests sending more than 500,000 requests per second or demanding more than 300 Gbps
data, we recommend first obtaining a pre-approval for sending the traffic. CloudFront may throttle
unapproved load test traffic that impacts CloudFront service availability.

Amazon CloudFront load testing policy 26

Distributed Load Testing on AWS Implementation Guide

Deploy the solution

This solution uses AWS CloudFormation templates and stacks to automate its deployment. The
CloudFormation templates specify the AWS resources included in this solution and their properties.
The CloudFormation stack provisions the resources that are described in the templates.

Deployment process overview

Follow the step-by-step instructions in this section to configure and deploy the solution into your
account.

Before you launch the solution, review the cost, architecture, network security, and other
considerations discussed earlier in this guide.

Time to deploy: Approximately 15 minutes

AWS CloudFormation template

You can download the CloudFormation template for this solution before deploying it. This
solution uses AWS CloudFormation to automate the deployment of Distributed Load Testing on
AWS. It includes the following AWS CloudFormation template, which you can download before
deployment:

distributed-load-testing-on-aws.template - Use this template to launch the solution and all
associated components. The default configuration deploys the core and supporting services found
in the AWS services in this solution section, but you can customize the template to meet your
specific needs.

Note

AWS CloudFormation resources are created from AWS Cloud Development Kit (AWS CDK)
constructs. If you have previously deployed this solution, see Update the solution for
update instructions.

Deployment process overview 27

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-whatis-concepts.html
https://solutions-reference.s3.amazonaws.com/distributed-load-testing-on-aws/latest/distributed-load-testing-on-aws.template

Distributed Load Testing on AWS Implementation Guide

Launch the stack

Important

If you are updating the stack from a version prior to v3.2.6 to the latest version, read this
section before updating the stack.

Before you launch the automated deployment, review the architecture and other considerations
discussed in this guide. Follow the step-by-step instructions in this section to configure and deploy
Distributed Load Testing on AWS into your account.

Time to deploy: Approximately 15 minutes

Important

This solution includes an option to send anonymized operational metrics to AWS. We use
this data to better understand how customers use this solution and related services and
products. AWS owns the data gathered through this survey. Data collection is subject to the
AWS Privacy Notice.
To opt out of this feature, download the template, modify the AWS CloudFormation
mapping section, and then use the AWS CloudFormation console to upload your updated
template and deploy the solution. For more information, see the Anonymized data
collection section of this guide.

This automated AWS CloudFormation template deploys Distributed Load Testing on AWS.

Note

You are responsible for the cost of the AWS services used while running this solution. For
more details, visit the Cost section in this guide and refer to the pricing webpage for each
AWS service used in this solution.

1. Sign in to the AWS Management Console and select the button below to launch the distributed-
load-testing-on-aws AWS CloudFormation template.

Launch the stack 28

https://docs.aws.amazon.com/solutions/latest/distributed-load-testing-on-aws/updating-from-older-versions.html
https://docs.aws.amazon.com/solutions/latest/distributed-load-testing-on-aws/updating-from-older-versions.html
https://aws.amazon.com/privacy/
https://docs.aws.amazon.com/solutions/latest/distributed-load-testing-on-aws/cost.html

Distributed Load Testing on AWS Implementation Guide

Alternatively, you can also download the template as a starting point for your own
implementation.

2. The template is launched in the US East (N. Virginia) Region by default. To launch this solution in
a different AWS Region, use the region selector in the console navigation bar.

Note

This solution uses Amazon Cognito, which is currently available in specific AWS Regions
only. Therefore, you must launch this solution in an AWS Region where Amazon Cognito
is available. For the most current service availability by Region, refer to the AWS
Regional Services List.

3. On the Create stack page, verify that the correct template URL shows in the Amazon S3
URL text box and choose Next.

4. On the Specify stack details page, assign a name to your solution stack.

5. Under Parameters, review the parameters for the template and modify them as necessary. This
solution uses the following default values.

Parameter Default Description

Admin name <Requires input> User name for the initial solution administr
ator.

Admin email <Requires input> Email address of the administrator user.
After launch, an email will be sent to this
address with console login instructions.

Existing VPC ID <Optional input> If you have a VPC that you want to use
and is already created, enter the ID of
an existing VPC in the same Region
where the stack was deployed. For
example, vpc-1a2b3c4d5e6f.

Launch the stack 29

https://console.aws.amazon.com/cloudformation/home?region=us-east-1#/stacks/new?&templateURL=https:%2F%2Fsolutions-reference.s3.amazonaws.com%2Fdistributed-load-testing-on-aws%2Flatest%2Fdistributed-load-testing-on-aws.template&redirectId=ImplementationGuide
https://solutions-reference.s3.amazonaws.com/distributed-load-testing-on-aws/latest/distributed-load-testing-on-aws.template
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/

Distributed Load Testing on AWS Implementation Guide

Parameter Default Description

First existing subnet <Optional input> The ID of the first subnet within your
existing VPC. This subnet needs a route to
the internet to pull the container image
for running tests. For example, subnet-7h
8i9j0k.

Second existing
subnet

<Optional input> The ID of the second subnet within the
existing VPC. This subnet needs a route to
the internet to pull the container image for
running tests. For example, subnet-1x2y3z.

AWS Fargate VPC
CIDR Block

192.168.0.0/16 If you do not provide values for an existing
VPC, the CIDR block for the solution-
created Amazon VPC contains the IP
address for AWS Fargate.

AWS Fargate Subnet
A CIDR Block

192.168.0.0/20 If you do not provide values for an existing
VPC, the CIDR block contains the IP address
for the Amazon VPC subnet A.

AWS Fargate Subnet
B CIDR Block

192.168.16.0/20 If you do not provide values for an existing
VPC, the CIDR block contains the IP address
for the Amazon VPC subnet B.

AWS Fargate Security
Group CIDR Block

0.0.0.0/0 CIDR block that restricts Amazon ECS
container outbound access.

6. Choose Next.

7. On the Configure stack options page, choose Next.

8. On the Review page, review and confirm the settings. Check the box acknowledging that the
template will create AWS Identity and Access Management (IAM) resources.

9. Choose Create stack to deploy the stack.

You can view the status of the stack in the AWS CloudFormation console in the Status column. You
should receive a CREATE_COMPLETE status in approximately 15 minutes.

Launch the stack 30

Distributed Load Testing on AWS Implementation Guide

Note

In addition to the primary AWS Lambda function, this solution includes the custom-
resource Lambda function, which runs only during initial configuration or when resources
are updated or deleted.

When running this solution, the custom-resource Lambda function is inactive. However, do not
delete this function as it is necessary to manage associated resources.

Multi-Region deployment

Time to deploy: Approximately five minutes

You can run tests across multiple Regions. When you deploy the Distributed Load Testing solution,
it creates three Amazon S3 buckets. The solution creates a secondary regional stack and stores it in
the Amazon S3 scenarios bucket.

Note

The bucket naming convention is <stack-name>>-
dlttestrunnerstoragedltscenariosbucket<[0-9][0-9]..-<[0-9][0-9].. with
the keyword scenarios in the bucket name which you can locate by navigating to the S3
console, then Buckets.

To run a multi-Region deployment, you must deploy the regional CloudFormation template, which
is stored in the Amazon S3 scenarios bucket, in the Regions you want to run the test. You can
install the regional template by doing the following:

1. In the solution’s web console, navigate to Manage Regions in the top menu.

2. Use the clipboard icon to copy the CloudFormation template link in Amazon S3.

3. Sign in to the AWS CloudFormation console and select the correct Region.

4. On the Create stack page, verify that the correct template URL shows in the Amazon S3
URL text box and choose Next.

5. On the Specify stack details page, assign a name to your solution stack.

6. Under Parameters, review the parameters for the template and modify them as necessary. This
solution uses the following default values.

Multi-Region deployment 31

https://console.aws.amazon.com/cloudformation/home

Distributed Load Testing on AWS Implementation Guide

Parameter Default Description

Existing VPC ID <Optional input> If you have a VPC that you want to use
and is already created, enter the ID of
an existing VPC in the same Region
where the stack was deployed. For
example, vpc-1a2b3c4d5e6f.

First existing subnet <Optional input> The ID of the first subnet within your
existing VPC. This subnet needs a route to
the internet to pull the container image
for running tests. For example, subnet-7h
8i9j0k.

Second existing
subnet

<Optional input> The ID of the second subnet within the
existing VPC. This subnet needs a route to
the internet to pull the container image for
running tests. For example, subnet-1x2y3z.

AWS Fargate VPC
CIDR Block

192.168.0.0/16 If you do not provide values for an existing
VPC, the CIDR block for the solution-
created Amazon VPC contains the IP
address for AWS Fargate.

AWS Fargate Subnet
A CIDR Block

192.168.0.0/20 If you do not provide values for an existing
VPC, the CIDR block contains the IP address
for the Amazon VPC subnet A.

AWS Fargate Subnet
B CIDR Block

192.168.16.0/20 If you do not provide values for an existing
VPC, the CIDR block contains the IP address
for the Amazon VPC subnet B.

AWS Fargate Security
Group CIDR Block

0.0.0.0/0 CIDR block that restricts Amazon ECS
container outbound access.

7. Choose Next.

8. On the Configure stack options page, choose Next.

Multi-Region deployment 32

Distributed Load Testing on AWS Implementation Guide

9. On the Review page, review and confirm the settings. Be sure to check the box acknowledging
that the template will create AWS Identity and Access Management (IAM) resources.

10.Choose Create stack to deploy the stack.

You can view the status of the stack in the AWS CloudFormation console in the Status column.
You should receive a CREATE_COMPLETE status in approximately five minutes.

When the Regions have been successfully deployed, they appear in the web console. When
you create a test, the new Region will be listed in the Manage Regions modal. You can use this
Region in a test by selecting it upon test creation. The solution creates a DynamoDB item for each
Region launched in the scenarios table, which contains the necessary information regarding the
testing resources in that Region. You can sort test results in the web console by Region. Due to
API constraints, you can only view the aggregate results of all Regions in a multi-Region test by
graphing them in Amazon CloudWatch metrics. You can find the source code for the graph in the
test results once the test has finished.

Note

You can launch the regional stack without the web console. Obtain a link to the regional
template in the Amazon S3 scenarios bucket and provide it as the source when launching
the regional stack in the required Region. Alternatively, you can download the template
and upload it as the source for the Region you want.

Multi-Region deployment 33

Distributed Load Testing on AWS Implementation Guide

Monitor the solution with Service Catalog AppRegistry

This solution includes a Service Catalog AppRegistry resource to register the CloudFormation
template and underlying resources as an application in both Service Catalog AppRegistry and AWS
Systems Manager Application Manager.

AWS Systems Manager Application Manager gives you an application-level view into this solution
and its resources so that you can:

• Monitor its resources, costs for the deployed resources across stacks and AWS accounts, and logs
associated with this solution from a central location.

• View operations data for the resources of this solution (such as deployment status, CloudWatch
alarms, resource configurations, and operational issues) in the context of an application.

The following figure depicts an example of the application view for the solution stack in
Application Manager.

Solution stack in Application Manager

Activate CloudWatch Application Insights

1. Sign in to the Systems Manager console.

Activate CloudWatch Application Insights 34

https://docs.aws.amazon.com/servicecatalog/latest/arguide/intro-app-registry.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/application-manager.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/application-manager.html
https://console.aws.amazon.com/systems-manager

Distributed Load Testing on AWS Implementation Guide

2. In the navigation pane, choose Application Manager.

3. In Applications, search for the application name for this solution and select it.

The application name will have App Registry in the Application Source column, and will have a
combination of the solution name, Region, account ID, or stack name.

4. In the Components tree, choose the application stack you want to activate.

5. In the Monitoring tab, in Application Insights, select Auto-configure Application Insights.

Monitoring for your applications is now activated and the following status box appears:

Activate CloudWatch Application Insights 35

Distributed Load Testing on AWS Implementation Guide

Confirm cost tags associated with the solution

After you activate cost allocation tags associated with the solution, you must confirm the cost
allocation tags to see the costs for this solution. To confirm cost allocation tags:

1. Sign in to the Systems Manager console.

2. In the navigation pane, choose Application Manager.

3. In Applications, choose the application name for this solution and select it.

4. In the Overview tab, in Cost, select Add user tag.

5. On the Add user tag page, enter confirm, then select Add user tag.

The activation process can take up to 24 hours to complete and the tag data to appear.

Activate cost allocation tags associated with the solution

After you confirm the cost tags associated with this solution, you must activate the cost allocation
tags to see the costs for this solution. The cost allocation tags can only be activated from the
management account for the organization.

Confirm cost tags associated with the solution 36

https://console.aws.amazon.com/systems-manager

Distributed Load Testing on AWS Implementation Guide

To activate cost allocation tags:

1. Sign in to the AWS Billing and Cost Management and Cost Management console.

2. In the navigation pane, select Cost Allocation Tags.

3. On the Cost allocation tags page, filter for the AppManagerCFNStackKey tag, then select the
tag from the results shown.

4. Choose Activate.

AWS Cost Explorer

You can see the overview of the costs associated with the application and application components
within the Application Manager console through integration with AWS Cost Explorer. Cost Explorer
helps you manage costs by providing a view of your AWS resource costs and usage over time.

1. Sign in to the AWS Cost Management console.

2. In the navigation menu, select Cost Explorer to view the solution's costs and usage over time.

AWS Cost Explorer 37

https://console.aws.amazon.com/billing/home
https://console.aws.amazon.com/cost-management/home

Distributed Load Testing on AWS Implementation Guide

Update the solution

If you have previously deployed the solution, follow this procedure to update the solution’s
CloudFormation stack to get the latest version of the solution’s framework.

1. Sign in to the CloudFormation console, select your existing CloudFormation stack, and select
Update.

2. Select Replace current template.

3. Under Specify template:

a. Select Amazon S3 URL.

b. Copy the link of the latest template.

c. Paste the link in the Amazon S3 URL box.

d. Verify that the correct template URL shows in the Amazon S3 URL text box.

e. Choose Next.

f. Choose Next again.

4. Under Parameters, review the parameters for the template and modify them as necessary. Refer
to Launch the stack for details about the parameters.

5. Choose Next.

6. On the Configure stack options page, choose Next.

7. On the Review page, review and confirm the settings.

8. Select the box acknowledging that the template might create IAM resources.

9. Choose View change set and verify the changes.

10.Choose Update stack to deploy the stack.

You can view the status of the stack in the AWS CloudFormation console in the Status column. You
should receive a UPDATE_COMPLETE status in approximately 15 minutes.

When updating from DLT versions older than v3.2.6 to latest,
updating the stack fails

1. Download the distributed-load-testing-on-aws.template.

When updating from DLT versions older than v3.2.6 to latest, updating the stack fails 38

https://console.aws.amazon.com/cloudformation/
https://solutions-reference.s3.amazonaws.com/distributed-load-testing-on-aws/latest/distributed-load-testing-on-aws.template
https://solutions-reference.s3.amazonaws.com/distributed-load-testing-on-aws/latest/distributed-load-testing-on-aws.template

Distributed Load Testing on AWS Implementation Guide

2. Open the template and navigate to Conditions: and look
for DLTCommonResourcesAppRegistryCondition

3. You should be seeing something similar the following:

Conditions:
DLTCommonResourcesAppRegistryConditionCCEF54F8:
Fn::Equals:
- "true"
- "true"

4. Change the second true value to false:

Conditions:
DLTCommonResourcesAppRegistryConditionCCEF54F8:
Fn::Equals:
- "true"
- "false"

5. Use the customized template to update your stack.

6. This stack removes app registry related resources from the stack. Hence the update should be
completed.

7. Perform another stack update using the latest template url to add back app registry application
resources to your stack.

Note

AWS Systems Manager Application Manager gives you an application-level view into this
solution and its resources so that you can:
1. Monitor its resources, costs for the deployed resources across stacks and AWS accounts,
and logs associated with this solution from a central location.
2. View operations data for the resources of this solution in the context of an application,
such as deployment status, CloudWatch alarms, resource configurations, and operational
issues.

When updating from DLT versions older than v3.2.6 to latest, updating the stack fails 39

Distributed Load Testing on AWS Implementation Guide

Troubleshooting

Known issue resolution provides instructions to mitigate known errors. If these instructions don’t
address your issue, Contact AWS Support provides instructions for opening an AWS Support case
for this solution.

Known issue resolution

Issue: You are using an existing VPC and your tests fail with a status of Failed, resulting in the
following error message:

Test might have failed to run.

Resolution:

Ensure that the subnets exist in the VPC specified and that they have a route to the internet with
either an internet gateway or a NAT gateway. AWS Fargate needs access to pull the container
image from the public repository to successfully run tests.

Issue: Tests are taking too long to run or are stuck indefinitely running

Resolution:

Cancel the test and check AWS Fargate to ensure that all tasks have stopped. If they have not
stopped, manually stop all Fargate tasks. Check the on-demand Fargate task limits on your account
to ensure that you can launch the number of tasks desired. You can also check the CloudWatch
logs for the Lambda task-runner function for more insight into failures when launching Fargate
tasks. Check the CloudWatch ECS logs for details of what is happening in Fargate containers that
are running.

Contact AWS Support

If you have AWS Developer Support, AWS Business Support, or AWS Enterprise Support, you can
use the Support Center to get expert assistance with this solution. The following sections provide
instructions.

Create case

1. Sign in to Support Center.

Known issue resolution 40

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://aws.amazon.com/premiumsupport/plans/developers/
https://aws.amazon.com/premiumsupport/plans/business/
https://aws.amazon.com/premiumsupport/plans/enterprise/
https://support.console.aws.amazon.com/support/home#/

Distributed Load Testing on AWS Implementation Guide

2. Choose Create case.

How can we help?

1. Choose Technical

2. For Service, select Solutions.

3. For Category, select Distributed Load Testing on AWS.

4. For Severity, select the option that best matches your use case.

5. When you enter the Service, Category, and Severity, the interface populates links to common
troubleshooting questions. If you can't resolve your questions with these links, choose Next
step: Additional information.

Additional information

1. For Subject, enter text summarizing your question or issue.

2. For Description, describe the issue in detail.

3. Choose Attach files.

4. Attach the information that AWS Support needs to process the request.

Help us resolve your case faster

1. Enter the requested information.

2. Choose Next step: Solve now or contact us.

Solve now or contact us

1. Review the Solve now solutions.

2. If you can’t resolve your issue with these solutions, choose Contact us, enter the requested
information, and choose Submit.

How can we help? 41

Distributed Load Testing on AWS Implementation Guide

Uninstall the solution

You can uninstall the Distributed Load Testing on AWS solution from the AWS Management
Console or by using the AWS Command Line Interface. You must manually delete the console,
scenario, and logging Amazon Simple Storage Service (Amazon S3) buckets created by this
solution. AWS Solutions Implementations do not automatically delete them in case you have
stored data to retain.

Note

If you have deployed regional stacks, you must delete the stacks in those Regions before
deleting the main stack.

Using the AWS Management Console

1. Sign in to the AWS CloudFormation console.

2. On the Stacks page, select this solution’s installation stack.

3. Choose Delete.

Using AWS Command Line Interface

Determine whether the AWS Command Line Interface (AWS CLI) is available in your environment.
For installation instructions, refer to What Is the AWS Command Line Interface in the AWS CLI User
Guide. After confirming that the AWS CLI is available, run the following command.

$ aws cloudformation delete-stack --stack-name <installation-stack-name>

Deleting the Amazon S3 buckets

This solution is configured to retain the solution-created Amazon S3 bucket (for deploying in an
opt-in Region) if you decide to delete the AWS CloudFormation stack to prevent accidental data
loss. After uninstalling the solution, you can manually delete this S3 bucket if you do not need to
retain the data. Follow these steps to delete the Amazon S3 bucket.

Using the AWS Management Console 42

https://console.aws.amazon.com/cloudformation/home
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html

Distributed Load Testing on AWS Implementation Guide

1. Sign in to the Amazon S3 console.

2. Choose Buckets from the left navigation pane.

3. In the Find buckets by name field, enter the name of this solution’s stack.

4. Select one of the solution's S3 buckets and choose Empty.

5. Enter permanently delete in the verification field and choose Empty.

6. Choose the S3 bucket name you just emptied and choose Delete.

7. Enter the S3 bucket name in the verification field and choose Delete bucket.

Repeat steps 3 through 7 until you delete all the S3 buckets.

To delete the S3 bucket using AWS CLI, run the following command:

$ aws s3 rb s3://<bucket-name> --force

Deleting the Amazon S3 buckets 43

https://console.aws.amazon.com/s3/home

Distributed Load Testing on AWS Implementation Guide

Use the solution

This section includes information on how to use the Distributed Load Testing on AWS solution,
including Test results, Test scheduling workflow and Live data.

Test results

Distributed Load Testing on AWS leverages the Load Testing framework to run application testing
at scale. When a test is complete, a detailed report is generated containing the following results.

• Average response time - The average response time, in seconds, for all the requests generated
by the test.

• Average latency - The average latency, in seconds, for all the requests generated by the test.

• Average connection time - The average time, in seconds, it takes to connect to the host for all
the requests generated by the test.

• Average bandwidth - The average bandwidth for all the requests generated by the test.

• Total count - The total number of requests.

• Success count - The total number of successful requests.

• Error count - The total number of errors.

• Requests per second - The average requests per seconds for all the requests generated by the
test.

• Percentile - The percentile of the response time for the test. The maximum response time is
100%; the minimum response time is 0%.

Note

Test results are displayed in the console. You can view the XML files for the raw test results
in the Results folder of the Scenarios Amazon S3 bucket.

For more information on Taurus test results, see Generating Test Reports in the Taurus User
Manual.

Test results 44

https://gettaurus.org/docs/Reporting/

Distributed Load Testing on AWS Implementation Guide

Test scheduling workflow

Use the web console to schedule a load test. When scheduling a test, the following workflow runs:

• When a load test is created with the option to schedule, the schedule parameters are sent to the
solution’s API via Amazon API Gateway.

• The API then passes the parameters to a Lambda function which creates a CloudWatch Events
rule, which will be scheduled to run on the date specified.

• If the test is a one-time test, the CloudWatch Events rule runs on the specified date. The api-
services Lambda function runs a new test through the test workflow.

• If the test is a recurring test, the CloudWatch Events rule activates on the specified date. The
api-services Lambda function runs, which deletes the current CloudWatch Events rule and
creates another rule that runs immediately when created, and recurrently thereafter based on
the specified recurrence frequency.

Determine the number of users

The number of users a container can support for a test can be determined by gradually increasing
the number of users, and monitoring performance in Amazon CloudWatch. Once you observe that
CPU and memory performance are approaching their limits, you’ve reached the maximum number
of users a container can support for that test in their default configuration (2 vCPU and 4 GB of
memory). You can begin determining the concurrent user limits for your test by using the following
example:

1. Create a test with no more than 200 users.

2. While the test runs, monitor the CPU and Memory using the CloudWatch console:

a. From the left navigation pane, under Container Insights, select Performance Monitoring.

b. On the Performance monitoring page, from the left drop down menu, select ECS Clusters.

c. From the right drop down menu, select your Amazon Elastic Container Service (Amazon ECS)
cluster.

3. While monitoring, watch the CPU and Memory. If the CPU does not surpass 75% or the Memory
does not surpass 85% (ignore one-time peaks), you can run another test with a higher number
of users.

Test scheduling workflow 45

https://console.aws.amazon.com/cloudwatch/home

Distributed Load Testing on AWS Implementation Guide

Repeat steps 1-3 if the test did not exceed the resource limits. Optionally, the containers resources
can be increased to allow for a higher number of concurrent users. However, this results in a higher
cost. For details, refer to the Increase the container resources section of this guide.

Note

For accurate results, run only one test at a time when determining concurrent user
limits. All tests use the same cluster and CloudWatch container insights aggregates the
performance data based on cluster. This causes both tests to be reported to CloudWatch
container insights simultaneously, which results in inaccurate resource utilization metrics
for a single test.

For more information on calibrating users per engine, refer to Calibrating a Taurus Test in the
BlazeMeter documentation.

Live data

You can optionally include live data when running a test to gain real-time insights into what is
occurring. The CloudWatch log group for the Fargate tasks contains a subscription filter for results
from tests that include the live data option. If the solution finds the pattern, it initiates a Lambda
function that structures the data and publishes it to an AWS IoT Core topic. The web console
subscribes to the topic, receives the incoming data, and graphs the data aggregated at one-second
intervals. The web console contains four graphs: average response time, virtual users, successes,
and failures.

Note

The data is ephemeral and is only for use to see what is happening while the test is
running. Once a test is complete, the solution stores the results data in DynamoDB and
Amazon S3. The web console persists a maximum of 5,000 data points, after which the
oldest data is replaced with the newest. If the page refreshes, the graphs will be blank and
start from the next available data point.

Live data 46

https://guide.blazemeter.com/hc/en-us/articles/360000864389-Calibrating-a-Taurus-Test-Calibrating-a-Taurus-Test

Distributed Load Testing on AWS Implementation Guide

Test cancellation workflow

When you cancel a load test from the web console, the solution runs the following test cancellation
workflow.

1. The cancellation request is sent to the microservices API.

2. The microservices API calls the task-canceler Lambda function which cancels tasks until
all the currently launched tasks are stopped.

3. If the task-runner Lambda function continues to run after the initial call to the task-
canceler Lambda function, then tasks will continue to be launched. Once the task-runner
Lambda function finishes, AWS Step Functions continues to the Cancel Test step, which runs
the task-canceler Lambda function again to stop any remaining tasks.

Test cancellation workflow 47

Distributed Load Testing on AWS Implementation Guide

Developer guide

This section provides the source code for the solution and additional customizations.

Source code

Visit our GitHub repository to download the templates and scripts for this solution, and to share
your customizations with others.

Container image customization

This solution uses a public Amazon Elastic Container Registry (Amazon ECR) image repository
managed by AWS to store the Taurus image that is used to run the configured tests. If you want to
customize the container image, you can rebuild and push the image into an ECR image repository
in your own AWS account.

If you want to customize this solution, you can use the default container image or, edit this
container to fit your needs. If you customize the solution, use the following code sample to declare
the environment variables before building your customized solution.

#!/bin/bash

export REGION=aws-region-code # the AWS region to launch the solution (e.g. us-east-1)
export BUCKET_PREFIX=my-bucket-name # prefix of the bucket name without the region code
export BUCKET_NAME=$BUCKET_PREFIX-$REGION # full bucket name where the code will reside
export SOLUTION_NAME=my-solution-name
export VERSION=my-version # version number for the customized code
export PUBLIC_ECR_REGISTRY=public.ecr.aws/awssolutions/distributed-load-testing-on-
aws-load-tester # replace with the container registry and image if you want to use a
 different container image export PUBLIC_ECR_TAG=v3.1.0 # replace with the container
 image tag if you want to use a different container image

If you choose to customize the container image, you can host it in either a private image repository,
or a public image repository in your AWS account. The image resources are in the deployment/
ecr/distributed-load-testing-on-aws-load-tester directory, located in the code base.

You can build and push the image to the host destination.

Source code 48

https://github.com/aws-solutions/distributed-load-testing-on-aws

Distributed Load Testing on AWS Implementation Guide

• For private Amazon ECR repositories and images, refer to Amazon ECR private repositories and
private images in the Amazon ECR User Guide.

• For public Amazon ECR repositories and images, refer to Amazon ECR public repositories and
public images in the Amazon ECR Public User Guide.

Once you create your own image, you can declare the following environment variables before
building your customized solution.

#!/bin/bash
export PUBLIC_ECR_REGISTRY=YOUR_ECR_REGISTRY_URI # e.g. YOUR_ACCOUNT_ID.dkr.ecr.us-
east-1.amazonaws.com/YOUR_IMAGE_NAME
export PUBLIC_ECR_TAG=YOUR_ECR_TAG # e.g. latest, v2.0.0

The following example shows the container file.

FROM blazemeter/taurus:1.16.34
taurus includes python and pip
RUN /usr/bin/python3 -m pip install --upgrade pip
RUN pip install --no-cache-dir awscli
RUN apt-get -y install --no-install-recommends xmlstarlet bc procps

Removing selenium and gatling from our image as they are not supported in DLT
RUN rm -rf /root/.bzt/selenium-taurus
RUN rm -rf /root/.bzt/gatling-taurus

RUN apt-get update && apt-get upgrade -y
Taurus working directory = /bzt-configs
ADD ./load-test.sh /bzt-configs/
ADD ./*.jar /bzt-configs/
ADD ./*.py /bzt-configs/

RUN chmod 755 /bzt-configs/load-test.sh
RUN chmod 755 /bzt-configs/ecslistener.py
RUN chmod 755 /bzt-configs/ecscontroller.py
RUN chmod 755 /bzt-configs/jar_updater.py
RUN python3 /bzt-configs/jar_updater.py

Remove K6 as it is not supported in DLT by default
RUN apt remove -y k6

Container image customization 49

https://docs.aws.amazon.com/AmazonECR/latest/userguide/Repositories.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/images.html
https://docs.aws.amazon.com/AmazonECR/latest/public/public-repositories.html
https://docs.aws.amazon.com/AmazonECR/latest/public/public-images.html

Distributed Load Testing on AWS Implementation Guide

RUN /bin/bash -c "source /etc/profile.d/rbenv.sh && rbenv uninstall --force $(cat /usr/
local/rbenv/version)"
RUN rm -rf /usr/local/rbenv

Replacing urllib3 with more stable Versions to resolve vulnerabilities
RUN pip install urllib3==2.2.2
RUN rm -rf /root/.bzt/python-packages/3.10.12/urllib3*
RUN cp -r /usr/local/lib/python3.10/dist-packages/urllib3* /root/.bzt/python-
packages/3.10.12/

Replacing Werkzeug with more stable version to resolve vulnerabilities
RUN pip install Werkzeug==3.0.3
RUN rm -rf /root/.bzt/python-packages/3.10.12/werkzeug*
RUN cp -r /usr/local/lib/python3.10/dist-packages/werkzeug* /root/.bzt/python-
packages/3.10.12/

Replacing cryptography with more stable version to resolve vulnerabilities
RUN pip install cryptography==42.0.6
RUN rm -rf /root/.bzt/python-packages/3.10.12/cryptography*
RUN cp -r /usr/local/lib/python3.10/dist-packages/cryptography* /root/.bzt/python-
packages/3.10.12/

Removing dotnet dependencies as NUnit and Xunit is not supported in DLT
RUN rm -rf /usr/share/dotnet

Replacing aiohttp with more stable version to resolve CVE-2024-23334
RUN rm -rf /usr/local/lib/python3.10/dist-packages/aiohttp*
RUN pip install --upgrade aiohttp

Replacing idna with more stable version to resolve CVE-2024-3651
RUN pip install --upgrade idna
RUN rm -rf /root/.bzt/python-packages/3.10.12/idna*
RUN cp -r /usr/local/lib/python3.10/dist-packages/idna* /root/.bzt/python-
packages/3.10.12/

WORKDIR /bzt-configs/
ENTRYPOINT ["./load-test.sh"]

In addition to a container file, the directory contains the following bash script that downloads the
test configuration from Amazon S3 before running the Taurus program.

#!/bin/bash

Container image customization 50

Distributed Load Testing on AWS Implementation Guide

set a uuid for the results xml file name in S3
UUID=$(cat /proc/sys/kernel/random/uuid)
pypid=0
echo "S3_BUCKET:: ${S3_BUCKET}"
echo "TEST_ID:: ${TEST_ID}"
echo "TEST_TYPE:: ${TEST_TYPE}"
echo "FILE_TYPE:: ${FILE_TYPE}"
echo "PREFIX:: ${PREFIX}"
echo "UUID:: ${UUID}"
echo "LIVE_DATA_ENABLED:: ${LIVE_DATA_ENABLED}"
echo "MAIN_STACK_REGION:: ${MAIN_STACK_REGION}"

sigterm_handler() {
 if [$pypid -ne 0]; then
 echo "container received SIGTERM."
 kill -15 $pypid
 wait $pypid
 exit 143 #128 + 15
 fi
}
trap 'sigterm_handler' SIGTERM

echo "Download test scenario"
aws s3 cp s3://$S3_BUCKET/test-scenarios/$TEST_ID-$AWS_REGION.json test.json --region
 $MAIN_STACK_REGION

download JMeter jmx file
if ["$TEST_TYPE" != "simple"]; then
 # Copy *.jar to JMeter library path. See the Taurus JMeter path: https://
gettaurus.org/docs/JMeter/
 JMETER_LIB_PATH=`find ~/.bzt/jmeter-taurus -type d -name "lib"`
 echo "cp $PWD/*.jar $JMETER_LIB_PATH"
 cp $PWD/*.jar $JMETER_LIB_PATH

 if ["$FILE_TYPE" != "zip"]; then
 aws s3 cp s3://$S3_BUCKET/public/test-scenarios/$TEST_TYPE/$TEST_ID.jmx ./ --region
 $MAIN_STACK_REGION
 else
 aws s3 cp s3://$S3_BUCKET/public/test-scenarios/$TEST_TYPE/$TEST_ID.zip ./ --region
 $MAIN_STACK_REGION
 unzip $TEST_ID.zip
 # only looks for the first jmx file.
 JMETER_SCRIPT=`find . -name "*.jmx" | head -n 1`
 if [-z "$JMETER_SCRIPT"]; then

Container image customization 51

Distributed Load Testing on AWS Implementation Guide

 echo "There is no JMeter script in the zip file."
 exit 1
 fi

 sed -i -e "s|$TEST_ID.jmx|$JMETER_SCRIPT|g" test.json

 # copy bundled plugin jars to jmeter extension folder to make them available to
 jmeter
 BUNDLED_PLUGIN_DIR=`find $PWD -type d -name "plugins" | head -n 1`
 # attempt to copy only if a /plugins folder is present in upload
 if [-z "$BUNDLED_PLUGIN_DIR"]; then
 echo "skipping plugin installation (no /plugins folder in upload)"
 else
 # ensure the jmeter extensions folder exists
 JMETER_EXT_PATH=`find ~/.bzt/jmeter-taurus -type d -name "ext"`
 if [-z "$JMETER_EXT_PATH"]; then
 # fail fast - if plugins bundled they will be needed for the tests
 echo "jmeter extension path (~/.bzt/jmeter-taurus/**/ext) not found - cannot
 install bundled plugins"
 exit 1
 fi
 cp -v $BUNDLED_PLUGIN_DIR/*.jar $JMETER_EXT_PATH
 fi
 fi
fi

#Download python script
if [-z "$IPNETWORK"]; then
 python3 -u $SCRIPT $TIMEOUT &
 pypid=$!
 wait $pypid
 pypid=0
else
 python3 -u $SCRIPT $IPNETWORK $IPHOSTS
fi

echo "Running test"
stdbuf -i0 -o0 -e0 bzt test.json -o modules.console.disable=true | stdbuf -i0 -o0 -e0
 tee -a result.tmp | sed -u -e "s|^|$TEST_ID $LIVE_DATA_ENABLED |"
CALCULATED_DURATION=`cat result.tmp | grep -m1 "Test duration" | awk -F ' ' '{ print
 $5 }' | awk -F ':' '{ print ($1 * 3600) + ($2 * 60) + $3 }'`

upload custom results to S3 if any
every file goes under $TEST_ID/$PREFIX/$UUID to distinguish the result correctly

Container image customization 52

Distributed Load Testing on AWS Implementation Guide

if ["$TEST_TYPE" != "simple"]; then
 if ["$FILE_TYPE" != "zip"]; then
 cat $TEST_ID.jmx | grep filename > results.txt
 else
 cat $JMETER_SCRIPT | grep filename > results.txt
 fi
 sed -i -e 's/<stringProp name="filename">//g' results.txt
 sed -i -e 's/<\/stringProp>//g' results.txt
 sed -i -e 's/ //g' results.txt

 echo "Files to upload as results"
 cat results.txt

 files=(`cat results.txt`)
 for f in "${files[@]}"; do
 p="s3://$S3_BUCKET/results/$TEST_ID/JMeter_Result/$PREFIX/$UUID/$f"
 if [[$f = /*]]; then
 p="s3://$S3_BUCKET/results/$TEST_ID/JMeter_Result/$PREFIX/$UUID$f"
 fi

 echo "Uploading $p"
 aws s3 cp $f $p --region $MAIN_STACK_REGION
 done
fi

if [-f /tmp/artifacts/results.xml]; then
 echo "Validating Test Duration"
 TEST_DURATION=`xmlstarlet sel -t -v "/FinalStatus/TestDuration" /tmp/artifacts/
results.xml`

 if (($(echo "$TEST_DURATION > $CALCULATED_DURATION" | bc -l))); then
 echo "Updating test duration: $CALCULATED_DURATION s"
 xmlstarlet ed -L -u /FinalStatus/TestDuration -v $CALCULATED_DURATION /tmp/
artifacts/results.xml
 fi

 echo "Uploading results, bzt log, and JMeter log, out, and err files"
 aws s3 cp /tmp/artifacts/results.xml s3://$S3_BUCKET/results/${TEST_ID}/${PREFIX}-
${UUID}-${AWS_REGION}.xml --region $MAIN_STACK_REGION
 aws s3 cp /tmp/artifacts/bzt.log s3://$S3_BUCKET/results/${TEST_ID}/bzt-${PREFIX}-
${UUID}-${AWS_REGION}.log --region $MAIN_STACK_REGION
 aws s3 cp /tmp/artifacts/jmeter.log s3://$S3_BUCKET/results/${TEST_ID}/jmeter-
${PREFIX}-${UUID}-${AWS_REGION}.log --region $MAIN_STACK_REGION

Container image customization 53

Distributed Load Testing on AWS Implementation Guide

 aws s3 cp /tmp/artifacts/jmeter.out s3://$S3_BUCKET/results/${TEST_ID}/jmeter-
${PREFIX}-${UUID}-${AWS_REGION}.out --region $MAIN_STACK_REGION
 aws s3 cp /tmp/artifacts/jmeter.err s3://$S3_BUCKET/results/${TEST_ID}/jmeter-
${PREFIX}-${UUID}-${AWS_REGION}.err --region $MAIN_STACK_REGION
else
 echo "An error occurred while the test was running."
fi

In addition to the Dockerfile and the bash script, two Python scripts are also included in the
directory. Each task runs a Python script from within the bash script. The worker tasks run
the ecslistener.py script, while the leader task will run the ecscontroller.py script.
The ecslistener.py script creates a socket on port 50000 and waits for a message. The
ecscontroller.py script connects to the socket and sends the start test message to the worker
tasks, which allows them to start simultaneously.

Distributed load testing API

This load testing solution helps you to expose test result data in a secure manner. The API acts as a
“front door” for access to testing data stored in Amazon DynamoDB. You can also use the APIs to
access any extended functionality you build into the solution.

This solution uses an Amazon Cognito user pool integrated with Amazon API Gateway for
identification and authorization. When a user pool is used with the API, clients are only allowed to
call user pool activated methods after they provide a valid identity token.

For more information on running tests directly via the API, refer to Signing Requests in the Amazon
API Gateway REST API Reference documentation.

The following operations are available in the solution's API.

Note

For more information about testScenario and other parameters, refer to scenarios and
payload example in the GitHub repository.

Scenarios

• GET /scenarios

Distributed load testing API 54

https://docs.docker.com/engine/reference/builder/
https://docs.aws.amazon.com/apigateway/api-reference/signing-requests/
https://github.com/aws-solutions/distributed-load-testing-on-aws/blob/main/source/api-services/lib/scenarios/index.js#L267
https://github.com/aws-solutions/distributed-load-testing-on-aws/blob/main/source/console/src/Components/Create/Create.js#L156-L238

Distributed Load Testing on AWS Implementation Guide

• POST /scenarios

• OPTIONS /scenarios

• GET /scenarios/{testId}

• POST /scenarios/{testId}

• DELETE /scenarios/{testId}

• OPTIONS /scenarios/{testId}

Tasks

• GET /tasks

• OPTIONS /tasks

Regions

• GET /regions

• OPTIONS /regions

GET /scenarios

Description

The GET /scenarios operation allows you to retrieve a list of test scenarios.

Response

Name Description

data A list of scenarios including the ID, name,
description, status, and run time for each test

POST /scenarios

Description

The POST /scenarios operation allows you to create or schedule a test scenario.

GET /scenarios 55

Distributed Load Testing on AWS Implementation Guide

Request body

Name Description

testName The name of the test

testDescription The description of the test

testTaskConfigs An object that specifies concurrency (the
number of parallel runs), taskCount (the
number of tasks needed to run a test), and
region for the scenario

testScenario The test definition including concurrency, test
time, host, and method for the test

testType The test type (for example, simple, jmeter)

fileType The upload file type (for example, none,
script, zip)

scheduleDate The date to run a test. Only provided if
scheduling a test (for example, 2021-02-28)

scheduleTime The time to run a test. Only provided if
scheduling a test (for example, 21:07)

scheduleStep The step in the schedule process. Only
provided if scheduling a recurring test.
(Available steps include create and start)

cronvalue The cron value for customizing recurring
scheduling. If used, omit scheduleDate and
scheduleTime.

cronExpiryDate Required date so the cron expires and doesn’t
run indefinitely.

recurrence The recurrence of a scheduled test. Only
provided if scheduling a recurring test (for

POST /scenarios 56

Distributed Load Testing on AWS Implementation Guide

Name Description

example, daily, weekly, biweekly, or
monthly)

Response

Name Description

testId The unique ID of the test

testName The name of the test

status The status of the test

OPTIONS /scenarios

Description

The OPTIONS /scenarios operation provides a response for the request with the correct CORS
response headers.

Response

Name Description

testId The unique ID of the test

testName The name of the test

status The status of the test

OPTIONS /scenarios 57

Distributed Load Testing on AWS Implementation Guide

GET /scenarios/{testId}

Description

The GET /scenarios/{testId} operation allows you to retrieve the details of a specific test
scenario.

Request parameter

testId

The unique ID of the test

Type: String

Required: Yes

Response

Name Description

testId The unique ID of the test

testName The name of the test

testDescription The description of the test

testType The type of test that is run (for example,
simple, jmeter)

fileType The type of file that is uploaded (for example,
none, script, zip)

status The status of the test

startTime The time and date when the last test started

endTime The time and date when the last test ended

testScenario The test definition including concurrency, test
time, host, and method for the test

GET /scenarios/{testId} 58

Distributed Load Testing on AWS Implementation Guide

Name Description

taskCount The number of tasks needed to run the test

taskIds A list of task IDs for running tests

results The final results of the test

history A list of final results of past tests

errorReason An error message generated when an error
occurs

nextRun The next scheduled run (for example,
2017-04-22 17:18:00)

scheduleRecurrence The recurrence of the test (for example,
daily, weekly, biweekly, monthly)

POST /scenarios/{testId}

Description

The POST /scenarios/{testId} operation allows you to cancel a specific test scenario.

Request parameter

testId

The unique ID of the test

Type: String

Required: Yes

POST /scenarios/{testId} 59

Distributed Load Testing on AWS Implementation Guide

Response

Name Description

status The status of the test

DELETE /scenarios/{testId}

Description

The DELETE /scenarios/{testId} operation allows you to delete all data related to a specific
test scenario.

Request parameter

testId

The unique ID of the test

Type: String

Required: Yes

Response

Name Description

status The status of the test

OPTIONS /scenarios/{testId}

Description

The OPTIONS /scenarios/{testId} operation provides a response for the request with the
correct CORS response headers.

DELETE /scenarios/{testId} 60

Distributed Load Testing on AWS Implementation Guide

Response

Name Description

testId The unique ID of the test

testName The name of the test

testDescription The description of the test

testType The type of test that is run (for example,
simple, jmeter)

fileType The type of file that is uploaded (for example,
none, script, zip)

status The status of the test

startTime The time and date when the last test started

endTime The time and date when the last test ended

testScenario The test definition including concurrency, test
time, host, and method for the test

taskCount The number of tasks needed to run the test

taskIds A list of task IDs for running tests

results The final results of the test

history A list of final results of past tests

errorReason An error message generated when an error
occurs

OPTIONS /scenarios/{testId} 61

Distributed Load Testing on AWS Implementation Guide

GET /tasks

Description

The GET /tasks operation allows you to retrieve a list of running Amazon Elastic Container
Service (Amazon ECS) tasks.

Response

Name Description

tasks A list of task IDs for running tests

OPTIONS /tasks

Description

The OPTIONS /tasks tasks operation provides a response for the request with the correct CORS
response headers.

Response

Name Description

taskIds A list of task IDs for running tests

GET /regions

Description

The GET /regions operation allows you to retrieve the regional resource information necessary
to run a test in that Region.

GET /tasks 62

Distributed Load Testing on AWS Implementation Guide

Response

Name Description

testId The Region ID

ecsCloudWatchLogGroup The name of the Amazon CloudWatch log
group for the Amazon Fargate tasks in the
Region

region The Region in which the resources in the table
exist

subnetA The ID of one of the subnets in the Region

subnetB The ID of one of the subnets in the Region

taskCluster The name of the AWS Fargate cluster in the
Region

taskDefinition The ARN of the task definition in the Region

taskImage The name of the task image in the Region

taskSecurityGroup The ID of the security group in the Region

OPTIONS /regions

Description

The OPTIONS /regions operation provides a response for the request with the correct CORS
response headers.

Response

Name Description

testId The Region ID

OPTIONS /regions 63

Distributed Load Testing on AWS Implementation Guide

Name Description

ecsCloudWatchLogGroup The name of the Amazon CloudWatch log
group for the Amazon Fargate tasks in the
Region

region The Region in which the resources in the table
exist

subnetA The ID of one of the subnets in the Region

subnetB The ID of one of the subnets in the Region

taskCluster The name of the AWS Fargate cluster in the
Region

taskDefinition The ARN of the task definition in the Region

taskImage The name of the task image in the Region

taskSecurityGroup The ID of the security group in the Region

Increase the container resources

To increase the number of users currently supported, increase the container resources. This allows
you to increase the CPUs and memory to handle the increase in concurrent users.

Create a new task definition revision

1. Sign in to the Amazon Elastic Container Service console.

2. In the left navigation menu, select Task Definitions.

3. Select the checkbox next to the task definition that corresponds to this solution. For example,
<stackName>-EcsTaskDefinition-<system-generated-random-Hash>.

4. Choose Create new revision.

5. On the Create new revision page, take the following actions:

a. Under Task size, modify the Task memory and the Task CPU.

Increase the container resources 64

https://console.aws.amazon.com/ecs/home

Distributed Load Testing on AWS Implementation Guide

b. Under Container Definitions, review the Hard/Soft memory limits. If this limit is lower than
your desired memory, choose the container.

c. In the Edit container dialog box, go to Memory Limits and update the Hard Limit to your
desired memory.

d. Choose Update.

6. On the Create new revision page, choose Create.

7. After the task definition is successfully created, record the name of the new task
definition. This name includes the version number, for example: <stackName>-
EcsTaskDefinition-<system-generated-random-Hash>:<system-generated-
versionNumber>.

Update the DynamoDB table

1. Navigate to the DynamoDB console.

2. From the left navigation pane, select Explore Items under Tables.

3. Select the scenarios-table DynamoDB table associated with this solution. For example,
<stackName>-DLTTestRunnerStorageDLTScenariosTable-<system-generated-
random-Hash>.

4. Select the item that corresponds to the Region in which you have modified the task definition.
For example, region-<region-name>.

5. Update the taskDefinition attribute with the new task definition.

Update the DynamoDB table 65

https://console.aws.amazon.com/dynamodb/home

Distributed Load Testing on AWS Implementation Guide

Reference

This section includes information about an optional feature for collecting unique metrics for this
solution, pointers to related resources, and a list of builders who contributed to this solution.

Anonymized data collection

This solution includes an option to send anonymized operational metrics to AWS. We use this data
to better understand how customers use this solution and related services and products. When
invoked, the following information is collected and sent to AWS:

• Solution ID - The AWS solution identifier

• Unique ID (UUID) - Randomly generated, unique identifier for each solution deployment

• Timestamp - Data-collection timestamp

• Test Type - The type of test that is run

• File Type - The type of file that is uploaded

• Task Count - The task count for each test submitted through the solution’s API

• Task Duration - The total run time for all tasks needed to run a test

• Test Result - The result of the test that was run

AWS owns the data gathered via this survey. Data collection is subject to the AWS Privacy Policy.
To opt out of this feature, complete the following steps before launching the AWS CloudFormation
template.

1. Download the AWS CloudFormation template to your local hard drive.

2. Open the AWS CloudFormation template with a text editor.

3. Modify the AWS CloudFormation template mapping section from:

Solution:
 Config:
 SendAnonymousData: "Yes"

to:

Solution:

Anonymized data collection 66

https://aws.amazon.com/privacy/
https://solutions-reference.s3.amazonaws.com/distributed-load-testing-on-aws/latest/distributed-load-testing-on-aws.template

Distributed Load Testing on AWS Implementation Guide

 Config:
 SendAnonymousData: "No"

4. Sign in to the AWS CloudFormation console.

5. Select Create stack.

6. On the Create stack page, Specify template section, select Upload a template file.

7. Under Upload a template file, choose Choose file and select the edited template from your
local drive.

8. Choose Next and follow the steps in Launch the stack in the Deploy the solution section of this
guide.

Contributors

• Tom Nightingale

• Fernando Dingler

• Beomseok Lee

• George Lenz

• Erin McGill

• Dimitri Lopez

• Kamyar Ziabari

• Bassem Wanis

• Garvit Singh

• Nikhil Reddy

Contributors 67

https://console.aws.amazon.com/cloudformation/home

Distributed Load Testing on AWS Implementation Guide

Revisions

Date Change

November 2019 Initial release

September 2020 Release version 1.1.0: Replaced Amazon SQS with AWS
Step Functions and updated the architecture diagram and
components information to detail the changed AWS service;
added support for JMeter scripts; for more information, refer
to the CHANGELOG.md file in the GitHub repository.

December 2020 Release version 1.2.0: Added Amazon ECR checker to AWS
Step Functions; added support for zip file uploads for JMeter,
enabling the ability to use JMeter plugins; for more informati
on, refer to the CHANGELOG.md file in the GitHub repository.

April 2021 Release version 1.3.0: Added support for running concurrent
tests; added support for starting tests simultaneously across
tasks belonging to the same test; added support for schedulin
g tests; increased task limit to 1,000 tasks; removed concurrent
users limit; for more information, refer to the CHANGELOG.md
file in the GitHub repository.

September 2021 Release version 2.0.0: Added support to view complete test
configuration, test data, and Amazon CloudWatch dashboard
from previous test runs; the solution container image is
now managed by AWS, removing the requirement to create
AWS CodePipeline, AWS CodeBuild, and Amazon ECR image
repository in the customer account; updated the CloudWatc
h dashboard to show maximum data points; added support
for an existing Amazon VPC; propagated CloudFormation
tags to Fargate tasks; Fargate tasks for tests are launched in
multiple availability zones. For more information, refer to the
CHANGELOG.md file in the GitHub repository.

68

https://github.com/aws-solutions/distributed-load-testing-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/distributed-load-testing-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/distributed-load-testing-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/distributed-load-testing-on-aws/blob/main/CHANGELOG.md

Distributed Load Testing on AWS Implementation Guide

Date Change

December 2021 Release version 2.0.1: Updated AWS SDK version in developme
nt dependencies for AWS Lambda functions; resolved issue
with displaying a large number of tests; resolved Validatio
nException error with DynamoDB. For more information, refer
to the CHANGELOG.md file in the GitHub repository.

August 2022 Release version 3.0.0: Updated to AWS CDK V2, added multi-
Region functionality, added live date functionality, added
JMeter extensions compatibility, and additional enhancements
and bug fixes. For more information, refer to the CHANGELOG
.md file in the GitHub repository.

November 2022 Release version 3.1.0: Added AppRegistry support for the
solution. For more information, refer to the CHANGELOG.md
file in the GitHub repository.

November 2022 Release version 3.1.1: Bug fix. For more information, refer to
the CHANGELOG.md file in the GitHub repository.

March 2023 Release version 3.2.0: Updated task limiting to be based on
account quota, added auto-refresh functionality, added linting
and consistent formatting, upgraded to bootstrap 5, and
implemented minor bug fixes. For more information, refer to
the CHANGELOG.md file in the GitHub repository.

April 2023 Release version 3.2.1: Mitigated impact caused by new default
settings for S3 Object Ownership (ACLs disabled) for all new S3
buckets. For more information, refer to the CHANGELOG.md
file in the GitHub repository.

July 2023 Release version 3.2.2: Updated to react-scripts v5.0.1;
other bug fixes and minor updates. For more information, refer
to the CHANGELOG.md file in the GitHub repository.

August 2023 Documentation update: Added AWS Support section for
contacting support.

69

https://github.com/aws-solutions/distributed-load-testing-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/distributed-load-testing-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/distributed-load-testing-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/distributed-load-testing-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/distributed-load-testing-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/distributed-load-testing-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/distributed-load-testing-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/distributed-load-testing-on-aws/blob/main/CHANGELOG.md

Distributed Load Testing on AWS Implementation Guide

Date Change

October 2023 Release version 3.2.3: Updated CDK libraries and Docker image,
other bug fixes and security updates. For more information,
refer to the CHANGELOG.md file in the GitHub repository.

November 2023 Documentation update: Added AWS Developer Support and
merged Contact AWS Support into the Troubleshooting
section.

November 2023 Release version 3.2.4: Updated Lambda runtimes to use
Node.js 18, updated Taurus image to version 1.16.26, updated
JMeter and Taurus dependencies within the Docker image to
enhance the security of the Docker image, and additional bug
fixes. For more information, refer to the CHANGELOG.md file in
the GitHub repository.

November 2023 Documentation update: Added the section called “Confirm
cost tags associated with the solution” to the Monitoring the
solution with AWS Service Catalog AppRegistry section.

January 2024 Release version 3.2.5: Bug fix to resolve issues with automatic
 plugins installation. For more information, refer to the
CHANGELOG.md file in the GitHub repository.

March 2024 Release version 3.2.6: Bug fix to resolves issues with enabled
tag resource authentication in ECS. Updating version of taurus,
react, chart.js, amplify, amplify/ui-react. For more information,
refer to the CHANGELOG.md file in the GitHub repository.

March 2024 Release version 3.2.7: Updated Changelog to include informati
on on previous release. Added package-lock.json. For more
information, refer to the CHANGELOG.md file in the GitHub
repository.

70

https://github.com/aws-solutions/distributed-load-testing-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/distributed-load-testing-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/distributed-load-testing-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/distributed-load-testing-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/distributed-load-testing-on-aws/blob/main/CHANGELOG.md

Distributed Load Testing on AWS Implementation Guide

Date Change

April 2024 Release version 3.2.8: Updated packages to resolve vulnerabi
lities in npm packages and in docker image. Bug fix to resolve
issues with scheduling. For more information, refer to the
CHANGELOG.md file in the GitHub repository.

June 2024 Release version 3.2.9: Patch update to mitigate security
vulnerabilities. For more information, refer to the CHANGELOG
.md file in the GitHub repository.

August 2024 Release version 3.2.10: Patch update to mitigate security
vulnerabilities. For more information, refer to the CHANGELOG
.mdfile in the GitHub repository.

August 2024 Release version 3.2.11: Patch update to mitigate security
vulnerabilities. For more information, refer to the CHANGELOG
.md file in the GitHub repository.

September 2024 Release 3.3.0: Added cron scheduling, updated CDK libraries,
and updated collection of anonymized metrics. Added bug and
security fixes. For more information, refer to the CHANGELOG
.md file in the GitHub repository.

October 2024 Release 3.3.1: Security and bug fixes. For more information,
refer to the CHANGELOG.md file in the GitHub repository.

November 2024 Release 3.3.2: Security and bug fixes. For more information,
refer to the CHANGELOG.md file in the GitHub repository.

71

https://github.com/aws-solutions/distributed-load-testing-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/distributed-load-testing-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/distributed-load-testing-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/distributed-load-testing-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/distributed-load-testing-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/distributed-load-testing-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/distributed-load-testing-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/distributed-load-testing-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/distributed-load-testing-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/distributed-load-testing-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/distributed-load-testing-on-aws/blob/main/CHANGELOG.md

Distributed Load Testing on AWS Implementation Guide

Notices

Customers are responsible for making their own independent assessment of the information in
this document. This document: (a) is for informational purposes only, (b) represents AWS current
product offerings and practices, which are subject to change without notice, and (c) does not create
any commitments or assurances from AWS and its affiliates, suppliers, or licensors. AWS products
or services are provided “as is” without warranties, representations, or conditions of any kind,
whether express or implied. AWS responsibilities and liabilities to its customers are controlled by
AWS agreements, and this document is not part of, nor does it modify, any agreement between
AWS and its customers.

Distributed Load Testing on AWS is licensed under the terms of the Apache License Version 2.0
available at The Apache Software Foundation.

72

https://www.apache.org/licenses/LICENSE-2.0

	Distributed Load Testing on AWS
	Table of Contents
	Automate the testing of your software applications at scale
	Features
	Benefits
	Use cases
	Concepts and definitions

	Architecture overview
	Architecture diagram
	AWS Well-Architected design considerations
	Operational excellence
	Security
	Reliability
	Performance efficiency
	Cost optimization
	Sustainability

	Architecture details
	Front end
	Load testing API
	Web console

	Backend
	Container image pipeline
	Testing infrastructure
	Load testing engine

	AWS services in this solution
	How Distributed Load Testing on AWS works
	Design considerations
	Supported applications
	JMeter script support
	Scheduling tests
	Concurrent tests
	User management
	Regional deployment

	Plan your deployment
	Cost
	Security
	IAM roles
	Amazon CloudFront
	AWS Fargate security group
	Network stress test
	Restricting access to the public user interface

	Supported AWS Regions
	Quotas
	Quotas for AWS services in this solution
	AWS CloudFormation quotas
	Load testing quotas
	Concurrent tests
	Amazon EC2 testing policy
	Amazon CloudFront load testing policy

	Deploy the solution
	Deployment process overview
	AWS CloudFormation template
	Launch the stack
	Multi-Region deployment

	Monitor the solution with Service Catalog AppRegistry
	Activate CloudWatch Application Insights
	Confirm cost tags associated with the solution
	Activate cost allocation tags associated with the solution
	AWS Cost Explorer

	Update the solution
	When updating from DLT versions older than v3.2.6 to latest, updating the stack fails

	Troubleshooting
	Known issue resolution
	Contact AWS Support
	Create case
	How can we help?
	Additional information
	Help us resolve your case faster
	Solve now or contact us

	Uninstall the solution
	Using the AWS Management Console
	Using AWS Command Line Interface
	Deleting the Amazon S3 buckets

	Use the solution
	Test results
	Test scheduling workflow
	Determine the number of users
	Live data
	Test cancellation workflow

	Developer guide
	Source code
	Container image customization
	Distributed load testing API
	GET /scenarios
	Description
	Response

	POST /scenarios
	Description
	Request body
	Response

	OPTIONS /scenarios
	Description
	Response

	GET /scenarios/{testId}
	Description
	Request parameter
	Response

	POST /scenarios/{testId}
	Description
	Request parameter
	Response

	DELETE /scenarios/{testId}
	Description
	Request parameter
	Response

	OPTIONS /scenarios/{testId}
	Description
	Response

	GET /tasks
	Description
	Response

	OPTIONS /tasks
	Description
	Response

	GET /regions
	Description
	Response

	OPTIONS /regions
	Description
	Response

	Increase the container resources
	Create a new task definition revision
	Update the DynamoDB table

	Reference
	Anonymized data collection
	Contributors

	Revisions
	Notices

