
Astra Trident 22.04 documentation

Astra Trident
NetApp
December 03, 2024

This PDF was generated from https://docs.netapp.com/us-en/trident-2204/index.html on December 03,
2024. Always check docs.netapp.com for the latest.

Table of Contents

Astra Trident 22.04 documentation . 1

Release Notes . 2

What’s new in 22.04 . 2

Changes in 22.01.1 . 3

Changes in 22.01.0 . 3

Changes in 21.10.1 . 3

Changes in 21.10.0 . 4

Known issues . 5

Find more information . 5

Concepts . 6

Intro to Astra Trident . 6

ONTAP drivers . 7

Provisioning . 7

Volume snapshots . 8

Virtual storage pools. 8

Volume access groups . 10

Get started . 11

Try it out . 11

Requirements . 11

Deployment overview. 15

Deploy with Trident operator . 18

Deploy with tridentctl . 27

What’s next?. 30

Manage Astra Trident . 36

Upgrade Astra Trident . 36

Upgrade with the operator . 37

Upgrade with tridentctl . 45

Uninstall Astra Trident . 48

Downgrade Astra Trident . 50

Use Astra Trident . 54

Configure backends . 54

Create backends with kubectl. 118

Perform backend management with kubectl . 125

Perform backend management with tridentctl . 126

Move between backend management options. 127

Manage storage classes . 134

Perform volume operations . 136

Prepare the worker node . 162

Automatic worker node preparation . 166

Monitor Astra Trident . 166

Astra Trident for Docker . 171

Prerequisites for deployment . 171

Deploy Astra Trident. 174

Upgrade or uninstall Astra Trident . 178

Work with volumes . 180

Collect logs. 189

Manage multiple Astra Trident instances . 190

Storage configuration options . 191

Known issues and limitations . 205

Frequently asked questions . 207

General questions . 207

Install and use Astra Trident on a Kubernetes cluster . 207

Troubleshooting and support . 209

Upgrade Astra Trident . 210

Manage backends and volumes . 210

Support. 215

Troubleshooting . 216

General troubleshooting. 216

Troubleshooting an unsuccessful Trident deployment using the operator . 217

Troubleshooting an unsuccessful Trident deployment using tridentctl. 219

Best practices and recommendations . 221

Deployment . 221

Storage configuration . 221

Integrate Astra Trident . 228

Data protection. 238

Security . 243

Reference. 245

Astra Trident ports . 245

Astra Trident REST API . 245

Command-line options . 246

NetApp products integrated with Kubernetes. 247

Kubernetes and Trident objects . 248

tridentctl commands and options . 259

Earlier versions of documentation . 265

Legal notices . 266

Copyright . 266

Trademarks . 266

Patents . 266

Privacy policy . 266

Open source. 266

Astra Trident 22.04 documentation

1

Release Notes
Release Notes provide information about new features, enhancements, and bug fixes in the latest version of

Astra Trident.

The tridentctl binary for Linux that is provided in the installer zip file is the tested and

supported version. Be aware that the macos binary provided in the /extras part of the zip file

is not tested or supported.

What’s new in 22.04

NetApp is continually improving and enhancing its products and services. Here are some of the latest features

in Astra Trident. For previous releases, see Earlier versions of documentation.

If you are upgrading from any previous Trident release and use Azure NetApp Files, the

location config parameter is now a mandatory, singleton field.

Fixes

• Improved parsing of iSCSI initiator names. (Issue [#681](https://github.com/NetApp/trident/issues/681))

• Fixed issue where CSI storage class parameters weren’t allowed. (Issue [#598](https://github.com/NetApp/

trident/issues/598))

• Fixed duplicate key declaration in Trident CRD. (Issue [#671](https://github.com/NetApp/trident/issues/

671))

• Fixed inaccurate CSI Snapshot logs. (Issue [#629](https://github.com/NetApp/trident/issues/629))

• Fixed issue with unpublishing volumes on deleted nodes. (Issue [#691](https://github.com/NetApp/trident/

issues/691))

• Added handling of filesystem inconsistencies on block devices. (Issue [#656](https://github.com/NetApp/

trident/issues/656))

• Fixed issue pulling auto-support images when setting the imageRegistry flag during installation. (Issue

[#715](https://github.com/NetApp/trident/issues/715))

• Fixed issue where ANF driver failed to clone a volume with multiple export rules.

Enhancements

• Inbound connections to Trident’s secure endpoints now require a minimum of TLS 1.3. (Issue

[#698](https://github.com/NetApp/trident/issues/698))

• Trident now adds HSTS headers to responses from its secure endpoints.

• Trident now attempts to enable the Azure NetApp Files unix permissions feature automatically.

• Kubernetes: Trident daemonset now runs at system-node-critical priority class. (Issue

[#694](https://github.com/NetApp/trident/issues/694))

Removals

E-Series driver (disabled since 20.07) has been removed.

2

https://docs.netapp.com/us-en/trident/earlier-versions.html
https://github.com/NetApp/trident/issues/681
https://github.com/NetApp/trident/issues/598
https://github.com/NetApp/trident/issues/598
https://github.com/NetApp/trident/issues/671
https://github.com/NetApp/trident/issues/671
https://github.com/NetApp/trident/issues/629
https://github.com/NetApp/trident/issues/691
https://github.com/NetApp/trident/issues/691
https://github.com/NetApp/trident/issues/656
https://github.com/NetApp/trident/issues/656
https://github.com/NetApp/trident/issues/715
https://github.com/NetApp/trident/issues/698
https://github.com/NetApp/trident/issues/694

Changes in 22.01.1

Fixes

• Fixed issue with unpublishing volumes on deleted nodes. (GitHub issue #691)

• Fixed panic when accessing nil fields for aggregate space in ONTAP API responses.

Changes in 22.01.0

Fixes

• Kubernetes: Increase node registration backoff retry time for large clusters.

• Fixed issue where azure-netapp-files driver could be confused by multiple resources with the same name.

• ONTAP SAN IPv6 Data LIFs now work if specified with brackets.

• Fixed issue where attempting to import an already imported volume returns EOF leaving PVC in pending

state. (GitHub issue #489)

• Fixed issue when Astra Trident performance slows down when > 32 snapshots are created on a SolidFire

volume.

• Replaced SHA-1 with SHA-256 in SSL certificate creation.

• Fixed ANF driver to allow duplicate resource names and limit operations to a single location.

• Fixed ANF driver to allow duplicate resource names and limit operations to a single location.

Enhancements

• Kubernetes enhancements:

◦ Added support for Kubernetes 1.23.

◦ Add scheduling options for Trident pods when installed via Trident Operator or Helm. (GitHub issue

#651)

• Allow cross-region volumes in GCP driver. (GitHub issue #633)

• Added support for 'unixPermissions' option to ANF volumes. (GitHub issue #666)

Deprecations

Trident REST interface can listen and serve only at 127.0.0.1 or [::1] addresses

Changes in 21.10.1

The v21.10.0 release has an issue that can put the Trident controller into a CrashLoopBackOff

state when a node is removed and then added back to the Kubernetes cluster. This issue is

fixed in v21.10.1 (GitHub issue 669).

Fixes

• Fixed potential race condition when importing a volume on a GCP CVS backend resulting in failure to

import.

3

https://github.com/NetApp/trident/issues/691
https://github.com/NetApp/trident/issues/489
https://github.com/NetApp/trident/issues/651
https://github.com/NetApp/trident/issues/651
https://github.com/NetApp/trident/issues/633
https://github.com/NetApp/trident/issues/666

• Fixed an issue that can put the Trident controller into a CrashLoopBackOff state when a node is removed

and then added back to the Kubernetes cluster (GitHub issue 669).

• Fixed issue where SVMs were no longer discovered if no SVM name was specified (GitHub issue 612).

Changes in 21.10.0

Fixes

• Fixed issue where clones of XFS volumes could not be mounted on the same node as the source volume

(GitHub issue 514).

• Fixed issue where Astra Trident logged a fatal error on shutdown (GitHub issue 597).

• Kubernetes-related fixes:

◦ Return a volume’s used space as the minimum restoreSize when creating snapshots with ontap-nas

and ontap-nas-flexgroup drivers (GitHub issue 645).

◦ Fixed issue where Failed to expand filesystem error was logged after volume resize (GitHub

issue 560).

◦ Fixed issue where a pod could get stuck in Terminating state (GitHub issue 572).

◦ Fixed the case where an ontap-san-economy FlexVol might be full of snapshot LUNs (GitHub issue

533).

◦ Fixed custom YAML installer issue with different image (GitHub issue 613).

◦ Fixed snapshot size calculation (GitHub issue 611).

◦ Fixed issue where all Astra Trident installers could identify plain Kubernetes as OpenShift (GitHub

issue 639).

◦ Fixed the Trident operator to stop reconciliation if the Kubernetes API server is unreachable (GitHub

issue 599).

Enhancements

• Added support for unixPermissions option to GCP-CVS Performance volumes.

• Added support for scale-optimized CVS volumes in GCP in the range 600 GiB to 1 TiB.

• Kubernetes-related enhancements:

◦ Added support for Kubernetes 1.22.

◦ Enabled the Trident operator and Helm chart to work with Kubernetes 1.22 (GitHub issue 628).

◦ Added operator image to tridentctl images command (GitHub issue 570).

Experimental enhancements

• Added support for volume replication in the ontap-san driver.

• Added tech preview REST support for the ontap-nas-flexgroup, ontap-san, and ontap-nas-

economy drivers.

4

Known issues

Known issues identify problems that might prevent you from using the product successfully.

• Astra Trident now enforces a blank fsType (fsType="") for volumes that do not have the fsType

specified in their StorageClass. When working with Kubernetes 1.17 or later, Trident supports providing a

blank fsType for NFS volumes. For iSCSI volumes, you are required to set the fsType on your

StorageClass when enforcing an fsGroup using a Security Context.

• When using a backend across multiple Astra Trident instances, each backend configuration file should

have a different storagePrefix value for ONTAP backends or use a different TenantName for SolidFire

backends. Astra Trident cannot detect volumes that other instances of Astra Trident have created.

Attempting to create an existing volume on either ONTAP or SolidFire backends succeeds, because Astra

Trident treats volume creation as an idempotent operation. If storagePrefix or TenantName do not

differ, there might be name collisions for volumes created on the same backend.

• When installing Astra Trident (using tridentctl or the Trident Operator) and using tridentctl to

manage Astra Trident, you should ensure the KUBECONFIG environment variable is set. This is necessary

to indicate the Kubernetes cluster that tridentctl should work against. When working with multiple

Kubernetes environments, you should ensure that the KUBECONFIG file is sourced accurately.

• To perform online space reclamation for iSCSI PVs, the underlying OS on the worker node might require

mount options to be passed to the volume. This is true for RHEL/RedHat CoreOS instances, which require

the discard mount option; ensure that the discard mountOption is included in your StorageClass to

support online block discard.

• If you have more than one instance of Astra Trident per Kubernetes cluster, Astra Trident cannot

communicate with other instances and cannot discover other volumes that they have created, which leads

to unexpected and incorrect behavior if more than one instance runs within a cluster. There should be only

one instance of Astra Trident per Kubernetes cluster.

• If Astra Trident-based StorageClass objects are deleted from Kubernetes while Astra Trident is offline,

Astra Trident does not remove the corresponding storage classes from its database when it comes back

online. You should delete these storage classes using tridentctl or the REST API.

• If a user deletes a PV provisioned by Astra Trident before deleting the corresponding PVC, Astra Trident

does not automatically delete the backing volume. You should remove the volume via tridentctl or the

REST API.

• ONTAP cannot concurrently provision more than one FlexGroup at a time unless the set of aggregates are

unique to each provisioning request.

• When using Astra Trident over IPv6, you should specify managementLIF and dataLIF in the backend

definition within square brackets. For example, [fd20:8b1e:b258:2000:f816:3eff:feec:0].

• If using the solidfire-san driver with OpenShift 4.5, ensure that the underlying worker nodes use MD5

as the CHAP authentication algorithm.

Find more information

• Astra Trident GitHub

• Astra Trident blogs

5

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/discarding-unused-blocks_managing-file-systems
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://github.com/NetApp/trident
https://netapp.io/persistent-storage-provisioner-for-kubernetes/

Concepts

Intro to Astra Trident

Astra Trident is a fully supported open source project maintained by NetApp as part of the Astra product family.

It has been designed to help you meet your containerized applications’ persistence demands using industry-

standard interfaces, such as the Container Storage Interface (CSI).

Astra Trident deploys in Kubernetes clusters as pods and provides dynamic storage orchestration services for

your Kubernetes workloads. It enables your containerized applications to quickly and easily consume

persistent storage from NetApp’s broad portfolio that includes ONTAP (AFF/FAS/Select/Cloud/Amazon FSx for

NetApp ONTAP), Element software (NetApp HCI/SolidFire), Astra Data Store, as well as the Azure NetApp

Files service, and Cloud Volumes Service on Google Cloud.

Astra Trident is also a foundational technology for NetApp’s Astra, which addresses your data protection,

disaster recovery, portability, and migration use cases for Kubernetes workloads leveraging NetApp’s industry-

leading data management technology for snapshots, backups, replication, and cloning.

Supported Kubernetes cluster architectures

Astra Trident is supported with the following Kubernetes architectures:

Kubernetes cluster architectures Supported Default install

Single master, compute Yes Yes

Multiple master, compute Yes Yes

Master, etcd, compute Yes Yes

Master, infrastructure, compute Yes Yes

What is Astra?

Astra makes it easier for enterprises to manage, protect, and move their data-rich containerized workloads

running on Kubernetes within and across public clouds and on-premises. Astra provisions and provides

persistent container storage using Astra Trident from NetApp’s proven and expansive storage portfolio in the

public cloud and on-premises. It also offers a rich set of advanced application-aware data management

functionality, such as snapshot, backup and restore, activity logs, and active cloning for data protection,

disaster/data recovery, data audit, and migration use-cases for Kubernetes workloads.

You can sign up for a free trial on the Astra page.

For more information

• NetApp Astra product family

• Astra Control Service documentation

• Astra Control Center documentation

• Astra Data Store documentation

6

https://docs.netapp.com/us-en/astra-family/intro-family.html
https://docs.netapp.com/us-en/astra-family/intro-family.html
https://docs.netapp.com/us-en/astra/get-started/intro.html
https://docs.netapp.com/us-en/astra-control-center/index.html
https://docs.netapp.com/us-en/astra-data-store/index.html

• Astra API documentation

ONTAP drivers

Astra Trident provides five unique ONTAP storage drivers for communicating with ONTAP clusters. Learn more

about how each driver handles the creation of volumes and access control and their capabilities.

Driver Protocol VolumeMode Access modes

supported

File systems

supported

ontap-nas NFS Filesystem RWO,RWX,ROX "", nfs

ontap-nas-

economy

NFS Filesystem RWO,RWX,ROX "", nfs

ontap-nas-

flexgroup

NFS Filesystem RWO,RWX,ROX "", nfs

ontap-san iSCSI Block RWO,ROX,RWX No Filesystem. Raw

block device

ontap-san iSCSI Filesystem RWO,ROX xfs, ext3, ext4

ontap-san-

economy

iSCSI Block RWO,ROX,RWX No Filesystem. Raw

block device

ontap-san-

economy

iSCSI Filesystem RWO,ROX xfs, ext3, ext4

ONTAP backends can be authenticated by using login credentials for a security role

(username/password) or using the private key and the certificate that is installed on the ONTAP

cluster. You can update existing backends to move from one authentication mode to the other

with tridentctl update backend.

Provisioning

Provisioning in Astra Trident has two primary phases. The first phase associates a storage class with the set of

suitable backend storage pools and occurs as a necessary preparation before provisioning. The second phase

includes the volume creation itself and requires choosing a storage pool from those associated with the

pending volume’s storage class.

Associating backend storage pools with a storage class relies on both the storage class’s requested attributes

and its storagePools, additionalStoragePools, and excludeStoragePools lists. When you create a

storage class, Trident compares the attributes and pools offered by each of its backends to those requested by

the storage class. If a storage pool’s attributes and name match all of the requested attributes and pool names,

Astra Trident adds that storage pool to the set of suitable storage pools for that storage class. In addition, Astra

Trident adds all storage pools listed in the additionalStoragePools list to that set, even if their attributes

do not fulfill all or any of the storage class’s requested attributes. You should use the excludeStoragePools

list to override and remove storage pools from use for a storage class. Astra Trident performs a similar process

every time you add a new backend, checking whether its storage pools satisfy those of the existing storage

classes and removing any that have been marked as excluded.

7

https://docs.netapp.com/us-en/astra-automation/get-started/before_get_started.html

Astra Trident then uses the associations between storage classes and storage pools to determine where to

provision volumes. When you create a volume, Astra Trident first gets the set of storage pools for that volume’s

storage class, and, if you specify a protocol for the volume, Astra Trident removes those storage pools that

cannot provide the requested protocol (for example, a NetApp HCI/SolidFire backend cannot provide a file-

based volume while an ONTAP NAS backend cannot provide a block-based volume). Astra Trident randomizes

the order of this resulting set, to facilitate an even distribution of volumes, and then iterates through it,

attempting to provision the volume on each storage pool in turn. If it succeeds on one, it returns successfully,

logging any failures encountered in the process. Astra Trident returns a failure only if it fails to provision on all

the storage pools available for the requested storage class and protocol.

Volume snapshots

Learn more about how Astra Trident handles the creation of volume snapshots for its drivers.

• For the ontap-nas, ontap-san, gcp-cvs, and azure-netapp-files drivers, each Persistent Volume

(PV) maps to a FlexVol. As a result, volume snapshots are created as NetApp snapshots. NetApp’s

snapshot technology delivers more stability, scalability, recoverability, and performance than competing

snapshot technologies. These snapshot copies are extremely efficient both in the time needed to create

them and in storage space.

• For the ontap-nas-flexgroup driver, each Persistent Volume (PV) maps to a FlexGroup. As a result,

volume snapshots are created as NetApp FlexGroup snapshots. NetApp’s snapshot technology delivers

more stability, scalability, recoverability, and performance than competing snapshot technologies. These

snapshot copies are extremely efficient both in the time needed to create them and in storage space.

• For the ontap-san-economy driver, PVs map to LUNs created on shared FlexVols. VolumeSnapshots of

PVs are achieved by performing FlexClones of the associated LUN. ONTAP’s FlexClone technology makes

it possible to create copies of even the largest datasets almost instantaneously. Copies share data blocks

with their parents, consuming no storage except what is required for metadata.

• For the solidfire-san driver, each PV maps to a LUN created on the NetApp Element software/NetApp

HCI cluster. VolumeSnapshots are represented by Element snapshots of the underlying LUN. These

snapshots are point-in-time copies and only take up a small amount of system resources and space.

• When working with the ontap-nas and ontap-san drivers, ONTAP snapshots are point-in-time copies of

the FlexVol and consume space on the FlexVol itself. This can result in the amount of writable space in the

volume to reduce with time as snapshots are created/scheduled. One simple way of addressing this is to

grow the volume by resizing through Kubernetes. Another option is to delete snapshots that are no longer

required. When a VolumeSnapshot created through Kubernetes is deleted, Astra Trident will delete the

associated ONTAP snapshot. ONTAP snapshots that were not created through Kubernetes can also be

deleted.

With Astra Trident, you can use VolumeSnapshots to create new PVs from them. Creating PVs from these

snapshots is performed by using the FlexClone technology for supported ONTAP and CVS backends. When

creating a PV from a snapshot, the backing volume is a FlexClone of the snapshot’s parent volume. The

solidfire-san driver uses Element software volume clones to create PVs from snapshots. Here it creates a

clone from the Element snapshot.

Virtual storage pools

Virtual storage pools provide a layer of abstraction between Astra Trident’s storage backends and Kubernetes'

StorageClasses. They allow an administrator to define aspects, such as location, performance, and

protection for each backend in a common, backend-agnostic way without making a StorageClass specify

which physical backend, backend pool, or backend type to use to meet desired criteria.

8

The storage administrator can define virtual storage pools on any of the Astra Trident backends in a JSON or

YAML definition file.

Any aspect specified outside the virtual pools list is global to the backend and will apply to all the virtual pools,

while each virtual pool might specify one or more aspects individually (overriding any backend-global aspects).

When defining virtual storage pools, do not attempt to rearrange the order of existing virtual

pools in a backend definition.

It is also advisable to not edit/modify attributes for an existing virtual pool and define a new

virtual pool instead.

Most aspects are specified in backend-specific terms. Crucially, the aspect values are not exposed outside the

backend’s driver and are not available for matching in StorageClasses. Instead, the administrator defines

one or more labels for each virtual pool. Each label is a key:value pair, and labels might be common across

unique backends. Like aspects, labels can be specified per-pool or global to the backend. Unlike aspects,

which have predefined names and values, the administrator has full discretion to define label keys and values

as needed.

A StorageClass identifies which virtual pool to use by referencing the labels within a selector parameter.

Virtual pool selectors support the following operators:

Operator Example A pool’s label value must:

= performance=premium Match

!= performance!=extreme Not match

in location in (east, west) Be in the set of values

9

Operator Example A pool’s label value must:

notin performance notin (silver, bronze) Not be in the set of values

<key> protection Exist with any value

!<key> !protection Not exist

Volume access groups

Learn more about how Astra Trident uses volume access groups.

Ignore this section if you are using CHAP, which is recommended to simplify management and

avoid the scaling limit described below. In addition, if you are using Astra Trident in CSI mode,

you can ignore this section. Astra Trident uses CHAP when installed as an enhanced CSI

provisioner.

Astra Trident can use volume access groups to control access to the volumes that it provisions. If CHAP is

disabled, it expects to find an access group called trident unless you specify one or more access group IDs

in the configuration.

While Astra Trident associates new volumes with the configured access group(s), it does not create or

otherwise manage access groups themselves. The access group(s) must exist before the storage backend is

added to Astra Trident, and they need to contain the iSCSI IQNs from every node in the Kubernetes cluster

that could potentially mount the volumes provisioned by that backend. In most installations, that includes every

worker node in the cluster.

For Kubernetes clusters with more than 64 nodes, you should use multiple access groups. Each access group

may contain up to 64 IQNs, and each volume can belong to four access groups. With the maximum four

access groups configured, any node in a cluster up to 256 nodes in size will be able to access any volume. For

latest limits on volume access groups, see here.

If you’re modifying the configuration from one that is using the default trident access group to one that uses

others as well, include the ID for the trident access group in the list.

10

https://docs.netapp.com/us-en/element-software/concepts/concept_solidfire_concepts_volume_access_groups.html
https://docs.netapp.com/us-en/element-software/concepts/concept_solidfire_concepts_volume_access_groups.html

Get started

Try it out

NetApp provides a ready-to-use lab image that you can request through NetApp Test Drive. The Test Drive

provides you with a sandbox environment that comes with a three-node Kubernetes cluster and Astra Trident

installed and configured. It is a great way to familiarize yourself with Astra Trident and explore its features.

Another option is to see the kubeadm Install Guide provided by Kubernetes.

You should not use the Kubernetes cluster that you build using these instructions in production.

Use the production deployment guides provided by your distribution for creating clusters that are

production ready.

If this is the first time you’re using Kubernetes, familiarize yourself with the concepts and tools here.

Requirements

Get started by reviewing the supported frontends, backends, and host configuration.

To learn about the ports that Astra Trident uses, see here.

Supported frontends (orchestrators)

Astra Trident supports multiple container engines and orchestrators, including the following:

• Anthos On-Prem (VMware) and Anthos on bare metal 1.9, 1.10, 1.11

• Kubernetes 1.18 - 1.24

• Mirantis Kubernetes Engine 3.4

• OpenShift 4.7, 4.8, 4.9, 4.10

The Trident operator is supported with these releases:

• Anthos On-Prem (VMware) and Anthos on bare metal 1.9, 1.10, 1.11

• Kubernetes 1.18 - 1.24

• OpenShift 4.7, 4.8, 4.9, 4.10

Astra Trident also works with a host of other fully-managed and self-managed Kubernetes offerings, including

Google Kubernetes Engine (GKE), Amazon Elastic Kubernetes Services (EKS), Azure Kubernetes Service

(AKS), Rancher, and VMWare Tanzu Portfolio.

Supported backends (storage)

To use Astra Trident, you need one or more of the following supported backends:

• Amazon FSx for NetApp ONTAP

• Azure NetApp Files

• Astra Data Store

11

https://www.netapp.com/us/try-and-buy/test-drive/index.aspx
https://kubernetes.io/docs/setup/independent/install-kubeadm/
https://kubernetes.io/docs/home/
https://docs.netapp.com/us-en/trident-2204/trident-reference/trident-ports.html

• Cloud Volumes ONTAP

• Cloud Volumes Service for GCP

• FAS/AFF/Select 9.3 or later

• NetApp All SAN Array (ASA)

• NetApp HCI/Element software 11 or later

Feature requirements

The table below summarizes the features available with this release of

Astra Trident and the versions of Kubernetes it supports.

Feature Kubernetes version Feature gates required?

CSI Trident 1.18 - 1.24 No

Volume Snapshots 1.18 - 1.24 No

PVC from Volume Snapshots 1.18 - 1.24 No

iSCSI PV resize 1.18 - 1.24 No

ONTAP Bidirectional CHAP 1.18 - 1.24 No

Dynamic Export Policies 1.18 - 1.24 No

Trident Operator 1.18 - 1.24 No

Auto Worker Node Prep (beta) 1.18 - 1.24 No

CSI Topology 1.18 - 1.24 No

Tested host operating systems

By default, Astra Trident runs in a container and will, therefore, run on any Linux worker. However, those

workers need to be able to mount the volumes that Astra Trident provides using the standard NFS client or

iSCSI initiator, depending on the backends you are using.

Though Astra Trident does not officially "support" specific operating systems, the following Linux distributions

are known to work:

• RedHat CoreOS (RHCOS) versions as supported by OpenShift Container Platform

• RHEL or CentOS 7.4 or later

• Ubuntu 18.04 or later

The tridentctl utility also runs on any of these distributions of Linux.

12

Host configuration

Depending on the backend(s) in use, NFS and/or iSCSI utilities should be installed on all of the workers in the

cluster. See here for more information.

Storage system configuration

Astra Trident might require some changes to a storage system before a backend configuration can use it. See

here for details.

Container images and corresponding Kubernetes versions

For air-gapped installations, the following list is a reference of container images needed to install Astra Trident.

Use the tridentctl images command to verify the list of needed container images.

Kubernetes version Container image

v1.18.0 • netapp/trident:22.04.0

• netapp/trident-autosupport:22.04

• k8s.gcr.io/sig-storage/csi-provisioner:v2.2.2

• k8s.gcr.io/sig-storage/csi-attacher:v3.4.0

• k8s.gcr.io/sig-storage/csi-resizer:v1.4.0

• k8s.gcr.io/sig-storage/csi-snapshotter:v3.0.3

• k8s.gcr.io/sig-storage/csi-node-driver-

registrar:v2.5.0

• netapp/trident-operator:22.04.0 (optional)

v1.19.0 • netapp/trident:22.04.0

• netapp/trident-autosupport:22.04

• k8s.gcr.io/sig-storage/csi-provisioner:v2.2.2

• k8s.gcr.io/sig-storage/csi-attacher:v3.4.0

• k8s.gcr.io/sig-storage/csi-resizer:v1.4.0

• k8s.gcr.io/sig-storage/csi-snapshotter:v3.0.3

• k8s.gcr.io/sig-storage/csi-node-driver-

registrar:v2.5.0

• netapp/trident-operator:22.04.0 (optional)

13

Kubernetes version Container image

v1.20.0 • netapp/trident:22.04.0

• netapp/trident-autosupport:22.04

• k8s.gcr.io/sig-storage/csi-provisioner:v3.1.0

• k8s.gcr.io/sig-storage/csi-attacher:v3.4.0

• k8s.gcr.io/sig-storage/csi-resizer:v1.4.0

• k8s.gcr.io/sig-storage/csi-snapshotter:v5.0.1

• k8s.gcr.io/sig-storage/csi-node-driver-

registrar:v2.5.0

• netapp/trident-operator:22.04.0 (optional)

v1.21.0 • netapp/trident:22.04.0

• netapp/trident-autosupport:22.04

• k8s.gcr.io/sig-storage/csi-provisioner:v3.1.0

• k8s.gcr.io/sig-storage/csi-attacher:v3.4.0

• k8s.gcr.io/sig-storage/csi-resizer:v1.4.0

• k8s.gcr.io/sig-storage/csi-snapshotter:v5.0.1

• k8s.gcr.io/sig-storage/csi-node-driver-

registrar:v2.5.0

• netapp/trident-operator:22.04.0 (optional)

v1.22.0 • netapp/trident:22.04.0

• netapp/trident-autosupport:22.04

• k8s.gcr.io/sig-storage/csi-provisioner:v3.1.0

• k8s.gcr.io/sig-storage/csi-attacher:v3.4.0

• k8s.gcr.io/sig-storage/csi-resizer:v1.4.0

• k8s.gcr.io/sig-storage/csi-snapshotter:v5.0.1

• k8s.gcr.io/sig-storage/csi-node-driver-

registrar:v2.5.0

• netapp/trident-operator:22.04.0 (optional)

14

Kubernetes version Container image

v1.23.0 • netapp/trident:22.04.0

• netapp/trident-autosupport:22.04

• k8s.gcr.io/sig-storage/csi-provisioner:v3.1.0

• k8s.gcr.io/sig-storage/csi-attacher:v3.4.0

• k8s.gcr.io/sig-storage/csi-resizer:v1.4.0

• k8s.gcr.io/sig-storage/csi-snapshotter:v5.0.1

• k8s.gcr.io/sig-storage/csi-node-driver-

registrar:v2.5.0

• netapp/trident-operator:22.04.0 (optional)

On Kubernetes version 1.20 and above, use the validated k8s.gcr.io/sig-storage/csi-

snapshotter:v5.x image only if the v1 version is serving the

volumesnapshots.snapshot.storage.k8s.io CRD. If the v1beta1 version is serving

the CRD with/without the v1 version, use the validated k8s.gcr.io/sig-storage/csi-

snapshotter:v3.x image.

Deployment overview

You can deploy Astra Trident using the Trident operator or with tridentctl.

Beginning with the 22.04 release, AES keys will no longer be regenerated every time Astra

Trident is installed. With this release, Astra Trident will install a new secret object that persists

across installations. This means, tridentctl in 22.04 can uninstall previous versions of

Trident, but earlier versions cannot uninstall 22.04 installations.

Choose the deployment method

To determine which deployment method to use, consider the following:

Why should I use the Trident operator?

The Trident operator is a great way to dynamically manage Astra Trident resources and automate the setup

phase. There are some prerequisites that must be satisfied. See the requirements.

The Trident operator provides several benefits as outlined below.

Self-healing capability

You can monitor an Astra Trident installation and actively take measures to address issues, such as when the

deployment is deleted or if it is modified accidentally. When the operator is set up as a deployment, a

trident-operator-<generated-id> pod is created. This pod associates a TridentOrchestrator CR

with an Astra Trident installation and always ensures there is only one active TridentOrchestrator. In

other words, the operator ensures that there is only one instance of Astra Trident in the cluster and controls its

setup, making sure the installation is idempotent. When changes are made to the installation (such as, deleting

the deployment or node daemonset), the operator identifies them and fixes them individually.

15

Easy updates to existing installations

You can easily update an existing deployment with the operator. You only need to edit the

TridentOrchestrator CR to make updates to an installation.

For example, consider a scenario where you need to enable Astra Trident to generate debug logs.

To do this, patch your TridentOrchestrator to set spec.debug to true:

kubectl patch torc <trident-orchestrator-name> -n trident --type=merge -p

'{"spec":{"debug":true}}'

After TridentOrchestrator is updated, the operator processes the updates and patches the existing

installation. This might triggers the creation of new pods to modify the installation accordingly.

Automatically handles Kubernetes upgrades

When the Kubernetes version of the cluster is upgraded to a supported version, the operator updates an

existing Astra Trident installation automatically and changes it to ensure that it meets the requirements of the

Kubernetes version.

If the cluster is upgraded to an unsupported version, the operator prevents installing Astra

Trident. If Astra Trident has already been installed with the operator, a warning is displayed to

indicate that Astra Trident is installed on an unsupported Kubernetes version.

Manage your Kubernetes clusters using Cloud Manager

With Astra Trident using Cloud Manager, you can upgrade to the latest version of Astra Trident, add and

manage storage classes and connect them to Working Environments, and back up persistent volumes using

Cloud Backup Service. Cloud Manager supports Astra Trident deployment using the Trident operator, either

manually or using Helm.

Why should I use Helm?

If you have other applications that you are managing using Helm, starting with Astra Trident 21.01, you can

manage your deployment also using Helm.

When should I use tridenctl?

If you have an existing deployment that must be upgraded to or if you are looking to highly customize your

deployment, you should take a look at using tridentctl. This is the conventional method of deploying Astra

Trident.

Considerations for moving between deployment methods

It is not hard to imagine a scenario where moving between deployment methods is desired. You should

consider the following before attempting to move from a tridentctl deployment to an operator-based

deployment, or vice-versa:

• Always use the same method for uninstalling Astra Trident. If you have deployed with tridentctl, you

should use the appropriate version of the tridentctl binary to uninstall Astra Trident. Similarly, if you are

deploying with the operator, you should edit the TridentOrchestrator CR and set

spec.uninstall=true to uninstall Astra Trident.

16

https://docs.netapp.com/us-en/cloud-manager-kubernetes/concept-kubernetes.html

• If you have an operator-based deployment that you want to remove and use tridentctl to deploy Astra

Trident, you should first edit TridentOrchestrator and set spec.uninstall=true to uninstall Astra

Trident. Then delete TridentOrchestrator and the operator deployment. You can then install using

tridentctl.

• If you have a manual operator-based deployment, and you want to use Helm-based Trident operator

deployment, you should manually uninstall the operator first, and then do the Helm install. This enables

Helm to deploy the Trident operator with the required labels and annotations. If you do not do this, your

Helm-based Trident operator deployment will fail with label validation error and annotation validation error.

If you have a tridentctl-based deployment, you can use Helm-based deployment without running into

issues.

Understand the deployment modes

There are three ways to deploy Astra Trident.

Standard deployment

Deploying Trident on a Kubernetes cluster results in the Astra Trident installer doing two things:

• Fetching the container images over the Internet

• Creating a deployment and/or node daemonset, which spins up Astra Trident pods on all the eligible nodes

in the Kubernetes cluster.

A standard deployment such as this can be performed in two different ways:

• Using tridentctl install

• Using the Trident operator. You can deploy Trident operator either manually or by using Helm.

This mode of installing is the easiest way to install Astra Trident and works for most environments that do not

impose network restrictions.

Offline deployment

To perform an air-gapped deployment, you can use the --image-registry flag when invoking tridentctl

install to point to a private image registry. If deploying with the Trident operator, you can alternatively

specify spec.imageRegistry in your TridentOrchestrator. This registry should contain the Trident

image, the Trident Autosupport image, and the CSI sidecar images as required by your Kubernetes version.

To customize your deployment, you can use tridentctl to generate the manifests for Trident’s resources.

This includes the deployment, daemonset, service account, and the cluster role that Astra Trident creates as

part of its installation.

See these links for more information about customizing your deployment:

• Customize your operator-based deployment

• Customize your tridentctl-based deployment

17

https://hub.docker.com/r/netapp/trident/
https://hub.docker.com/r/netapp/trident/
https://hub.docker.com/r/netapp/trident-autosupport/

If you are using a private image repository, you should add /sig-storage to the end of the

private registry URL. When using a private registry for tridentctl deployment, you should

use --trident-image and --autosupport-image in conjunction with --image

-registry. If you are deploying Astra Trident by using the Trident operator, ensure that the

orchestrator CR includes tridentImage and autosupportImage in the installation

parameters.

Remote deployment

Here is a high-level overview of the remote deployment process:

• Deploy the appropriate version of kubectl on the remote machine from where you want to deploy Astra

Trident.

• Copy the configuration files from the Kubernetes cluster and set the KUBECONFIG environment variable on

the remote machine.

• Initiate a kubectl get nodes command to verify that you can connect to the required Kubernetes

cluster.

• Complete the deployment from the remote machine by using the standard installation steps.

Other known configuration options

When installing Astra Trident on VMWare Tanzu Portfolio products:

• The cluster must support privileged workloads.

• The --kubelet-dir flag should be set to the location of kubelet directory. By default, this is

/var/vcap/data/kubelet.

Specifying the kubelet location using --kubelet-dir is known to work for Trident Operator, Helm, and

tridentctl deployments.

Deploy with Trident operator

You can deploy Astra Trident using the Trident operator. You can deploy the Trident operator in one of two

ways:

• Using the Trident Helm Chart: The Helm Chart deploys the Trident operator and installs Trident in one step.

• Manually: Trident provides a bundle.yaml file that can be used to install the operator and create associated

objects.

If you have not already familiarized yourself with the basic concepts, now is a great time to do

that.

What you’ll need

To deploy Astra Trident, the following prerequisites should be met:

• You have full privileges to a supported Kubernetes cluster running Kubernetes 1.18 - 1.24.

• You have access to a supported NetApp storage system.

• You have the capability to mount volumes from all of the Kubernetes worker nodes.

18

https://artifacthub.io/packages/helm/netapp-trident/trident-operator
https://github.com/NetApp/trident/blob/stable/v22.04/deploy/bundle.yaml

• You have a Linux host with kubectl (or oc, if you are using OpenShift) installed and configured to

manage the Kubernetes cluster that you want to use.

• You have set the KUBECONFIG environment variable to point to your Kubernetes cluster configuration.

• You have enabled the feature gates required by Astra Trident.

• If you are using Kubernetes with Docker Enterprise, follow their steps to enable CLI access.

Got all that? Great! Let’s get started.

Deploy the Trident operator and install Astra Trident using Helm

Perform the steps listed to deploy the Trident operator by using Helm.

What you’ll need

In addition to the prerequisites listed above, to deploy Trident operator by using Helm, you need the following:

• Kubernetes 1.18 - 1.24

• Helm version 3

Steps

1. Add Trident’s Helm repository:

helm repo add netapp-trident https://netapp.github.io/trident-helm-chart

2. Use the helm install command and specify a name for your deployment.

See the following example:

helm install <release-name> netapp-trident/trident-operator --version

22.4.0 --namespace <trident-namespace>

If you did not already create a namespace for Trident, you can add the --create

-namespace parameter to the helm install command. Helm will then automatically

create the namespace for you.

There are two ways to pass configuration data during the install:

• --values (or -f): Specify a YAML file with overrides. This can be specified multiple times and the

rightmost file will take precedence.

• --set: Specify overrides on the command line.

For example, to change the default value of debug, run the following --set command:

$ helm install <name> netapp-trident/trident-operator --version 22.4.0

--set tridentDebug=true

19

https://docs.docker.com/ee/ucp/user-access/cli/

The values.yaml file, which is part of the Helm chart provides the list of keys and their default values.

helm list shows you details about the installation, such as name, namespace, chart, status, app version,

revision number, and so on.

Deploy the Trident operator manually

Perform the steps listed to manually deploy the Trident operator.

Step 1: Qualify your Kubernetes cluster

The first thing you need to do is log in to the Linux host and verify that it is managing a working, supported

Kubernetes cluster that you have the necessary privileges to.

With OpenShift, use oc instead of kubectl in all of the examples that follow, and log in as

system:admin first by running oc login -u system:admin or oc login -u kube-

admin.

To verify your Kubernetes version, run the following command:

kubectl version

To see if you have Kubernetes cluster administrator privileges, run the following command:

kubectl auth can-i '*' '*' --all-namespaces

To verify if you can launch a pod that uses an image from Docker Hub and reach your storage system over the

pod network, run the following command:

kubectl run -i --tty ping --image=busybox --restart=Never --rm -- \

 ping <management IP>

Step 2: Download and set up the operator

Beginning with 21.01, the Trident operator is cluster scoped. Using the Trident operator to install

Trident requires creating the TridentOrchestrator Custom Resource Definition (CRD) and

defining other resources. You should perform these steps to set up the operator before you can

install Astra Trident.

1. Download the latest version of the Trident installer bundle from the Downloads section and extract it.

20

https://github.com/NetApp/trident/releases/latest

wget

https://github.com/NetApp/trident/releases/download/v22.04.0/trident-

installer-22.04.0.tar.gz

tar -xf trident-installer-22.04.0.tar.gz

cd trident-installer

2. Use the appropriate CRD manifest to create the TridentOrchestrator CRD. You then create a

TridentOrchestrator Custom Resource later on to instantiate an installation by the operator.

Run the following command:

kubectl create -f

deploy/crds/trident.netapp.io_tridentorchestrators_crd_post1.16.yaml

3. After the TridentOrchestrator CRD is created, create the following resources required for the

operator deployment:

◦ A ServiceAccount for the operator

◦ A ClusterRole and ClusterRoleBinding to the ServiceAccount

◦ A dedicated PodSecurityPolicy

◦ The operator itself

The Trident installer contains manifests for defining these resources. By default, the operator is

deployed in the trident namespace. If the trident namespace does not exist, use the following

manifest to create one.

$ kubectl apply -f deploy/namespace.yaml

4. To deploy the operator in a namespace other than the default trident namespace, you should update the

serviceaccount.yaml, clusterrolebinding.yaml and operator.yaml manifests and generate

your bundle.yaml.

Run the following command to update the YAML manifests and generate your bundle.yaml using the

kustomization.yaml:

kubectl kustomize deploy/ > deploy/bundle.yaml

Run the following command to create the resources and deploy the operator:

kubectl create -f deploy/bundle.yaml

5. To verify the status of the operator after you have deployed, do the following:

21

$ kubectl get deployment -n <operator-namespace>

NAME READY UP-TO-DATE AVAILABLE AGE

trident-operator 1/1 1 1 3m

$ kubectl get pods -n <operator-namespace>

NAME READY STATUS RESTARTS

AGE

trident-operator-54cb664d-lnjxh 1/1 Running 0

3m

The operator deployment successfully creates a pod running on one of the worker nodes in your cluster.

There should only be one instance of the operator in a Kubernetes cluster. Do not create

multiple deployments of the Trident operator.

Step 3: Create TridentOrchestrator and install Trident

You are now ready to install Astra Trident using the operator! This will require creating

TridentOrchestrator. The Trident installer comes with example definitions for creating

TridentOrchestrator. This kicks off an installation in the trident namespace.

22

$ kubectl create -f deploy/crds/tridentorchestrator_cr.yaml

tridentorchestrator.trident.netapp.io/trident created

$ kubectl describe torc trident

Name: trident

Namespace:

Labels: <none>

Annotations: <none>

API Version: trident.netapp.io/v1

Kind: TridentOrchestrator

...

Spec:

 Debug: true

 Namespace: trident

Status:

 Current Installation Params:

 IPv6: false

 Autosupport Hostname:

 Autosupport Image: netapp/trident-autosupport:21.04

 Autosupport Proxy:

 Autosupport Serial Number:

 Debug: true

 Enable Node Prep: false

 Image Pull Secrets:

 Image Registry:

 k8sTimeout: 30

 Kubelet Dir: /var/lib/kubelet

 Log Format: text

 Silence Autosupport: false

 Trident Image: netapp/trident:21.04.0

 Message: Trident installed Namespace:

trident

 Status: Installed

 Version: v21.04.0

Events:

 Type Reason Age From Message ---- ------ ---- ---- -------Normal

 Installing 74s trident-operator.netapp.io Installing Trident Normal

 Installed 67s trident-operator.netapp.io Trident installed

The Trident operator enables you to customize the manner in which Astra Trident is installed by using the

attributes in the TridentOrchestrator spec. See Customize your Trident deployment.

The Status of TridentOrchestrator indicates if the installation was successful and displays the version of

Trident installed.

23

Status Description

Installing The operator is installing Astra Trident using this

TridentOrchestrator CR.

Installed Astra Trident has successfully installed.

Uninstalling The operator is uninstalling Astra Trident, because

spec.uninstall=true.

Uninstalled Astra Trident is uninstalled.

Failed The operator could not install, patch, update or

uninstall

Astra Trident; the operator will automatically try to

recover from this state. If this state persists you will

require troubleshooting.

Updating The operator is updating an existing installation.

Error The TridentOrchestrator is not used. Another

one already

exists.

During the installation, the status of TridentOrchestrator changes from Installing to Installed. If

you observe the Failed status and the operator is unable to recover by itself, you should check the logs of the

operator. See the troubleshooting section.

You can confirm if the Astra Trident installation completed by taking a look at the pods that have been created:

$ kubectl get pod -n trident

NAME READY STATUS RESTARTS AGE

trident-csi-7d466bf5c7-v4cpw 5/5 Running 0 1m

trident-csi-mr6zc 2/2 Running 0 1m

trident-csi-xrp7w 2/2 Running 0 1m

trident-csi-zh2jt 2/2 Running 0 1m

trident-operator-766f7b8658-ldzsv 1/1 Running 0 3m

You can also use tridentctl to check the version of Astra Trident installed.

$./tridentctl -n trident version

+----------------+----------------+

| SERVER VERSION | CLIENT VERSION |

+----------------+----------------+

| 21.04.0 | 21.04.0 |

+----------------+----------------+

Now you can go ahead and create a backend. See post-deployment tasks.

For troubleshooting issues during deployment, see the troubleshooting section.

24

Customize Trident operator deployment

The Trident operator enables you to customize the manner in which Astra Trident is installed by using the

attributes in the TridentOrchestrator spec.

See the following table for the list of attributes:

Parameter Description Default

namespace Namespace to install Astra Trident

in

"default"

debug Enable debugging for Astra Trident false

IPv6 Install Astra Trident over IPv6 false

k8sTimeout Timeout for Kubernetes operations 30sec

silenceAutosupport Don’t send autosupport bundles to

NetApp

automatically

false

enableNodePrep Manage worker node

dependencies automatically (

BETA)

false

autosupportImage The container image for

Autosupport Telemetry

"netapp/trident-

autosupport:21.04.0"

autosupportProxy The address/port of a proxy for

sending Autosupport

Telemetry

"http://proxy.example.com:8888"

uninstall A flag used to uninstall Astra

Trident

false

logFormat Astra Trident logging format to be

used [text,json]

"text"

tridentImage Astra Trident image to install "netapp/trident:21.04"

imageRegistry Path to internal registry, of the

format

<registry

FQDN>[:port][/subpath]

"k8s.gcr.io/sig-storage (k8s 1.18+)

or quay.io/k8scsi"

kubeletDir Path to the kubelet directory on the

host

“/var/lib/kubelet”

wipeout A list of resources to delete to

perform a complete removal of

Astra Trident

imagePullSecrets Secrets to pull images from an

internal registry

controllerPluginNodeSelect

or

Additional node selectors for pods

running the Trident Controller CSI

Plugin. Follows same format as

pod.spec.nodeSelector.

No default; optional

25

Parameter Description Default

controllerPluginToleration

s

Overrides tolerations for pods

running the Trident Controller CSI

Plugin. Follows the same format as

pod.spec.Tolerations.

No default; optional

nodePluginNodeSelector Additional node selectors for pods

running the Trident Node CSI

Plugin. Follows same format as

pod.spec.nodeSelector.

No default; optional

nodePluginTolerations Overrides tolerations for pods

running the Trident Node CSI

Plugin. Follows the same format as

pod.spec.Tolerations.

No default; optional

spec.namespace is specified in TridentOrchestrator to signify which namespace Astra

Trident is installed in. This parameter cannot be updated after Astra Trident is installed.

Attempting to do so causes the status of TridentOrchestrator to change to Failed. Astra

Trident is not meant to be migrated across namespaces.

Automatic worker node prep is a beta feature meant to be used in non-production environments

only.

For more information on formatting pod parameters, see Assigning Pods to Nodes.

You can use the attributes mentioned above when defining TridentOrchestrator to customize your

installation. Here’s an example:

$ cat deploy/crds/tridentorchestrator_cr_imagepullsecrets.yaml

apiVersion: trident.netapp.io/v1

kind: TridentOrchestrator

metadata:

 name: trident

spec:

 debug: true

 namespace: trident

 imagePullSecrets:

 - thisisasecret

Here is another example that shows how Trident can be deployed with node selectors:

26

https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/

apiVersion: trident.netapp.io/v1

kind: TridentOrchestrator

metadata:

 name: trident

spec:

 debug: true

 namespace: trident

 controllerPluginNodeSelector:

 nodetype: master

 nodePluginNodeSelector:

 storage: netapp

If you are looking to customize the installation beyond what TridentOrchestrator arguments allow, you

should consider using tridentctl to generate custom YAML manifests that you can modify as needed.

Deploy with tridentctl

You can deploy Astra Trident by using tridentctl.

If you have not already familiarized yourself with the basic concepts, now is a great time to do

that.

To customize your deployment, see here.

What you’ll need

To deploy Astra Trident, the following prerequisites should be met:

• You have full privileges to a supported Kubernetes cluster.

• You have access to a supported NetApp storage system.

• You have the capability to mount volumes from all of the Kubernetes worker nodes.

• You have a Linux host with kubectl (or oc, if you are using OpenShift) installed and configured to

manage the Kubernetes cluster that you want to use.

• You have set the KUBECONFIG environment variable to point to your Kubernetes cluster configuration.

• You have enabled the feature gates required by Astra Trident.

• If you are using Kubernetes with Docker Enterprise, follow their steps to enable CLI access.

Got all that? Great! Let’s get started.

For information about customizing your deployment, see here.

Step 1: Qualify your Kubernetes cluster

The first thing you need to do is log into the Linux host and verify that it is managing a working, supported

Kubernetes cluster that you have the necessary privileges to.

27

https://docs.docker.com/ee/ucp/user-access/cli/

With OpenShift, you use oc instead of kubectl in all of the examples that follow, and you

should log in as system:admin first by running oc login -u system:admin or oc login

-u kube-admin.

To check your Kubernetes version, run the following command:

kubectl version

To see if you have Kubernetes cluster administrator privileges, run the following command:

kubectl auth can-i '*' '*' --all-namespaces

To verify if you can launch a pod that uses an image from Docker Hub and reach your storage system over the

pod network, run the following command:

kubectl run -i --tty ping --image=busybox --restart=Never --rm -- \

 ping <management IP>

Identify your Kubernetes server version. You will use it when you install Astra Trident.

Step 2: Download and extract the installer

The Trident installer creates a Trident pod, configures the CRD objects that are used to maintain

its state, and initializes the CSI sidecars that perform actions, such as provisioning and attaching

volumes to the cluster hosts.

You can download the latest version of the Trident installer bundle from the Downloads section, and extract it.

For example, if the latest version is 21.07.1:

wget https://github.com/NetApp/trident/releases/download/v21.07.1/trident-

installer-21.07.1.tar.gz

tar -xf trident-installer-21.07.1.tar.gz

cd trident-installer

Step 3: Install Astra Trident

Install Astra Trident in the desired namespace by executing the tridentctl install command.

28

https://github.com/NetApp/trident/releases/latest

$./tridentctl install -n trident

....

INFO Starting Trident installation. namespace=trident

INFO Created service account.

INFO Created cluster role.

INFO Created cluster role binding.

INFO Added finalizers to custom resource definitions.

INFO Created Trident service.

INFO Created Trident secret.

INFO Created Trident deployment.

INFO Created Trident daemonset.

INFO Waiting for Trident pod to start.

INFO Trident pod started. namespace=trident

pod=trident-csi-679648bd45-cv2mx

INFO Waiting for Trident REST interface.

INFO Trident REST interface is up. version=21.07.1

INFO Trident installation succeeded.

....

It will look like this when the installer is complete. Depending on the number of nodes in your Kubernetes

cluster, you might observe more pods:

$ kubectl get pod -n trident

NAME READY STATUS RESTARTS AGE

trident-csi-679648bd45-cv2mx 4/4 Running 0 5m29s

trident-csi-vgc8n 2/2 Running 0 5m29s

$./tridentctl -n trident version

+----------------+----------------+

| SERVER VERSION | CLIENT VERSION |

+----------------+----------------+

| 21.07.1 | 21.07.1 |

+----------------+----------------+

If you see output similar to the above example, you’ve completed this step, but Astra Trident is not yet fully

configured. Go ahead and continue to the next step. See post-deployment tasks.

However, if the installer does not complete successfully or you don’t see a Running trident-csi-

<generated id>, the platform was not installed.

For troubleshooting issues during deployment, see the troubleshooting section.

Customize tridentctl deployment

Trident installer enables you to customize attributes. For example, if you have copied the Trident image to a

29

private repository, you can specify the image name by using --trident-image. If you have copied the

Trident image as well as the needed CSI sidecar images to a private repository, it might be preferable to

specify the location of that repository by using the --image-registry switch, which takes the form

<registry FQDN>[:port].

To have Astra Trident automatically configure worker nodes for you, use --enable-node-prep. For more

details on how it works, see here.

Automatic worker node preparation is a beta feature meant to be used in non-production

environments only.

If you are using a distribution of Kubernetes, where kubelet keeps its data on a path other than the usual

/var/lib/kubelet, you can specify the alternate path by using --kubelet-dir.

If you need to customize the installation beyond what the installer’s arguments allow, you can also customize

the deployment files. Using the --generate-custom-yaml parameter creates the following YAML files in the

installer’s setup directory:

• trident-clusterrolebinding.yaml

• trident-deployment.yaml

• trident-crds.yaml

• trident-clusterrole.yaml

• trident-daemonset.yaml

• trident-service.yaml

• trident-namespace.yaml

• trident-serviceaccount.yaml

After you have generated these files, you can modify them according to your needs and then use --use

-custom-yaml to install your custom deployment.

./tridentctl install -n trident --use-custom-yaml

What’s next?

After you deploy Astra Trident, you can proceed with creating a backend, creating a storage class, provisioning

a volume, and mounting the volume in a pod.

Step 1: Create a backend

You can now go ahead and create a backend that will be used by Astra Trident to provision volumes. To do

this, create a backend.json file that contains the necessary parameters. Sample configuration files for

different backend types can be found in the sample-input directory.

See here for more details about how to configure the file for your backend type.

30

cp sample-input/<backend template>.json backend.json

vi backend.json

./tridentctl -n trident create backend -f backend.json

+-------------+----------------+--------------------------------------

+--------+---------+

| NAME | STORAGE DRIVER | UUID |

STATE | VOLUMES |

+-------------+----------------+--------------------------------------

+--------+---------+

| nas-backend | ontap-nas | 98e19b74-aec7-4a3d-8dcf-128e5033b214 |

online | 0 |

+-------------+----------------+--------------------------------------

+--------+---------+

If the creation fails, something was wrong with the backend configuration. You can view the logs to determine

the cause by running the following command:

./tridentctl -n trident logs

After you address the problem, simply go back to the beginning of this step and try again. For more

troubleshooting tips, see the troubleshooting section.

Step 2: Create a storage class

Kubernetes users provision volumes by using persistent volume claims (PVCs) that specify a storage class by

name. The details are hidden from the users, but a storage class identifies the provisioner that is used for that

class (in this case, Trident), and what that class means to the provisioner.

Create a storage class Kubernetes users will specify when they want a volume. The configuration of the class

needs to model the backend that you created in the previous step, so that Astra Trident will use it to provision

new volumes.

The simplest storage class to start with is one based on the sample-input/storage-class-

csi.yaml.templ file that comes with the installer, replacing BACKEND_TYPE with the storage driver name.

31

https://kubernetes.io/docs/concepts/storage/storage-classes/

./tridentctl -n trident get backend

+-------------+----------------+--------------------------------------

+--------+---------+

| NAME | STORAGE DRIVER | UUID |

STATE | VOLUMES |

+-------------+----------------+--------------------------------------

+--------+---------+

| nas-backend | ontap-nas | 98e19b74-aec7-4a3d-8dcf-128e5033b214 |

online | 0 |

+-------------+----------------+--------------------------------------

+--------+---------+

cp sample-input/storage-class-csi.yaml.templ sample-input/storage-class-

basic-csi.yaml

Modify __BACKEND_TYPE__ with the storage driver field above (e.g.,

ontap-nas)

vi sample-input/storage-class-basic-csi.yaml

This is a Kubernetes object, so you use kubectl to create it in Kubernetes.

kubectl create -f sample-input/storage-class-basic-csi.yaml

You should now see a basic-csi storage class in both Kubernetes and Astra Trident, and Astra Trident should

have discovered the pools on the backend.

32

kubectl get sc basic-csi

NAME PROVISIONER AGE

basic-csi csi.trident.netapp.io 15h

./tridentctl -n trident get storageclass basic-csi -o json

{

 "items": [

 {

 "Config": {

 "version": "1",

 "name": "basic-csi",

 "attributes": {

 "backendType": "ontap-nas"

 },

 "storagePools": null,

 "additionalStoragePools": null

 },

 "storage": {

 "ontapnas_10.0.0.1": [

 "aggr1",

 "aggr2",

 "aggr3",

 "aggr4"

]

 }

 }

]

}

Step 3: Provision your first volume

Now you are ready to dynamically provision your first volume. This is done by creating a Kubernetes persistent

volume claim (PVC) object.

Create a PVC for a volume that uses the storage class that you just created.

See sample-input/pvc-basic-csi.yaml for an example. Make sure the storage class name matches the

one that you created.

33

https://kubernetes.io/docs/concepts/storage/persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes

kubectl create -f sample-input/pvc-basic-csi.yaml

kubectl get pvc --watch

NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE

basic Pending

basic 1s

basic Pending pvc-3acb0d1c-b1ae-11e9-8d9f-5254004dfdb7 0

basic 5s

basic Bound pvc-3acb0d1c-b1ae-11e9-8d9f-5254004dfdb7 1Gi

RWO basic 7s

Step 4: Mount the volumes in a pod

Now let us mount the volume. We will launch an nginx pod that mounts the PV under

/usr/share/nginx/html.

cat << EOF > task-pv-pod.yaml

kind: Pod

apiVersion: v1

metadata:

 name: task-pv-pod

spec:

 volumes:

 - name: task-pv-storage

 persistentVolumeClaim:

 claimName: basic

 containers:

 - name: task-pv-container

 image: nginx

 ports:

 - containerPort: 80

 name: "http-server"

 volumeMounts:

 - mountPath: "/usr/share/nginx/html"

 name: task-pv-storage

EOF

kubectl create -f task-pv-pod.yaml

34

Wait for the pod to start

kubectl get pod --watch

Verify that the volume is mounted on /usr/share/nginx/html

kubectl exec -it task-pv-pod -- df -h /usr/share/nginx/html

Delete the pod

kubectl delete pod task-pv-pod

At this point, the pod (application) no longer exists but the volume is still there. You can use it from another pod

if you want to.

To delete the volume, delete the claim:

kubectl delete pvc basic

You can now do additional tasks, such as the following:

• Configure additional backends.

• Create additional storage classes.

35

Manage Astra Trident

Upgrade Astra Trident

Astra Trident follows a quarterly release cadence, delivering four major releases every calendar year. Each

new release builds on top of the previous releases, providing new features and performance enhancements as

well as bug fixes and improvements. You are encouraged to upgrade at least once a year to take advantage of

the new features in Astra Trident.

Upgrading to a release that is five releases ahead will require you to perform a multistep

upgrade.

Determine the version to upgrade to

• You can upgrade to the YY.MM release from the YY-1.MM release and any in-between releases. For

example, you can perform a direct upgrade to 20.07 from 19.07 and later (including dot releases, such as

19.07.1).

• If you have an earlier release, you should perform a multistep upgrade. This requires you to first upgrade to

the most recent release that fits your four-release window. For example, if you are running 18.07 and want

to upgrade to the 20.07 release, then follow the multistep upgrade process as given below:

◦ First upgrade from 18.07 to 19.07. See the documentation of the respective release to obtain specific

instructions for upgrading.

◦ Then upgrade from 19.07 to 20.07.

All upgrades for versions 19.04 and earlier require the migration of Astra Trident’s metadata

from it’s own etcd to CRD objects. Ensure that you check the documentation of the release to

understand how the upgrade works.

When upgrading, it is important you provide parameter.fsType in StorageClasses used

by Astra Trident. You can delete and re-create StorageClasses without disrupting pre-existing

volumes. This is a requirement for enforcing security contexts for SAN volumes. The sample

input directory contains examples, such as storage-class-basic.yaml.templ and

storage-class-bronze-default.yaml.

For more information, see Known Issues.

Which upgrade path should I choose?

You can upgrade by using one of the following paths:

• Using the Trident operator.

• Using tridentctl.

CSI Volume Snapshots is now a feature that is GA, beginning with Kubernetes 1.20. When

upgrading Astra Trident, all previous alpha snapshot CRs and CRDs (Volume Snapshot

Classes, Volume Snapshots and Volume Snapshot Contents) must be removed before the

upgrade is performed. Refer to this blog to understand the steps involved in migrating alpha

snapshots to the beta/GA spec.

36

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://github.com/NetApp/trident/tree/master/trident-installer/sample-input
https://github.com/NetApp/trident/tree/master/trident-installer/sample-input
https://github.com/NetApp/trident/blob/master/trident-installer/sample-input/storage-class-samples/storage-class-basic.yaml.templ
https://github.com/NetApp/trident/blob/master/trident-installer/sample-input/storage-class-samples/storage-class-bronze-default.yaml
https://netapp.io/2020/01/30/alpha-to-beta-snapshots/

You can use the Trident operator to upgrade if the following conditions are met:

• You are running CSI Trident (19.07 and later).

• You have a CRD-based Trident release (19.07 and later).

• You are not performing a customized install (using custom YAMLs).

Do not use the operator to upgrade Trident if you are using an etcd-based Trident release

(19.04 or earlier).

If you do not want to use the operator or you have a customized install that cannot be supported by the

operator, you can upgrade by using tridentctl. This is the preferred method of upgrades for Trident

releases 19.04 and earlier.

Changes to the operator

The 21.01 release of Astra Trident introduces some key architectural changes to the operator, namely the

following:

• The operator is now cluster-scoped. Previous instances of the Trident operator (versions 20.04 through

20.10) were namespace-scoped. An operator that is cluster-scoped is advantageous for the following

reasons:

◦ Resource accountability: The operator now manages resources associated with an Astra Trident

installation at the cluster level. As part of installing Astra Trident, the operator creates and maintains

several resources by using ownerReferences. Maintaining ownerReferences on cluster-scoped

resources can throw up errors on certain Kubernetes distributors such as OpenShift. This is mitigated

with a cluster-scoped operator. For auto-healing and patching Trident resources, this is an essential

requirement.

◦ Cleaning up during uninstallation: A complete removal of Astra Trident would require all associated

resources to be deleted. A namespace-scoped operator might experience issues with the removal of

cluster-scoped resources (such as the clusterRole, ClusterRoleBinding and PodSecurityPolicy) and

lead to an incomplete clean-up. A cluster-scoped operator eliminates this issue. Users can completely

uninstall Astra Trident and install afresh if needed.

• TridentProvisioner is now replaced with TridentOrchestrator as the Custom Resource used to

install and manage Astra Trident. In addition, a new field is introduced to the TridentOrchestrator

spec. Users can specify that the namespace Trident must be installed/upgraded from using the

spec.namespace field. You can take a look at an example here.

Find more information

• Upgrade by using the Trident operator

• Upgrade by using tridentctl

Upgrade with the operator

You can easily upgrade an existing Astra Trident installation using the operator.

What you’ll need

To upgrade by using the operator, the following conditions should be met:

37

https://github.com/NetApp/trident/blob/stable/v21.01/deploy/crds/tridentorchestrator_cr.yaml

• You should have a CSI-based Astra Trident installation. To check if you are running CSI Trident, examine

the pods in your Trident namespace. If they follow the trident-csi-* naming pattern, you are running

CSI Trident.

• You should have a CRD-based Trident installation. This represents all releases from 19.07 and later. If you

have a CSI-based installation, you most likely have a CRD-based installation.

• If you have uninstalled CSI Trident and the metadata from the installation persists, you can upgrade by

using the operator.

• Only one Astra Trident installation should exist across all the namespaces in a given Kubernetes cluster.

• You should be using a Kubernetes cluster that runs version 1.18 - 1.24.

• If alpha snapshot CRDs are present, you should remove them with tridentctl obliviate alpha-

snapshot-crd. This deletes the CRDs for the alpha snapshot spec. For existing snapshots that should

be deleted/migrated, see this blog.

When upgrading Trident by using the operator on OpenShift Container Platform, you should

upgrade to Trident 21.01.1 or later. The Trident operator released with 21.01.0 contains a known

issue that has been fixed in 21.01.1. For more details, see the issue details on GitHub.

Upgrade a cluster-scoped operator installation

To upgrade from Trident 21.01 and later, here is the set of steps to be followed.

Steps

1. Delete the Trident operator that was used to install the current Astra Trident instance. For example, if you

are upgrading from 21.01, run the following command:

kubectl delete -f 21.01/trident-installer/deploy/bundle.yaml -n trident

2. (Optional) If you want to modify the installation parameters, edit the TridentOrchestrator object that

you created when installing Trident.

This can include changes, such as modifying the custom Trident image, private image registry to pull

container images from, enabling debug logs, or specifying image pull secrets.

3. Install Astra Trident by using the bundle.yaml file that sets up the Trident operator for the new version.

Run the following command:

kubectl create -f 21.10.0/trident-installer/deploy/bundle.yaml -n

trident

As part of this step, the 21.10.0 Trident operator will identify an existing Astra Trident installation and upgrade it

to the same version as the operator.

Upgrade a namespace-scoped operator installation

To upgrade from an instance of Astra Trident installed using the namespace-scoped operator (versions 20.07

through 20.10), here is the set of steps to be followed:

Steps

38

https://netapp.io/2020/01/30/alpha-to-beta-snapshots/
https://github.com/NetApp/trident/issues/517

1. Verify the status of the existing Trident installation. To do this, check the Status of TridentProvisioner.

The status should be Installed.

$ kubectl describe tprov trident -n trident | grep Message: -A 3

Message: Trident installed

Status: Installed

Version: v20.10.1

If status shows Updating, ensure you resolve it before proceeding. For a list of possible

status values, see here.

2. Create the TridentOrchestrator CRD by using the manifest provided with the Trident installer.

Download the release required [21.01]

$ mkdir 21.07.1

$ cd 21.07.1

$ wget

https://github.com/NetApp/trident/releases/download/v21.07.1/trident-

installer-21.07.1.tar.gz

$ tar -xf trident-installer-21.07.1.tar.gz

$ cd trident-installer

$ kubectl create -f

deploy/crds/trident.netapp.io_tridentorchestrators_crd_post1.16.yaml

3. Delete the namespace-scoped operator by using its manifest. To complete this step, you require the

bundle.yaml file used to deploy the namespace-scoped operator. You can obtain bundle.yaml from

the Trident repository. Make sure to use the appropriate branch.

You should make the necessary changes to the Trident install parameters (for example,

changing the values for tridentImage, autosupportImage, private image repository,

and providing imagePullSecrets) after deleting the namespace-scoped operator and

before installing the cluster-scoped operator. For a complete list of parameters that can be

updated, see the list of parameters.

39

https://docs.netapp.com/us-en/trident-2204/kubernetes-deploy-operator.html
https://github.com/NetApp/trident/blob/stable/v20.10/deploy/bundle.yaml
https://docs.netapp.com/us-en/trident-2204/kubernetes-customize-deploy.html

#Ensure you are in the right directory

$ pwd

$ /root/20.10.1/trident-installer

#Delete the namespace-scoped operator

$ kubectl delete -f deploy/bundle.yaml

serviceaccount "trident-operator" deleted

clusterrole.rbac.authorization.k8s.io "trident-operator" deleted

clusterrolebinding.rbac.authorization.k8s.io "trident-operator" deleted

deployment.apps "trident-operator" deleted

podsecuritypolicy.policy "tridentoperatorpods" deleted

#Confirm the Trident operator was removed

$ kubectl get all -n trident

NAME READY STATUS RESTARTS AGE

pod/trident-csi-68d979fb85-dsrmn 6/6 Running 12 99d

pod/trident-csi-8jfhf 2/2 Running 6 105d

pod/trident-csi-jtnjz 2/2 Running 6 105d

pod/trident-csi-lcxvh 2/2 Running 8 105d

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

AGE

service/trident-csi ClusterIP 10.108.174.125 <none>

34571/TCP,9220/TCP 105d

NAME DESIRED CURRENT READY UP-TO-DATE

AVAILABLE NODE SELECTOR AGE

daemonset.apps/trident-csi 3 3 3 3 3

kubernetes.io/arch=amd64,kubernetes.io/os=linux 105d

NAME READY UP-TO-DATE AVAILABLE AGE

deployment.apps/trident-csi 1/1 1 1 105d

NAME DESIRED CURRENT READY AGE

replicaset.apps/trident-csi-68d979fb85 1 1 1

105d

At this stage, the trident-operator-xxxxxxxxxx-xxxxx pod is deleted.

4. (Optional) If the install parameters need to be modified, update the TridentProvisioner spec. These

could be changes such as modifying the private image registry to pull container images from, enabling

debug logs, or specifying image pull secrets.

40

$ kubectl patch tprov <trident-provisioner-name> -n <trident-namespace>

--type=merge -p '{"spec":{"debug":true}}'

5. Install the cluster-scoped operator.

Installing the cluster-scoped operator initiates the migration of TridentProvisioner

objects to TridentOrchestrator objects, deletes TridentProvisioner objects and

the tridentprovisioner CRD, and upgrades Astra Trident to the version of the cluster-

scoped operator being used. In the example that follows, Trident is upgraded to 21.07.1.

Upgrading Astra Trident by using the cluster-scoped operator results in the migration of

tridentProvisioner to a tridentOrchestrator object with the same name. This is

automatically handled by the operator. The upgrade will also have Astra Trident installed in

the same namespace as before.

41

#Ensure you are in the correct directory

$ pwd

$ /root/21.07.1/trident-installer

#Install the cluster-scoped operator in the **same namespace**

$ kubectl create -f deploy/bundle.yaml

serviceaccount/trident-operator created

clusterrole.rbac.authorization.k8s.io/trident-operator created

clusterrolebinding.rbac.authorization.k8s.io/trident-operator created

deployment.apps/trident-operator created

podsecuritypolicy.policy/tridentoperatorpods created

#All tridentProvisioners will be removed, including the CRD itself

$ kubectl get tprov -n trident

Error from server (NotFound): Unable to list "trident.netapp.io/v1,

Resource=tridentprovisioners": the server could not find the requested

resource (get tridentprovisioners.trident.netapp.io)

#tridentProvisioners are replaced by tridentOrchestrator

$ kubectl get torc

NAME AGE

trident 13s

#Examine Trident pods in the namespace

$ kubectl get pods -n trident

NAME READY STATUS RESTARTS AGE

trident-csi-79df798bdc-m79dc 6/6 Running 0 1m41s

trident-csi-xrst8 2/2 Running 0 1m41s

trident-operator-5574dbbc68-nthjv 1/1 Running 0 1m52s

#Confirm Trident has been updated to the desired version

$ kubectl describe torc trident | grep Message -A 3

Message: Trident installed

Namespace: trident

Status: Installed

Version: v21.07.1

Upgrade a Helm-based operator installation

Perform the following steps to upgrade a Helm-based operator installation.

Steps

1. Download the latest Astra Trident release.

2. Use the helm upgrade command. See the following example:

42

$ helm upgrade <name> trident-operator-21.07.1.tgz

where trident-operator-21.07.1.tgz reflects the version that you want to upgrade to.

3. Run helm list to verify that the chart and app version have both been upgraded.

To pass configuration data during the upgrade, use --set.

For example, to change the default value of tridentDebug, run the following command:

$ helm upgrade <name> trident-operator-21.07.1-custom.tgz --set

tridentDebug=true

If you run $ tridentctl logs, you can see the debug messages.

If you set any non-default options during the initial installation, ensure that the options are

included in the upgrade command, or else, the values will be reset to their defaults.

Upgrade from a non-operator installation

If you have a CSI Trident instance that meets the prerequisites listed above, you can upgrade to the latest

release of the Trident operator.

Steps

1. Download the latest Astra Trident release.

Download the release required [21.07.1]

$ mkdir 21.07.1

$ cd 21.07.1

$ wget

https://github.com/NetApp/trident/releases/download/v21.07.1/trident-

installer-21.07.1.tar.gz

$ tar -xf trident-installer-21.07.1.tar.gz

$ cd trident-installer

2. Create the tridentorchestrator CRD from the manifest.

$ kubectl create -f

deploy/crds/trident.netapp.io_tridentorchestrators_crd_post1.16.yaml

3. Deploy the operator.

43

#Install the cluster-scoped operator in the **same namespace**

$ kubectl create -f deploy/bundle.yaml

serviceaccount/trident-operator created

clusterrole.rbac.authorization.k8s.io/trident-operator created

clusterrolebinding.rbac.authorization.k8s.io/trident-operator created

deployment.apps/trident-operator created

podsecuritypolicy.policy/tridentoperatorpods created

#Examine the pods in the Trident namespace

NAME READY STATUS RESTARTS AGE

trident-csi-79df798bdc-m79dc 6/6 Running 0 150d

trident-csi-xrst8 2/2 Running 0 150d

trident-operator-5574dbbc68-nthjv 1/1 Running 0 1m30s

4. Create a TridentOrchestrator CR for installing Astra Trident.

#Create a tridentOrchestrator to initate a Trident install

$ cat deploy/crds/tridentorchestrator_cr.yaml

apiVersion: trident.netapp.io/v1

kind: TridentOrchestrator

metadata:

 name: trident

spec:

 debug: true

 namespace: trident

$ kubectl create -f deploy/crds/tridentorchestrator_cr.yaml

#Examine the pods in the Trident namespace

NAME READY STATUS RESTARTS AGE

trident-csi-79df798bdc-m79dc 6/6 Running 0 1m

trident-csi-xrst8 2/2 Running 0 1m

trident-operator-5574dbbc68-nthjv 1/1 Running 0 5m41s

#Confirm Trident was upgraded to the desired version

$ kubectl describe torc trident | grep Message -A 3

Message: Trident installed

Namespace: trident

Status: Installed

Version: v21.07.1

The existing backends and PVCs are automatically available.

44

Upgrade with tridentctl

You can easily upgrade an existing Astra Trident installation by using tridentctl.

Considerations

When upgrading to the latest release of Astra Trident, consider the following:

• Starting with Trident 20.01, only the beta release of volume snapshots is supported. Kubernetes

administrators should take care to safely back up or convert the alpha snapshot objects to beta to retain

the legacy alpha snapshots.

• The beta release of volume snapshots introduces a modified set of CRDs and a snapshot controller, both

of which should be set up before installing Astra Trident.

This blog discusses the steps involved in migrating alpha volume snapshots to the beta format.

About this task

Uninstalling and reinstalling Astra Trident acts as an upgrade. When you uninstall Trident, the Persistent

Volume Claim (PVC) and Persistent Volume (PV) used by the Astra Trident deployment are not deleted. PVs

that have already been provisioned will remain available while Astra Trident is offline, and Astra Trident will

provision volumes for any PVCs that are created in the interim once it is back online.

When upgrading Astra Trident, do not interrupt the upgrade process. Ensure that the installer

runs to completion.

Next steps after upgrade

To make use of the rich set of features that are available in newer Trident releases (such as, On-Demand

Volume Snapshots), you can upgrade the volumes by using the tridentctl upgrade command.

If there are legacy volumes, you should upgrade them from a NFS/iSCSI type to the CSI type to be able to use

the complete set of new features in Astra Trident. A legacy PV that has been provisioned by Trident supports

the traditional set of features.

Consider the following when deciding to upgrade volumes to the CSI type:

• You might not need to upgrade all the volumes. Previously created volumes will continue to be accessible

and function normally.

• A PV can be mounted as part of a deployment/StatefulSet when upgrading. It is not required to bring down

the deployment/StatefulSet.

• You cannot attach a PV to a standalone pod when upgrading. You should shut down the pod before

upgrading the volume.

• You can upgrade only a volume that is bound to a PVC. Volumes that are not bound to PVCs should be

removed and imported before upgrading.

Volume upgrade example

Here is an example that shows how a volume upgrade is performed.

1. Run kubectl get pv to list the PVs.

45

https://kubernetes.io/docs/concepts/storage/volume-snapshots/
https://netapp.io/2020/01/30/alpha-to-beta-snapshots/

$ kubectl get pv

NAME CAPACITY ACCESS MODES RECLAIM POLICY

STATUS CLAIM STORAGECLASS REASON AGE

default-pvc-1-a8475 1073741824 RWO Delete

Bound default/pvc-1 standard 19h

default-pvc-2-a8486 1073741824 RWO Delete

Bound default/pvc-2 standard 19h

default-pvc-3-a849e 1073741824 RWO Delete

Bound default/pvc-3 standard 19h

default-pvc-4-a84de 1073741824 RWO Delete

Bound default/pvc-4 standard 19h

trident 2Gi RWO Retain

Bound trident/trident 19h

There are currently four PVs that have been created by Trident 20.07, using the netapp.io/trident

provisioner.

2. Run kubectl describe pv to get the details of the PV.

$ kubectl describe pv default-pvc-2-a8486

Name: default-pvc-2-a8486

Labels: <none>

Annotations: pv.kubernetes.io/provisioned-by: netapp.io/trident

 volume.beta.kubernetes.io/storage-class: standard

Finalizers: [kubernetes.io/pv-protection]

StorageClass: standard

Status: Bound

Claim: default/pvc-2

Reclaim Policy: Delete

Access Modes: RWO

VolumeMode: Filesystem

Capacity: 1073741824

Node Affinity: <none>

Message:

Source:

 Type: NFS (an NFS mount that lasts the lifetime of a pod)

 Server: 10.xx.xx.xx

 Path: /trid_1907_alpha_default_pvc_2_a8486

 ReadOnly: false

The PV was created by using the netapp.io/trident provisioner and is of the type NFS. To support all

the new features provided by Astra Trident, this PV should be upgraded to the CSI type.

3. Run the tridenctl upgrade volume <name-of-trident-volume> command to upgrade a legacy

46

Astra Trident volume to the CSI spec.

$./tridentctl get volumes -n trident

+---------------------+---------+---------------+----------

+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS | PROTOCOL |

BACKEND UUID | STATE | MANAGED |

+---------------------+---------+---------------+----------

+--------------------------------------+--------+---------+

| default-pvc-2-a8486 | 1.0 GiB | standard | file | c5a6f6a4-

b052-423b-80d4-8fb491a14a22 | online | true |

| default-pvc-3-a849e | 1.0 GiB | standard | file | c5a6f6a4-

b052-423b-80d4-8fb491a14a22 | online | true |

| default-pvc-1-a8475 | 1.0 GiB | standard | file | c5a6f6a4-

b052-423b-80d4-8fb491a14a22 | online | true |

| default-pvc-4-a84de | 1.0 GiB | standard | file | c5a6f6a4-

b052-423b-80d4-8fb491a14a22 | online | true |

+---------------------+---------+---------------+----------

+--------------------------------------+--------+---------+

$./tridentctl upgrade volume default-pvc-2-a8486 -n trident

+---------------------+---------+---------------+----------

+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS | PROTOCOL |

BACKEND UUID | STATE | MANAGED |

+---------------------+---------+---------------+----------

+--------------------------------------+--------+---------+

| default-pvc-2-a8486 | 1.0 GiB | standard | file | c5a6f6a4-

b052-423b-80d4-8fb491a14a22 | online | true |

+---------------------+---------+---------------+----------

+--------------------------------------+--------+---------+

4. Run a kubectl describe pv to verify that the volume is a CSI volume.

47

$ kubectl describe pv default-pvc-2-a8486

Name: default-pvc-2-a8486

Labels: <none>

Annotations: pv.kubernetes.io/provisioned-by: csi.trident.netapp.io

 volume.beta.kubernetes.io/storage-class: standard

Finalizers: [kubernetes.io/pv-protection]

StorageClass: standard

Status: Bound

Claim: default/pvc-2

Reclaim Policy: Delete

Access Modes: RWO

VolumeMode: Filesystem

Capacity: 1073741824

Node Affinity: <none>

Message:

Source:

 Type: CSI (a Container Storage Interface (CSI) volume

source)

 Driver: csi.trident.netapp.io

 VolumeHandle: default-pvc-2-a8486

 ReadOnly: false

 VolumeAttributes: backendUUID=c5a6f6a4-b052-423b-80d4-

8fb491a14a22

internalName=trid_1907_alpha_default_pvc_2_a8486

 name=default-pvc-2-a8486

 protocol=file

Events: <none>

In this manner, you can upgrade volumes of the NFS/iSCSI type that were created by Astra Trident to the

CSI type, on a per-volume basis.

Uninstall Astra Trident

Depending on how Astra Trident is installed, there are multiple options to uninstall it.

Uninstall by using Helm

If you installed Astra Trident by using Helm, you can uninstall it by using helm uninstall.

48

#List the Helm release corresponding to the Astra Trident install.

$ helm ls -n trident

NAME NAMESPACE REVISION UPDATED

STATUS CHART APP VERSION

trident trident 1 2021-04-20

00:26:42.417764794 +0000 UTC deployed trident-operator-21.07.1

21.07.1

#Uninstall Helm release to remove Trident

$ helm uninstall trident -n trident

release "trident" uninstalled

Uninstall by using the Trident operator

If you installed Astra Trident by using the operator, you can uninstall it by doing one of the following:

• Edit TridentOrchestrator to set the uninstall flag: You can edit TridentOrchestrator and set

spec.uninstall=true. Edit the TridentOrchestrator CR and set the uninstall flag as shown

below:

$ kubectl patch torc <trident-orchestrator-name> --type=merge -p

'{"spec":{"uninstall":true}}'

When the uninstall flag is set to true, the Trident operator uninstalls Trident, but does not remove the

TridentOrchestrator itself. You should clean up the TridentOrchestrator and create a new one if you want to

install Trident again.

• Delete TridentOrchestrator: By removing the TridentOrchestrator CR that was used to deploy

Astra Trident, you instruct the operator to uninstall Trident. The operator processes the removal of

TridentOrchestrator and proceeds to remove the Astra Trident deployment and daemonset, deleting

the Trident pods it had created as part of the installation.

To completely remove Astra Trident (including the CRDs it creates) and effectively wipe the slate clean, you

can edit TridentOrchestrator to pass the wipeout option. See the following example:

$ kubectl patch torc <trident-orchestrator-name> --type=merge -p

'{"spec":{"wipeout":["crds"],"uninstall":true}}'

This uninstalls Astra Trident completely and clears all metadata related to the backends and volumes it

manages. Subsequent installations are treated as fresh installations.

You should only consider wiping out the CRDs when performing a complete uninstallation. This

cannot be undone. Do not wipe out the CRDs unless you are looking to start over and

create a fresh Astra Trident installation.

49

Uninstall by using tridentctl

Run the uninstall command in tridentctl as follows to removes all of the resources associated with

Astra Trident except for the CRDs and related objects, thereby making it easy to run the installer again to

update to a more recent version.

./tridentctl uninstall -n <namespace>

To perform a complete removal of Astra Trident, you should remove the finalizers for the CRDs created by

Astra Trident and delete the CRDs.

Downgrade Astra Trident

Learn about the steps involved in downgrading to an earlier version of Astra Trident.

You might consider downgrading for various reasons, such as the following:

• Contingency planning

• Immediate fix for bugs observed as a result of an upgrade

• Dependency issues, unsuccessful and incomplete upgrades

When to downgrade

You should consider a downgrade when moving to a Astra Trident release that uses CRDs. Because Astra

Trident now uses CRDs for maintaining state, all storage entities created (backends, storage classes, PV, and

volume snapshots) have associated CRD objects instead of data written into the trident PV (used by the

earlier installed version of Astra Trident). Newly created PVs, backends, and storage classes are all maintained

as CRD objects. If you need to downgrade, this should only be attempted for a version of Astra Trident that

runs using CRDs (19.07 and later). This is to ensure that all the operations performed on the current Astra

Trident release are visible after the downgrade occurs.

When not to downgrade

You should not downgrade to a release of Trident that uses etcd to maintain state (19.04 and earlier). All

operations performed with the current Astra Trident release are not reflected after the downgrade. Newly

created PVs are not usable when moving back to an earlier version. Changes made to objects such as

backends, PVs, storage classes, and volume snapshots (created/updated/deleted) are not visible to Astra

Trident when moving back to an earlier version. Going back to an earlier version does not disrupt access for

PVs that were already created by using the older release, unless they have been upgraded.

Downgrade process when Astra Trident is installed by using the operator

For installations done using the Trident Operator, the downgrade process is different and does not require the

use of tridentctl.

For installations done using the Trident operator, Astra Trident can be downgraded to either of the following:

• A version that is installed using the namespace-scoped operator (20.07 - 20.10).

• A version that is installed using the cluster-scoped operator (21.01 and later).

50

Downgrade to cluster-scoped operator

To downgrade Astra Trident to a release that uses the cluster-scoped operator, follow the steps mentioned

below.

Steps

1. Uninstall Astra Trident. Do not wipeout the CRDs unless you want to completely remove an existing

installation.

2. Delete the cluster-scoped operator. To do this, you will need the manifest used to deploy the operator. You

can obtain it from the Trident GitHub repo. Make sure you switch to the required branch.

3. Continue downgrading by installing the desired version of Astra Trident. Follow the documentation for the

desired release.

Downgrade to namespace-scoped operator

This section summarizes the steps involved in downgrading to an Astra Trident release that falls in the range

20.07 through 20.10, which will be installed using the namespace-scoped operator.

Steps

1. Uninstall Astra Trident. Do not wipeout the CRDs unless you want to completely remove an existing

installation.

Make sure the tridentorchestrator is deleted.

#Check to see if there are any tridentorchestrators present

$ kubectl get torc

NAME AGE

trident 20h

#Looks like there is a tridentorchestrator that needs deleting

$ kubectl delete torc trident

tridentorchestrator.trident.netapp.io "trident" deleted

2. Delete the cluster-scoped operator. To do this, you will need the manifest used to deploy the operator. You

can obtain it here from the Trident GitHub repo. Make sure you switch to the required branch.

3. Delete the tridentorchestrator CRD.

#Check to see if ``tridentorchestrators.trident.netapp.io`` CRD is

present and delete it.

$ kubectl get crd tridentorchestrators.trident.netapp.io

NAME CREATED AT

tridentorchestrators.trident.netapp.io 2021-01-21T21:11:37Z

$ kubectl delete crd tridentorchestrators.trident.netapp.io

customresourcedefinition.apiextensions.k8s.io

"tridentorchestrators.trident.netapp.io" deleted

Astra Trident has been uninstalled.

51

https://github.com/NetApp/trident/blob/stable/v21.07/deploy/bundle.yaml
https://github.com/NetApp/trident/blob/stable/v21.07/deploy/bundle.yaml

4. Continue downgrading by installing the desired version. Follow the documentation for the desired release.

Downgrade by using Helm

To downgrade, use the helm rollback command. See the following example:

$ helm rollback trident [revision #]

Downgrade process when Astra Trident is installed by using tridentctl

If you installed Astra Trident by using tridentctl, the downgrade process involves the following steps. This

sequence walks you through the downgrade process to move from Astra Trident 21.07 to 20.07.

Before beginning the downgrade, you should take a snapshot of your Kubernetes cluster’s

etcd. This enables you to back up the current state of Astra Trident’s CRDs.

Steps

1. Make sure that Trident is installed by using tridentctl. If you are unsure about how Astra Trident is

installed, run this simple test:

a. List the pods present in the Trident namespace.

b. Identify the version of Astra Trident running in your cluster. You can either use tridentctl or take a

look at the image used in the Trident pods.

c. If you do not see a tridentOrchestrator, (or) a tridentprovisioner, (or) a pod named

trident-operator-xxxxxxxxxx-xxxxx, Astra Trident is installed with tridentctl.

2. Uninstall Astra Trident with the existing tridentctl binary. In this case, you will uninstall with the 21.07

binary.

52

$ tridentctl version -n trident

+----------------+----------------+

| SERVER VERSION | CLIENT VERSION |

+----------------+----------------+

| 21.07.0 | 21.07.0 |

+----------------+----------------+

$ tridentctl uninstall -n trident

INFO Deleted Trident deployment.

INFO Deleted Trident daemonset.

INFO Deleted Trident service.

INFO Deleted Trident secret.

INFO Deleted cluster role binding.

INFO Deleted cluster role.

INFO Deleted service account.

INFO Deleted pod security policy.

podSecurityPolicy=tridentpods

INFO The uninstaller did not delete Trident's namespace in case it is

going to be reused.

INFO Trident uninstallation succeeded.

3. After this is complete, obtain the Trident binary for the desired version (in this example, 20.07), and use it

to install Astra Trident. You can generate custom YAMLs for a customized installation if needed.

$ cd 20.07/trident-installer/

$./tridentctl install -n trident-ns

INFO Created installer service account.

serviceaccount=trident-installer

INFO Created installer cluster role. clusterrole=trident-

installer

INFO Created installer cluster role binding.

clusterrolebinding=trident-installer

INFO Created installer configmap. configmap=trident-

installer

...

...

INFO Deleted installer cluster role binding.

INFO Deleted installer cluster role.

INFO Deleted installer service account.

The downgrade process is complete.

53

Use Astra Trident

Configure backends

A backend defines the relationship between Astra Trident and a storage system. It tells Astra Trident how to

communicate with that storage system and how Astra Trident should provision volumes from it. Astra Trident

will automatically offer up storage pools from backends that together match the requirements defined by a

storage class. Learn more about configuring the backend based on the type of storage system you have.

• Configure an Azure NetApp Files backend

• Configure a Cloud Volumes Service for Google Cloud Platform backend

• Configure a NetApp HCI or SolidFire backend

• Configure a backend with ONTAP or Cloud Volumes ONTAP NAS drivers

• Configure a backend with ONTAP or Cloud Volumes ONTAP SAN drivers

• Use Astra Trident with Amazon FSx for NetApp ONTAP

Configure an Azure NetApp Files backend

Learn about how to configure Azure NetApp Files (ANF) as the backend for your Astra Trident installation

using the sample configurations provided.

The Azure NetApp Files service does not support volumes less than 100 GB. Astra Trident

automatically creates 100-GB volumes if a smaller volume is requested.

What you’ll need

To configure and use an Azure NetApp Files backend, you need the following:

• subscriptionID from an Azure subscription with Azure NetApp Files enabled.

• tenantID, clientID, and clientSecret from an App Registration in Azure Active Directory with

sufficient permissions to the Azure NetApp Files service. The App Registration should use the Owner or

Contributor role that is predefined by Azure.

To learn more about Azure built-in roles, see the Azure documentation.

• The Azure location that contains at least one delegated subnet. As of Trident 22.01, the location

parameter is a required field at the top level of the backend configuration file. Location values specified in

virtual pools are ignored.

• If you are using Azure NetApp Files for the first time or in a new location, some initial configuration is

required. See the quickstart guide.

About this task

Based on the backend configuration (subnet, virtual network, service level, and location), Trident creates ANF

volumes on capacity pools that are available in the requested location and match the requested service level

and subnet.

NOTE: Astra Trident does not support Manual QoS capacity pools.

54

https://azure.microsoft.com/en-us/services/netapp/
https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-delegate-subnet
https://docs.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-quickstart-set-up-account-create-volumes

Backend configuration options

See the following table for the backend configuration options:

Parameter Description Default

version Always 1

storageDriverName Name of the storage driver "azure-netapp-files"

backendName Custom name or the storage

backend

Driver name + "_" + random

characters

subscriptionID The subscription ID from your

Azure subscription

tenantID The tenant ID from an App

Registration

clientID The client ID from an App

Registration

clientSecret The client secret from an App

Registration

serviceLevel One of Standard, Premium, or

Ultra

"" (random)

location Name of the Azure location where

the new volumes will be created

resourceGroups List of resource groups for filtering

discovered resources

"[]" (no filter)

netappAccounts List of NetApp accounts for filtering

discovered resources

"[]" (no filter)

capacityPools List of capacity pools for filtering

discovered resources

"[]" (no filter, random)

virtualNetwork Name of a virtual network with a

delegated subnet

""

subnet Name of a subnet delegated to

Microsoft.Netapp/volumes

""

nfsMountOptions Fine-grained control of NFS mount

options.

"nfsvers=3"

limitVolumeSize Fail provisioning if the requested

volume size is above this value

"" (not enforced by default)

debugTraceFlags Debug flags to use when

troubleshooting. Example,

\{"api": false, "method":

true, "discovery": true}.

Do not use this unless you are

troubleshooting and require a

detailed log dump.

null

55

If you encounter a “No capacity pools found” error when attempting to create a PVC, it is likely

your app registration doesn’t have the required permissions and resources (subnet, virtual

network, capacity pool) associated. Astra Trident will log the Azure resources it discovered when

the backend is created when debug is enabled. Be sure to check if an appropriate role is being

used.

If you want to mount the volumes by using NFS version 4.1, you can include nfsvers=4 in the

comma-delimited mount options list to choose NFS v4.1. Any mount options set in a storage

class override the mount options set in a backend configuration file.

The values for resourceGroups, netappAccounts, capacityPools, virtualNetwork, and subnet

may be specified using short or fully-qualified names. Short names may match multiple resources with the

same name, so using fully-qualified names is recommended in most situations. The resourceGroups,

netappAccounts, and capacityPools values are filters which restrict the set of discovered resources to

those available to this storage backend and may be specified in any combination. The fully-qualified names are

of the following format:

Type Format

Resource group <resource group>

NetApp account <resource group>/<netapp account>

Capacity pool <resource group>/<netapp account>/<capacity pool>

Virtual network <resource group>/<virtual network>

Subnet <resource group>/<virtual network>/<subnet>

You can control how each volume is provisioned by default by specifying the following options in a special

section of the configuration file. See the configuration examples below.

Parameter Description Default

exportRule The export rule(s) for new volumes "0.0.0.0/0"

snapshotDir Controls visibility of the .snapshot

directory

"false"

size The default size of new volumes "100G"

unixPermissions The unix permissions of new

volumes (4 octal digits)

"" (preview feature, requires

whitelisting in subscription)

The exportRule value must be a comma-separated list of any combination of IPv4 addresses or IPv4

subnets in CIDR notation.

For all the volumes created on an ANF backend, Astra Trident copies all the labels present on a

storage pool to the storage volume at the time it is provisioned. Storage administrators can

define labels per storage pool and group all the volumes created in a storage pool. This provides

a convenient way of differentiating volumes based on a set of customizable labels that are

provided in the backend configuration.

56

Example 1: Minimal configuration

This is the absolute minimum backend configuration. With this configuration, Astra Trident discovers all of your

NetApp accounts, capacity pools, and subnets delegated to ANF in the configured location, and places new

volumes on one of those pools and subnets randomly.

This configuration is ideal when you are just getting started with ANF and trying things out, but in practice you

are going to want to provide additional scoping for the volumes you provision.

{

 "version": 1,

 "storageDriverName": "azure-netapp-files",

 "subscriptionID": "9f87c765-4774-fake-ae98-a721add45451",

 "tenantID": "68e4f836-edc1-fake-bff9-b2d865ee56cf",

 "clientID": "dd043f63-bf8e-fake-8076-8de91e5713aa",

 "clientSecret": "SECRET",

 "location": "eastus"

}

Example 2: Specific service level configuration with capacity pool filters

This backend configuration places volumes in Azure’s eastus location in an Ultra capacity pool. Astra

Trident

automatically discovers all of the subnets delegated to ANF in that location and places a new volume on one of

them randomly.

 {

 "version": 1,

 "storageDriverName": "azure-netapp-files",

 "subscriptionID": "9f87c765-4774-fake-ae98-a721add45451",

 "tenantID": "68e4f836-edc1-fake-bff9-b2d865ee56cf",

 "clientID": "dd043f63-bf8e-fake-8076-8de91e5713aa",

 "clientSecret": "SECRET",

 "location": "eastus",

 "serviceLevel": "Ultra",

 "capacityPools": [

 "application-group-1/account-1/ultra-1",

 "application-group-1/account-1/ultra-2"

],

 }

Example 3: Advanced configuration

This backend configuration further reduces the scope of volume placement to a single subnet, and also

modifies some volume provisioning defaults.

57

 {

 "version": 1,

 "storageDriverName": "azure-netapp-files",

 "subscriptionID": "9f87c765-4774-fake-ae98-a721add45451",

 "tenantID": "68e4f836-edc1-fake-bff9-b2d865ee56cf",

 "clientID": "dd043f63-bf8e-fake-8076-8de91e5713aa",

 "clientSecret": "SECRET",

 "location": "eastus",

 "serviceLevel": "Ultra",

 "capacityPools": [

 "application-group-1/account-1/ultra-1",

 "application-group-1/account-1/ultra-2"

],

 "virtualNetwork": "my-virtual-network",

 "subnet": "my-subnet",

 "nfsMountOptions": "vers=3,proto=tcp,timeo=600",

 "limitVolumeSize": "500Gi",

 "defaults": {

 "exportRule": "10.0.0.0/24,10.0.1.0/24,10.0.2.100",

 "snapshotDir": "true",

 "size": "200Gi",

 "unixPermissions": "0777"

=======

 }

 }

Example 4: Virtual storage pool configuration

This backend configuration defines multiple storage pools in a single file. This is useful when you have multiple

capacity pools supporting different service levels and you want to create storage classes in Kubernetes that

represent those.

58

 {

 "version": 1,

 "storageDriverName": "azure-netapp-files",

 "subscriptionID": "9f87c765-4774-fake-ae98-a721add45451",

 "tenantID": "68e4f836-edc1-fake-bff9-b2d865ee56cf",

 "clientID": "dd043f63-bf8e-fake-8076-8de91e5713aa",

 "clientSecret": "SECRET",

 "location": "eastus",

 "resourceGroups": ["application-group-1"],

 "nfsMountOptions": "vers=3,proto=tcp,timeo=600",

 "labels": {

 "cloud": "azure"

 },

 "location": "eastus",

 "storage": [

 {

 "labels": {

 "performance": "gold"

 },

 "serviceLevel": "Ultra",

 "capacityPools": ["ultra-1", "ultra-2"]

 },

 {

 "labels": {

 "performance": "silver"

 },

 "serviceLevel": "Premium",

 "capacityPools": ["premium-1"]

 },

 {

 "labels": {

 "performance": "bronze"

 },

 "serviceLevel": "Standard",

 "capacityPools": ["standard-1", "standard-2"]

 }

]

 }

The following StorageClass definitions refer to the storage pools above. By using the

parameters.selector field, you can specify for each StorageClass the visrtual pool that is used to host a

volume. The volume will have the aspects defined in the chosen pool.

59

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: gold

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=gold"

allowVolumeExpansion: true

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: silver

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=silver"

allowVolumeExpansion: true

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: bronze

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=bronze"

allowVolumeExpansion: true

What’s next?

After you create the backend configuration file, run the following command:

tridentctl create backend -f <backend-file>

If the backend creation fails, something is wrong with the backend configuration. You can view the logs to

determine the cause by running the following command:

tridentctl logs

After you identify and correct the problem with the configuration file, you can run the create command again.

Configure a CVS for GCP backend

Learn about how to configure NetApp Cloud Volumes Service (CVS) for Google Cloud Platform (GCP) as the

backend for your Astra Trident installation using the sample configurations provided.

60

NetApp Cloud Volumes Service for Google Cloud does not support CVS-Performance volumes

less than 100 GiB in size, or CVS volumes less than 300 GiB in size. Astra Trident automatically

creates volumes of the minimum size if a the volume requested is smaller than the minimum

size.

What you’ll need

To configure and use the Cloud Volumes Service for Google Cloud backend, you need the following:

• A Google Cloud account configured with NetApp CVS

• Project number of your Google Cloud account

• Google Cloud service account with the netappcloudvolumes.admin role

• API key file for your CVS service account

Astra Trident now includes support for smaller volumes with the default CVS service type on GCP. For

backends created with storageClass=software, volumes will now have a minimum provisioning size of

300 GiB. CVS currently provides this feature under Controlled Availability and does not provide technical

support. Users must sign up for access to sub-1TiB volumes here. NetApp recommends customers consume

sub-1TiB volumes for non-production workloads.

When deploying backends using the default CVS service type (storageClass=software),

users must obtain access to the sub-1TiB volumes feature on GCP for the Project Number(s)

and Project ID(s) in question. This is necessary for Astra Trident to provision sub-1TiB volumes.

If not, volume creations will fail for PVCs that are lesser than 600 GiB. Obtain access to sub-

1TiB volumes using this form.

Volumes created by Astra Trident for the default CVS service level will be provisioned as follows:

• PVCs that are smaller than 300 GiB will result in Astra Trident creating a 300 GiB CVS volume.

• PVCs that are between 300 GiB to 600 GiB will result in Astra Trident creating a CVS volume of the

requested size.

• PVCs that are between 600 GiB and 1 TiB will result in Astra Trident creating a 1TiB CVS volume.

• PVCs that are greater than 1 TiB will result in Astra Trident creating a CVS volume of the requested size.

Backend configuration options

See the following table for the backend configuration options:

Parameter Description Default

version Always 1

storageDriverName Name of the storage driver "gcp-cvs"

backendName Custom name or the storage

backend

Driver name + "_" + part of API key

storageClass Type of storage. Choose from

hardware (performance

optimized) or software (CVS

service type)

61

https://cloud.netapp.com/cloud-volumes-service-for-gcp?utm_source=NetAppTrident_ReadTheDocs&utm_campaign=Trident
https://cloud.google.com/architecture/partners/netapp-cloud-volumes/service-types
https://docs.google.com/forms/d/e/1FAIpQLSc7_euiPtlV8bhsKWvwBl3gm9KUL4kOhD7lnbHC3LlQ7m02Dw/viewform
https://docs.google.com/forms/d/e/1FAIpQLSc7_euiPtlV8bhsKWvwBl3gm9KUL4kOhD7lnbHC3LlQ7m02Dw/viewform

Parameter Description Default

projectNumber Google Cloud account project

number. The value is found on the

Google Cloud portal’s Home page.

apiRegion CVS account region. It is the region

where the backend will provision

the volumes.

apiKey API key for the Google Cloud

service account with the

netappcloudvolumes.admin

role. It includes the JSON-formatted

contents of a Google Cloud service

account’s private key file (copied

verbatim into the backend

configuration file).

proxyURL Proxy URL if proxy server required

to connect to CVS Account. The

proxy server can either be an HTTP

proxy or an HTTPS proxy. For an

HTTPS proxy, certificate validation

is skipped to allow the usage of

self-signed certificates in the proxy

server. Proxy servers with

authentication enabled are not

supported.

nfsMountOptions Fine-grained control of NFS mount

options.

"nfsvers=3"

limitVolumeSize Fail provisioning if the requested

volume size is above this value

"" (not enforced by default)

serviceLevel The CVS service level for new

volumes. The values are

"standard", "premium", and

"extreme".

"standard"

network GCP network used for CVS

volumes

“default”

debugTraceFlags Debug flags to use when

troubleshooting. Example,

\{"api":false,

"method":true}. Do not use this

unless you are troubleshooting and

require a detailed log dump.

null

If using a shared VPC network, both projectNumber and hostProjectNumber must be specified. In that

case, projectNumber is the service project, and hostProjectNumber is the host project.

The apiRegion represents the GCP region where Astra Trident creates CVS volumes. When creating cross-

region Kubernetes clusters, CVS volumes created in an apiRegion can be used in workloads scheduled on

nodes across multiple GCP regions. Be aware that cross-region traffic incurs an additional cost.

62

• To enable cross-region access, your StorageClass definition for allowedTopologies

must include all regions. For example:

- key: topology.kubernetes.io/region

 values:

 - us-east1

 - europe-west1

• storageClass is an optional parameter that you can use to select the desired CVS service

type. You can choose from the base CVS service type (storageClass=software) or the

CVS-Performance service type (storageClass=hardware), which Trident uses by

default. Make sure you specify an apiRegion that provides the respective CVS

storageClass in your backend definition.

Astra Trident’s integration with the base CVS service type on Google Cloud is a beta feature,

not meant for production workloads. Trident is fully supported with the CVS-Performance

service type and uses it by default.

Each backend provisions volumes in a single Google Cloud region. To create volumes in other regions, you

can define additional backends.

You can control how each volume is provisioned by default by specifying the following options in a special

section of the configuration file. See the configuration examples below.

Parameter Description Default

exportRule The export rule(s) for new volumes "0.0.0.0/0"

snapshotDir Access to the .snapshot directory "false"

snapshotReserve Percentage of volume reserved for

snapshots

"" (accept CVS default of 0)

size The size of new volumes "100Gi"

The exportRule value must be a comma-separated list of any combination of IPv4 addresses or IPv4

subnets in CIDR notation.

For all the volumes created on a CVS Google Cloud backend, Trident copies all the labels

present on a storage pool to the storage volume at the time it is provisioned. Storage

administrators can define labels per storage pool and group all the volumes created in a storage

pool. This provides a convenient way of differentiating volumes based on a set of customizable

labels that are provided in the backend configuration.

Example 1: Minimal configuration

This is the absolute minimum backend configuration.

63

https://cloud.google.com/solutions/partners/netapp-cloud-volumes/service-types?hl=en_US
https://cloud.google.com/solutions/partners/netapp-cloud-volumes/service-types?hl=en_US

{

 "version": 1,

 "storageDriverName": "gcp-cvs",

 "projectNumber": "012345678901",

 "apiRegion": "us-west2",

 "apiKey": {

 "type": "service_account",

 "project_id": "my-gcp-project",

 "private_key_id": "<id_value>",

 "private_key": "

 -----BEGIN PRIVATE KEY-----

 <key_value>

 -----END PRIVATE KEY-----\n",

 "client_email": "cloudvolumes-admin-sa@my-gcp-

project.iam.gserviceaccount.com",

 "client_id": "123456789012345678901",

 "auth_uri": "https://accounts.google.com/o/oauth2/auth",

 "token_uri": "https://oauth2.googleapis.com/token",

 "auth_provider_x509_cert_url":

"https://www.googleapis.com/oauth2/v1/certs",

 "client_x509_cert_url":

"https://www.googleapis.com/robot/v1/metadata/x509/cloudvolumes-admin-

sa%40my-gcp-project.iam.gserviceaccount.com"

 }

}

Example 2: Base CVS service type configuration

This example shows a backend definition that uses the base CVS service type, which is meant for general-

purpose workloads and provides light/moderate performance, coupled with high zonal availability.

64

{

 "version": 1,

 "storageDriverName": "gcp-cvs",

 "projectNumber": "012345678901",

 "storageClass": "software",

 "apiRegion": "us-east4",

 "apiKey": {

 "type": "service_account",

 "project_id": "my-gcp-project",

 "private_key_id": "<id_value>",

 "private_key": "

 -----BEGIN PRIVATE KEY-----

 <key_value>

 -----END PRIVATE KEY-----\n",

 "client_email": "cloudvolumes-admin-sa@my-gcp-

project.iam.gserviceaccount.com",

 "client_id": "123456789012345678901",

 "auth_uri": "https://accounts.google.com/o/oauth2/auth",

 "token_uri": "https://oauth2.googleapis.com/token",

 "auth_provider_x509_cert_url":

"https://www.googleapis.com/oauth2/v1/certs",

 "client_x509_cert_url":

"https://www.googleapis.com/robot/v1/metadata/x509/cloudvolumes-admin-

sa%40my-gcp-project.iam.gserviceaccount.com"

 }

}

Example 3: Single service level configuration

This example shows a backend file that applies the same aspects to all Astra Trident-created storage in the

Google Cloud us-west2 region. This example also shows the usage of proxyURL in the backend configuration

file.

65

{

 "version": 1,

 "storageDriverName": "gcp-cvs",

 "projectNumber": "012345678901",

 "apiRegion": "us-west2",

 "apiKey": {

 "type": "service_account",

 "project_id": "my-gcp-project",

 "private_key_id": "<id_value>",

 "private_key": "

 -----BEGIN PRIVATE KEY-----

 <key_value>

 -----END PRIVATE KEY-----\n",

 "client_email": "cloudvolumes-admin-sa@my-gcp-

project.iam.gserviceaccount.com",

 "client_id": "123456789012345678901",

 "auth_uri": "https://accounts.google.com/o/oauth2/auth",

 "token_uri": "https://oauth2.googleapis.com/token",

 "auth_provider_x509_cert_url":

"https://www.googleapis.com/oauth2/v1/certs",

 "client_x509_cert_url":

"https://www.googleapis.com/robot/v1/metadata/x509/cloudvolumes-admin-

sa%40my-gcp-project.iam.gserviceaccount.com"

 },

 "proxyURL": "http://proxy-server-hostname/",

 "nfsMountOptions": "vers=3,proto=tcp,timeo=600",

 "limitVolumeSize": "10Ti",

 "serviceLevel": "premium",

 "defaults": {

 "snapshotDir": "true",

 "snapshotReserve": "5",

 "exportRule": "10.0.0.0/24,10.0.1.0/24,10.0.2.100",

 "size": "5Ti"

 }

}

Example 4: Virtual storage pool configuration

This example shows the backend definition file configured with virtual storage pools along with

StorageClasses that refer back to them.

In the sample backend definition file shown below, specific defaults are set for all storage pools, which set the

snapshotReserve at 5% and the exportRule to 0.0.0.0/0. The virtual storage pools are defined in the

storage section. In this example, each individual storage pool sets its own serviceLevel, and some pools

overwrite the default values.

66

{

 "version": 1,

 "storageDriverName": "gcp-cvs",

 "projectNumber": "012345678901",

 "apiRegion": "us-west2",

 "apiKey": {

 "type": "service_account",

 "private_key_id": "<id_value>",

 "private_key": "

 -----BEGIN PRIVATE KEY-----

 <key_value>

 -----END PRIVATE KEY-----\n",

 "client_email": "cloudvolumes-admin-sa@my-gcp-

project.iam.gserviceaccount.com",

 "client_id": "123456789012345678901",

 "auth_uri": "https://accounts.google.com/o/oauth2/auth",

 "token_uri": "https://oauth2.googleapis.com/token",

 "auth_provider_x509_cert_url":

"https://www.googleapis.com/oauth2/v1/certs",

 "client_x509_cert_url":

"https://www.googleapis.com/robot/v1/metadata/x509/cloudvolumes-admin-

sa%40my-gcp-project.iam.gserviceaccount.com"

 },

 "nfsMountOptions": "vers=3,proto=tcp,timeo=600",

 "defaults": {

 "snapshotReserve": "5",

 "exportRule": "0.0.0.0/0"

 },

 "labels": {

 "cloud": "gcp"

 },

 "region": "us-west2",

 "storage": [

 {

 "labels": {

 "performance": "extreme",

 "protection": "extra"

 },

 "serviceLevel": "extreme",

 "defaults": {

 "snapshotDir": "true",

 "snapshotReserve": "10",

 "exportRule": "10.0.0.0/24"

67

 }

 },

 {

 "labels": {

 "performance": "extreme",

 "protection": "standard"

 },

 "serviceLevel": "extreme"

 },

 {

 "labels": {

 "performance": "premium",

 "protection": "extra"

 },

 "serviceLevel": "premium",

 "defaults": {

 "snapshotDir": "true",

 "snapshotReserve": "10"

 }

 },

 {

 "labels": {

 "performance": "premium",

 "protection": "standard"

 },

 "serviceLevel": "premium"

 },

 {

 "labels": {

 "performance": "standard"

 },

 "serviceLevel": "standard"

 }

]

}

The following StorageClass definitions refer to the storage pools above. By using the parameters.selector

field, you can specify for each StorageClass the virtual pool that is used to host a volume. The volume will

have the aspects defined in the chosen pool.

The first StorageClass (cvs-extreme-extra-protection) maps to the first virtual storage pool. This is the

only pool offering extreme performance with a snapshot reserve of 10%. The last StorageClass (cvs-extra-

protection) calls out any storage pool which provides a snapshot reserve of 10%. Astra Trident decides

which virtual storage pool is selected and ensures that the snapshot reserve requirement is met.

68

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: cvs-extreme-extra-protection

provisioner: netapp.io/trident

parameters:

 selector: "performance=extreme; protection=extra"

allowVolumeExpansion: true

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: cvs-extreme-standard-protection

provisioner: netapp.io/trident

parameters:

 selector: "performance=premium; protection=standard"

allowVolumeExpansion: true

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: cvs-premium-extra-protection

provisioner: netapp.io/trident

parameters:

 selector: "performance=premium; protection=extra"

allowVolumeExpansion: true

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: cvs-premium

provisioner: netapp.io/trident

parameters:

 selector: "performance=premium; protection=standard"

allowVolumeExpansion: true

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: cvs-standard

provisioner: netapp.io/trident

parameters:

 selector: "performance=standard"

allowVolumeExpansion: true

apiVersion: storage.k8s.io/v1

69

kind: StorageClass

metadata:

 name: cvs-extra-protection

provisioner: netapp.io/trident

parameters:

 selector: "protection=extra"

allowVolumeExpansion: true

What’s next?

After you create the backend configuration file, run the following command:

tridentctl create backend -f <backend-file>

If the backend creation fails, something is wrong with the backend configuration. You can view the logs to

determine the cause by running the following command:

tridentctl logs

After you identify and correct the problem with the configuration file, you can run the create command again.

Configure a NetApp HCI or SolidFire backend

Learn about how to create and use an Element backend with your Astra Trident installation.

What you’ll need

• A supported storage system that runs Element software.

• Credentials to a NetApp HCI/SolidFire cluster admin or tenant user that can manage volumes.

• All of your Kubernetes worker nodes should have the appropriate iSCSI tools installed. See worker node

preparation information.

What you need to know

The solidfire-san storage driver supports both volume modes: file and block. For the Filesystem

volumeMode, Astra Trident creates a volume and creates a filesystem. The filesystem type is specified by the

StorageClass.

Driver Protocol VolumeMode Access modes

supported

File systems

supported

solidfire-san iSCSI Block RWO,ROX,RWX No Filesystem. Raw

block device.

solidfire-san iSCSI Block RWO,ROX,RWX No Filesystem. Raw

block device.

70

Driver Protocol VolumeMode Access modes

supported

File systems

supported

solidfire-san iSCSI Filesystem RWO,ROX xfs, ext3, ext4

solidfire-san iSCSI Filesystem RWO,ROX xfs, ext3, ext4

Astra Trident uses CHAP when functioning as an enhanced CSI Provisioner. If you’re using

CHAP (which is the default for CSI), no further preparation is required. It is recommended to

explicitly set the UseCHAP option to use CHAP with non-CSI Trident. Otherwise, see here.

Volume access groups are only supported by the conventional, non-CSI framework for Astra

Trident. When configured to work in CSI mode, Astra Trident uses CHAP.

If neither AccessGroups or UseCHAP are set, one of the following rules applies:

• If the default trident access group is detected, access groups are used.

• If no access group is detected and Kubernetes version is 1.7 or later, then CHAP is used.

Backend configuration options

See the following table for the backend configuration options:

Parameter Description Default

version Always 1

storageDriverName Name of the storage driver Always “solidfire-san”

backendName Custom name or the storage

backend

“solidfire_” + storage (iSCSI) IP

address

Endpoint MVIP for the SolidFire cluster with

tenant credentials

SVIP Storage (iSCSI) IP address and

port

labels Set of arbitrary JSON-formatted

labels to apply on volumes.

“”

TenantName Tenant name to use (created if not

found)

InitiatorIFace Restrict iSCSI traffic to a specific

host interface

“default”

UseCHAP Use CHAP to authenticate iSCSI true

AccessGroups List of Access Group IDs to use Finds the ID of an access group

named “trident”

Types QoS specifications

71

Parameter Description Default

limitVolumeSize Fail provisioning if requested

volume size is above this value

“” (not enforced by default)

debugTraceFlags Debug flags to use when

troubleshooting. Example,

{“api”:false, “method”:true}

null

Do not use debugTraceFlags unless you are troubleshooting and require a detailed log dump.

For all volumes created, Astra Trident will copy all labels present on a storage pool to the

backing storage LUN at the time it is provisioned. Storage administrators can define labels per

storage pool and group all volumes created in a storage pool. This provides a convenient way of

differentiating volumes based on a set of customizable labels that are provided in the backend

configuration.

Example 1: Backend configuration for solidfire-san driver with three volume types

This example shows a backend file using CHAP authentication and modeling three volume types with specific

QoS guarantees. Most likely you would then define storage classes to consume each of these using the IOPS

storage class parameter.

{

 "version": 1,

 "storageDriverName": "solidfire-san",

 "Endpoint": "https://<user>:<password>@<mvip>/json-rpc/8.0",

 "SVIP": "<svip>:3260",

 "TenantName": "<tenant>",

 "labels": {"k8scluster": "dev1", "backend": "dev1-element-cluster"},

 "UseCHAP": true,

 "Types": [{"Type": "Bronze", "Qos": {"minIOPS": 1000, "maxIOPS": 2000,

"burstIOPS": 4000}},

 {"Type": "Silver", "Qos": {"minIOPS": 4000, "maxIOPS": 6000,

"burstIOPS": 8000}},

 {"Type": "Gold", "Qos": {"minIOPS": 6000, "maxIOPS": 8000,

"burstIOPS": 10000}}]

}

Example 2: Backend and storage class configuration for solidfire-san driver with virtual storage
pools

This example shows the backend definition file configured with virtual storage pools along with StorageClasses

that refer back to them.

In the sample backend definition file shown below, specific defaults are set for all storage pools, which set the

type at Silver. The virtual storage pools are defined in the storage section. In this example, some of the

storage pool sets their own type, and some pools overwrite the default values set above.

72

{

 "version": 1,

 "storageDriverName": "solidfire-san",

 "Endpoint": "https://<user>:<password>@<mvip>/json-rpc/8.0",

 "SVIP": "<svip>:3260",

 "TenantName": "<tenant>",

 "UseCHAP": true,

 "Types": [{"Type": "Bronze", "Qos": {"minIOPS": 1000, "maxIOPS": 2000,

"burstIOPS": 4000}},

 {"Type": "Silver", "Qos": {"minIOPS": 4000, "maxIOPS": 6000,

"burstIOPS": 8000}},

 {"Type": "Gold", "Qos": {"minIOPS": 6000, "maxIOPS": 8000,

"burstIOPS": 10000}}],

 "type": "Silver",

 "labels":{"store":"solidfire", "k8scluster": "dev-1-cluster"},

 "region": "us-east-1",

 "storage": [

 {

 "labels":{"performance":"gold", "cost":"4"},

 "zone":"us-east-1a",

 "type":"Gold"

 },

 {

 "labels":{"performance":"silver", "cost":"3"},

 "zone":"us-east-1b",

 "type":"Silver"

 },

 {

 "labels":{"performance":"bronze", "cost":"2"},

 "zone":"us-east-1c",

 "type":"Bronze"

 },

 {

 "labels":{"performance":"silver", "cost":"1"},

 "zone":"us-east-1d"

 }

]

}

The following StorageClass definitions refer to the above virtual storage pools. Using the

parameters.selector field, each StorageClass calls out which virtual pool(s) can be used to host a

volume. The volume will have the aspects defined in the chosen virtual pool.

The first StorageClass (solidfire-gold-four) will map to the first virtual storage pool. This is the only pool

73

offering gold performance with a Volume Type QoS of Gold. The last StorageClass (solidfire-silver)

calls out any storage pool which offers a silver performance. Astra Trident will decide which virtual storage pool

is selected and will ensure the storage requirement is met.

74

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: solidfire-gold-four

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=gold; cost=4"

 fsType: "ext4"

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: solidfire-silver-three

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=silver; cost=3"

 fsType: "ext4"

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: solidfire-bronze-two

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=bronze; cost=2"

 fsType: "ext4"

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: solidfire-silver-one

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=silver; cost=1"

 fsType: "ext4"

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: solidfire-silver

provisioner: csi.trident.netapp.io

parameters:

 selector: "performance=silver"

 fsType: "ext4"

75

Find more information

• Volume access groups

Configure a backend with ONTAP or Cloud Volumes ONTAP SAN drivers

Learn about configuring an ONTAP backend with ONTAP and Cloud Volumes ONTAP SAN drivers.

• Preparation

• Configuration and examples

User permissions

Astra Trident expects to be run as either an ONTAP or SVM administrator, typically using the admin cluster

user or a vsadmin SVM user, or a user with a different name that has the same role. For Amazon FSx for

NetApp ONTAP deployments, Astra Trident expects to be run as either an ONTAP or SVM administrator, using

the cluster fsxadmin user or a vsadmin SVM user, or a user with a different name that has the same role.

The fsxadmin user is a limited replacement for the cluster admin user.

If you use the limitAggregateUsage parameter, cluster admin permissions are required.

When using Amazon FSx for NetApp ONTAP with Astra Trident, the limitAggregateUsage

parameter will not work with the vsadmin and fsxadmin user accounts. The configuration

operation will fail if you specify this parameter.

While it is possible to create a more restrictive role within ONTAP that a Trident driver can use, we don’t

recommend it. Most new releases of Trident will call additional APIs that would have to be accounted for,

making upgrades difficult and error-prone.

Preparation

Learn about how to prepare to configure an ONTAP backend with ONTAP SAN drivers. For all ONTAP

backends, Astra Trident requires at least one aggregate assigned to the SVM.

Remember that you can also run more than one driver, and create storage classes that point to one or the

other. For example, you could configure a san-dev class that uses the ontap-san driver and a san-

default class that uses the ontap-san-economy one.

All of your Kubernetes worker nodes must have the appropriate iSCSI tools installed. See here for more

details.

Authentication

Astra Trident offers two modes of authenticating an ONTAP backend.

• Credential-based: The username and password to an ONTAP user with the required permissions. It is

recommended to use a pre-defined security login role, such as admin or vsadmin to ensure maximum

compatibility with ONTAP versions.

• Certificate-based: Astra Trident can also communicate with an ONTAP cluster using a certificate installed

on the backend. Here, the backend definition must contain Base64-encoded values of the client certificate,

key, and the trusted CA certificate if used (recommended).

Users can also choose to update existing backends, opting to move from credential-based to certificate-based,

and vice-versa. If both credentials and certificates are provided, Astra Trident will default to using

76

certificates while issuing a warning to remove the credentials from the backend definition.

Enable credential-based authentication

Astra Trident requires the credentials to an SVM-scoped/cluster-scoped admin to communicate with the

ONTAP backend. It is recommended to make use of standard, pre-defined roles such as admin or vsadmin.

This ensures forward compatibility with future ONTAP releases that might expose feature APIs to be used by

future Astra Trident releases. A custom security login role can be created and used with Astra Trident, but is

not recommended.

A sample backend definition will look like this:

{

 "version": 1,

 "backendName": "ExampleBackend",

 "storageDriverName": "ontap-san",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.2",

 "svm": "svm_nfs",

 "username": "vsadmin",

 "password": "secret",

}

Keep in mind that the backend definition is the only place the credentials are stored in plain text. After the

backend is created, usernames/passwords are encoded with Base64 and stored as Kubernetes secrets. The

creation/updation of a backend is the only step that requires knowledge of the credentials. As such, it is an

admin-only operation, to be performed by the Kubernetes/storage administrator.

Enable certificate-based Authentication

New and existing backends can use a certificate and communicate with the ONTAP backend. Three

parameters are required in the backend definition.

• clientCertificate: Base64-encoded value of client certificate.

• clientPrivateKey: Base64-encoded value of associated private key.

• trustedCACertificate: Base64-encoded value of trusted CA certificate. If using a trusted CA, this parameter

must be provided. This can be ignored if no trusted CA is used.

A typical workflow involves the following steps.

Steps

1. Generate a client certificate and key. When generating, set Common Name (CN) to the ONTAP user to

authenticate as.

openssl req -x509 -nodes -days 1095 -newkey rsa:2048 -keyout k8senv.key

-out k8senv.pem -subj "/C=US/ST=NC/L=RTP/O=NetApp/CN=admin"

2. Add trusted CA certificate to the ONTAP cluster. This might be already handled by the storage

77

administrator. Ignore if no trusted CA is used.

security certificate install -type server -cert-name <trusted-ca-cert-

name> -vserver <vserver-name>

ssl modify -vserver <vserver-name> -server-enabled true -client-enabled

true -common-name <common-name> -serial <SN-from-trusted-CA-cert> -ca

<cert-authority>

3. Install the client certificate and key (from step 1) on the ONTAP cluster.

security certificate install -type client-ca -cert-name <certificate-

name> -vserver <vserver-name>

security ssl modify -vserver <vserver-name> -client-enabled true

4. Confirm the ONTAP security login role supports cert authentication method.

security login create -user-or-group-name admin -application ontapi

-authentication-method cert

security login create -user-or-group-name admin -application http

-authentication-method cert

5. Test authentication using certificate generated. Replace <ONTAP Management LIF> and <vserver name>

with Management LIF IP and SVM name.

curl -X POST -Lk https://<ONTAP-Management-

LIF>/servlets/netapp.servlets.admin.XMLrequest_filer --key k8senv.key

--cert ~/k8senv.pem -d '<?xml version="1.0" encoding="UTF-8"?><netapp

xmlns="http://www.netapp.com/filer/admin" version="1.21"

vfiler="<vserver-name>"><vserver-get></vserver-get></netapp>'

6. Encode certificate, key and trusted CA certificate with Base64.

base64 -w 0 k8senv.pem >> cert_base64

base64 -w 0 k8senv.key >> key_base64

base64 -w 0 trustedca.pem >> trustedca_base64

7. Create backend using the values obtained from the previous step.

78

$ cat cert-backend.json

{

"version": 1,

"storageDriverName": "ontap-san",

"backendName": "SanBackend",

"managementLIF": "1.2.3.4",

"dataLIF": "1.2.3.8",

"svm": "vserver_test",

"clientCertificate": "Faaaakkkkeeee...Vaaalllluuuueeee",

"clientPrivateKey": "LS0tFaKE...0VaLuES0tLS0K",

"trustedCACertificate": "QNFinfO...SiqOyN",

"storagePrefix": "myPrefix_"

}

$ tridentctl create backend -f cert-backend.json -n trident

+------------+----------------+--------------------------------------

+--------+---------+

| NAME | STORAGE DRIVER | UUID |

STATE | VOLUMES |

+------------+----------------+--------------------------------------

+--------+---------+

| SanBackend | ontap-san | 586b1cd5-8cf8-428d-a76c-2872713612c1 |

online | 0 |

+------------+----------------+--------------------------------------

+--------+---------+

Update authentication methods or rotate credentials

You can update an existing backend to make use of a different authentication method or to rotate their

credentials. This works both ways: backends that make use of username/password can be updated to use

certificates; backends that utilize certificates can be updated to username/password based. To do this, use an

updated backend.json file containing the required parameters to execute tridentctl backend update.

79

$ cat cert-backend-updated.json

{

"version": 1,

"storageDriverName": "ontap-san",

"backendName": "SanBackend",

"managementLIF": "1.2.3.4",

"dataLIF": "1.2.3.8",

"svm": "vserver_test",

"username": "vsadmin",

"password": "secret",

"storagePrefix": "myPrefix_"

}

#Update backend with tridentctl

$ tridentctl update backend SanBackend -f cert-backend-updated.json -n

trident

+------------+----------------+--------------------------------------

+--------+---------+

| NAME | STORAGE DRIVER | UUID |

STATE | VOLUMES |

+------------+----------------+--------------------------------------

+--------+---------+

| SanBackend | ontap-san | 586b1cd5-8cf8-428d-a76c-2872713612c1 |

online | 9 |

+------------+----------------+--------------------------------------

+--------+---------+

When rotating passwords, the storage administrator must first update the password for the user

on ONTAP. This is followed by a backend update. When rotating certificates, multiple certificates

can be added to the user. The backend is then updated to use the new certificate, following

which the old certificate can be deleted from the ONTAP cluster.

Updating a backend does not disrupt access to volumes that have already been created, nor impact volume

connections made after. A successful backend update indicates that Astra Trident can communicate with the

ONTAP backend and handle future volume operations.

Specify igroups

Astra Trident uses igroups to control access to the volumes (LUNs) that it provisions. Administrators have two

options when it comes to specifying igroups for backends:

• Astra Trident can automatically create and manage an igroup per backend. If igroupName is not included

in the backend definition, Astra Trident creates an igroup named trident-<backend-UUID> on the

SVM. This will ensure each backend has a dedicated igroup and handle the automated addition/deletion of

Kubernetes node IQNs.

• Alternatively, pre-created igroups can also be provided in a backend definition. This can be done using the

igroupName config parameter. Astra Trident will add/delete Kubernetes node IQNs to the pre-existing

80

igroup.

For backends that have igroupName defined, the igroupName can be deleted with a tridentctl

backend update to have Astra Trident auto-handle igroups. This will not disrupt access to volumes that are

already attached to workloads. Future connections will be handled using the igroup Astra Trident created.

Dedicating an igroup for each unique instance of Astra Trident is a best practice that is beneficial

for the Kubernetes admin as well as the storage admin. CSI Trident automates the addition and

removal of cluster node IQNs to the igroup, greatly simplifying its management. When using the

same SVM across Kubernetes environments (and Astra Trident installations), using a dedicated

igroup ensures that changes made to one Kubernetes cluster don’t influence igroups associated

with another. In addition, it is also important to ensure each node in the Kubernetes cluster has a

unique IQN. As mentioned above, Astra Trident automatically handles the addition and removal

of IQNs. Reusing IQNs across hosts can lead to undesirable scenarios where hosts get

mistaken for one another and access to LUNs is denied.

If Astra Trident is configured to function as a CSI Provisioner, Kubernetes node IQNs are automatically added

to/removed from the igroup. When nodes are added to a Kubernetes cluster, trident-csi DaemonSet

deploys a pod (trident-csi-xxxxx) on the newly added nodes and registers the new nodes it can attach

volumes to. Node IQNs are also added to the backend’s igroup. A similar set of steps handle the removal of

IQNs when node(s) are cordoned, drained, and deleted from Kubernetes.

If Astra Trident does not run as a CSI Provisioner, the igroup must be manually updated to contain the iSCSI

IQNs from every worker node in the Kubernetes cluster. IQNs of nodes that join the Kubernetes cluster will

need to be added to the igroup. Similarly, IQNs of nodes that are removed from the Kubernetes cluster must be

removed from the igroup.

Authenticate connections with bidirectional CHAP

Astra Trident can authenticate iSCSI sessions with bidirectional CHAP for the ontap-san and ontap-san-

economy drivers. This requires enabling the useCHAP option in your backend definition. When set to true,

Astra Trident configures the SVM’s default initiator security to bidirectional CHAP and set the username and

secrets from the backend file. NetApp recommends using bidirectional CHAP to authenticate connections.

See the following sample configuration:

{

 "version": 1,

 "storageDriverName": "ontap-san",

 "backendName": "ontap_san_chap",

 "managementLIF": "192.168.0.135",

 "svm": "ontap_iscsi_svm",

 "useCHAP": true,

 "username": "vsadmin",

 "password": "FaKePaSsWoRd",

 "igroupName": "trident",

 "chapInitiatorSecret": "cl9qxIm36DKyawxy",

 "chapTargetInitiatorSecret": "rqxigXgkesIpwxyz",

 "chapTargetUsername": "iJF4heBRT0TCwxyz",

 "chapUsername": "uh2aNCLSd6cNwxyz",

}

81

The useCHAP parameter is a Boolean option that can be configured only once. It is set to false

by default. After you set it to true, you cannot set it to false.

In addition to useCHAP=true, the chapInitiatorSecret, chapTargetInitiatorSecret,

chapTargetUsername, and chapUsername fields must be included in the backend definition. The secrets

can be changed after a backend is created by running tridentctl update.

How it works

By setting useCHAP to true, the storage administrator instructs Astra Trident to configure CHAP on the storage

backend. This includes the following:

• Setting up CHAP on the SVM:

◦ If the SVM’s default initiator security type is none (set by default) and there are no pre-existing LUNs

already present in the volume, Astra Trident will set the default security type to CHAP and proceed to

configuring the CHAP initiator and target username and secrets.

◦ If the SVM contains LUNs, Astra Trident will not enable CHAP on the SVM. This ensures that access to

LUNs that are already present on the SVM isn’t restricted.

• Configuring the CHAP initiator and target username and secrets; these options must be specified in the

backend configuration (as shown above).

• Managing the addition of inititators to the igroupName given in the backend. If unspecified, this defaults to

trident.

After the backend is created, Astra Trident creates a corresponding tridentbackend CRD and stores the

CHAP secrets and usernames as Kubernetes secrets. All PVs that are created by Astra Trident on this

backend will be mounted and attached over CHAP.

Rotate credentials and update backends

You can update the CHAP credentials by updating the CHAP parameters in the backend.json file. This will

require updating the CHAP secrets and using the tridentctl update command to reflect these changes.

When updating the CHAP secrets for a backend, you must use tridentctl to update the

backend. Do not update the credentials on the storage cluster through the CLI/ONTAP UI as

Astra Trident will not be able to pick up these changes.

82

$ cat backend-san.json

{

 "version": 1,

 "storageDriverName": "ontap-san",

 "backendName": "ontap_san_chap",

 "managementLIF": "192.168.0.135",

 "svm": "ontap_iscsi_svm",

 "useCHAP": true,

 "username": "vsadmin",

 "password": "FaKePaSsWoRd",

 "igroupName": "trident",

 "chapInitiatorSecret": "cl9qxUpDaTeD",

 "chapTargetInitiatorSecret": "rqxigXgkeUpDaTeD",

 "chapTargetUsername": "iJF4heBRT0TCwxyz",

 "chapUsername": "uh2aNCLSd6cNwxyz",

}

$./tridentctl update backend ontap_san_chap -f backend-san.json -n

trident

+----------------+----------------+--------------------------------------

+--------+---------+

| NAME | STORAGE DRIVER | UUID |

STATE | VOLUMES |

+----------------+----------------+--------------------------------------

+--------+---------+

| ontap_san_chap | ontap-san | aa458f3b-ad2d-4378-8a33-1a472ffbeb5c |

online | 7 |

+----------------+----------------+--------------------------------------

+--------+---------+

Existing connections will remain unaffected; they will continue to remain active if the credentials are updated by

Astra Trident on the SVM. New connections will use the updated credentials and existing connections continue

to remain active. Disconnecting and reconnecting old PVs will result in them using the updated credentials.

Configuration options and examples

Learn about how to create and use ONTAP SAN drivers with your Astra Trident installation. This section

provides backend configuration examples and details about how to map backends to StorageClasses.

Backend configuration options

See the following table for the backend configuration options:

Parameter Description Default

version Always 1

83

Parameter Description Default

storageDriverName Name of the storage driver “ontap-nas”, “ontap-nas-economy”,

“ontap-nas-flexgroup”, “ontap-san”,

“ontap-san-economy”

backendName Custom name or the storage

backend

Driver name + “_” + dataLIF

managementLIF IP address of a cluster or SVM

management LIF

“10.0.0.1”, “[2001:1234:abcd::fefe]”

dataLIF IP address of protocol LIF. Use

square brackets for IPv6. Cannot

be updated after you set it

Derived by the SVM unless

specified

useCHAP Use CHAP to authenticate iSCSI

for ONTAP SAN drivers [Boolean]

false

chapInitiatorSecret CHAP initiator secret. Required if

useCHAP=true

“”

labels Set of arbitrary JSON-formatted

labels to apply on volumes

“”

chapTargetInitiatorSecret CHAP target initiator secret.

Required if useCHAP=true

“”

chapUsername Inbound username. Required if

useCHAP=true

“”

chapTargetUsername Target username. Required if

useCHAP=true

“”

clientCertificate Base64-encoded value of client

certificate. Used for certificate-

based auth

“”

clientPrivateKey Base64-encoded value of client

private key. Used for certificate-

based auth

“”

trustedCACertificate Base64-encoded value of trusted

CA certificate. Optional. Used for

certificate-based auth

“”

username Username to connect to the

cluster/SVM. Used for credential-

based auth

“”

password Password to connect to the

cluster/SVM. Used for credential-

based auth

“”

svm Storage virtual machine to use Derived if an SVM

managementLIF is specified

igroupName Name of the igroup for SAN

volumes to use

“trident-<backend-UUID>”

84

Parameter Description Default

storagePrefix Prefix used when provisioning new

volumes in the SVM. Cannot be

updated after you set it

“trident”

limitAggregateUsage Fail provisioning if usage is above

this percentage. Does not apply to

Amazon FSx for ONTAP

“” (not enforced by default)

limitVolumeSize Fail provisioning if requested

volume size is above this value for

the economy driver.

“” (not enforced by default)

lunsPerFlexvol Maximum LUNs per Flexvol, must

be in range [50, 200]

“100”

debugTraceFlags Debug flags to use when

troubleshooting. Example,

{“api”:false, “method”:true}

null

useREST Boolean parameter to use ONTAP

REST APIs. Tech preview

false

useREST is provided as a tech preview that is recommended for test environments and not for

production workloads. When set to true, Astra Trident will use ONTAP REST APIs to

communicate with the backend. This feature requires ONTAP 9.9 and later. In addition, the

ONTAP login role used must have access to the ontap application. This is satisfied by the pre-

defined vsadmin and cluster-admin roles.

To communicate with the ONTAP cluster, you should provide the authentication parameters. This could be the

username/password to a security login or an installed certificate.

If you are using an Amazon FSx for NetApp ONTAP backend, do not specify the

limitAggregateUsage parameter. The fsxadmin and vsadmin roles provided by Amazon

FSx for NetApp ONTAP do not contain the required access permissions to retrieve aggregate

usage and limit it through Astra Trident.

Do not use debugTraceFlags unless you are troubleshooting and require a detailed log dump.

For the ontap-san drivers, the default is to use all data LIF IPs from the SVM and to use iSCSI multipath.

Specifying an IP address for the dataLIF for the ontap-san drivers forces them to disable multipath and use

only the specified address.

When creating a backend, remember that dataLIF and storagePrefix cannot be modified

after creation. To update these parameters, you will need to create a new backend.

igroupName can be set to an igroup that is already created on the ONTAP cluster. If unspecified, Astra Trident

automatically creates an igroup named trident-<backend-UUID>. If providing a pre-defined igroupName,

NetApp recommends using an igroup per Kubernetes cluster, if the SVM is to be shared between

environments. This is necessary for Astra Trident to maintain IQN additions/deletions automatically.

Backends can also have igroups updated after creation:

85

• igroupName can be updated to point to a new igroup that is created and managed on the SVM outside of

Astra Trident.

• igroupName can be omitted. In this case, Astra Trident will create and manage a trident-<backend-UUID>

igroup automatically.

In both cases, volume attachments will continue to be accessible. Future volume attachments will use the

updated igroup. This update does not disrupt access to volumes present on the backend.

A fully-qualified domain name (FQDN) can be specified for the managementLIF option.

managementLIF for all ONTAP drivers can also be set to IPv6 addresses. Make sure to install Trident with the

--use-ipv6 flag. Care must be taken to define managementLIF IPv6 address within square brackets.

When using IPv6 addresses, make sure managementLIF and dataLIF (if included in your

backend definition) are defined within square brackets, such as

[28e8:d9fb:a825:b7bf:69a8:d02f:9e7b:3555]. If dataLIF is not provided, Astra Trident will fetch

the IPv6 data LIFs from the SVM.

To enable the ontap-san drivers to use CHAP, set the useCHAP parameter to true in your backend definition.

Astra Trident will then configure and use bidirectional CHAP as the default authentication for the SVM given in

the backend. See here to learn about how it works.

For the ontap-san-economy driver, the limitVolumeSize option will also restrict the maximum size of the

volumes it manages for qtrees and LUNs.

Astra Trident sets provisioning labels in the “Comments” field of all volumes created using the

ontap-san driver. For each volume created, the “Comments” field on the FlexVol will be

populated with all labels present on the storage pool it is placed in. Storage administrators can

define labels per storage pool and group all volumes created in a storage pool. This provides a

convenient way of differentiating volumes based on a set of customizable labels that are

provided in the backend configuration.

Backend configuration options for provisioning volumes

You can control how each volume is provisioned by default using these options in a special section of the

configuration. For an example, see the configuration examples below.

Parameter Description Default

spaceAllocation Space-allocation for LUNs “true”

spaceReserve Space reservation mode; “none”

(thin) or “volume” (thick)

“none”

snapshotPolicy Snapshot policy to use “none”

qosPolicy QoS policy group to assign for

volumes created. Choose one of

qosPolicy or adaptiveQosPolicy per

storage pool/backend

“”

86

Parameter Description Default

adaptiveQosPolicy Adaptive QoS policy group to

assign for volumes created.

Choose one of qosPolicy or

adaptiveQosPolicy per storage

pool/backend

“”

snapshotReserve Percentage of volume reserved for

snapshots “0”
If snapshotPolicy is “none”, else

“”

splitOnClone Split a clone from its parent upon

creation

“false”

splitOnClone Split a clone from its parent upon

creation

“false”

encryption Enable NetApp volume encryption “false”

securityStyle Security style for new volumes “unix”

tieringPolicy Tiering policy to use “none” “snapshot-only” for pre-ONTAP 9.5

SVM-DR configuration

Using QoS policy groups with Astra Trident requires ONTAP 9.8 or later. It is recommended to

use a non-shared QoS policy group and ensure the policy group is applied to each constituent

individually. A shared QoS policy group will enforce the ceiling for the total throughput of all

workloads.

Here’s an example with defaults defined:

{

 "version": 1,

 "storageDriverName": "ontap-san",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.2",

 "svm": "trident_svm",

 "username": "admin",

 "password": "password",

 "labels": {"k8scluster": "dev2", "backend": "dev2-sanbackend"},

 "storagePrefix": "alternate-trident",

 "igroupName": "custom",

 "debugTraceFlags": {"api":false, "method":true},

 "defaults": {

 "spaceReserve": "volume",

 "qosPolicy": "standard",

 "spaceAllocation": "false",

 "snapshotPolicy": "default",

 "snapshotReserve": "10"

 }

}

87

For all volumes created using the ontap-san driver, Astra Trident adds an extra 10 percent

capacity to the FlexVol to accommodate the LUN metadata. The LUN will be provisioned with

the exact size that the user requests in the PVC. Astra Trident adds 10 percent to the FlexVol

(shows as Available size in ONTAP). Users will now get the amount of usable capacity they

requested. This change also prevents LUNs from becoming read-only unless the available

space is fully utilized. This does not apply to ontap-san-economy.

For backends that define snapshotReserve, Astra Trident calculates the size of volumes as follows:

Total volume size = [(PVC requested size) / (1 - (snapshotReserve

percentage) / 100)] * 1.1

The 1.1 is the extra 10 percent Astra Trident adds to the FlexVol to accommodate the LUN metadata. For

snapshotReserve = 5%, and PVC request = 5GiB, the total volume size is 5.79GiB and the available size is

5.5GiB. The volume show command should show results similar to this example:

Currently, resizing is the only way to use the new calculation for an existing volume.

Minimal configuration examples

The following examples show basic configurations that leave most parameters to default. This is the easiest

way to define a backend.

If you are using Amazon FSx on NetApp ONTAP with Astra Trident, the recommendation is to

specify DNS names for LIFs instead of IP addresses.

ontap-san driver with certificate-based authentication

This is a minimal backend configuration example. clientCertificate, clientPrivateKey, and

trustedCACertificate (optional, if using trusted CA) are populated in backend.json and take the

base64-encoded values of the client certificate, private key, and trusted CA certificate, respectively.

88

{

 "version": 1,

 "storageDriverName": "ontap-san",

 "backendName": "DefaultSANBackend",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.3",

 "svm": "svm_iscsi",

 "useCHAP": true,

 "chapInitiatorSecret": "cl9qxIm36DKyawxy",

 "chapTargetInitiatorSecret": "rqxigXgkesIpwxyz",

 "chapTargetUsername": "iJF4heBRT0TCwxyz",

 "chapUsername": "uh2aNCLSd6cNwxyz",

 "igroupName": "trident",

 "clientCertificate": "ZXR0ZXJwYXB...ICMgJ3BhcGVyc2",

 "clientPrivateKey": "vciwKIyAgZG...0cnksIGRlc2NyaX",

 "trustedCACertificate": "zcyBbaG...b3Igb3duIGNsYXNz"

}

ontap-san driver with bidirectional CHAP

This is a minimal backend configuration example. This basic configuration creates an ontap-san backend

with useCHAP set to true.

{

 "version": 1,

 "storageDriverName": "ontap-san",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.3",

 "svm": "svm_iscsi",

 "labels": {"k8scluster": "test-cluster-1", "backend": "testcluster1-

sanbackend"},

 "useCHAP": true,

 "chapInitiatorSecret": "cl9qxIm36DKyawxy",

 "chapTargetInitiatorSecret": "rqxigXgkesIpwxyz",

 "chapTargetUsername": "iJF4heBRT0TCwxyz",

 "chapUsername": "uh2aNCLSd6cNwxyz",

 "igroupName": "trident",

 "username": "vsadmin",

 "password": "secret"

}

ontap-san-economy driver

89

{

 "version": 1,

 "storageDriverName": "ontap-san-economy",

 "managementLIF": "10.0.0.1",

 "svm": "svm_iscsi_eco",

 "useCHAP": true,

 "chapInitiatorSecret": "cl9qxIm36DKyawxy",

 "chapTargetInitiatorSecret": "rqxigXgkesIpwxyz",

 "chapTargetUsername": "iJF4heBRT0TCwxyz",

 "chapUsername": "uh2aNCLSd6cNwxyz",

 "igroupName": "trident",

 "username": "vsadmin",

 "password": "secret"

}

Examples of backends with virtual storage pools

In the sample backend definition file shown below, specific defaults are set for all storage pools, such as

spaceReserve at none, spaceAllocation at false, and encryption at false. The virtual storage pools are

defined in the storage section.

In this example, some of the storage pool sets their own spaceReserve, spaceAllocation, and

encryption values, and some pools overwrite the default values set above.

{

 "version": 1,

 "storageDriverName": "ontap-san",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.3",

 "svm": "svm_iscsi",

 "useCHAP": true,

 "chapInitiatorSecret": "cl9qxIm36DKyawxy",

 "chapTargetInitiatorSecret": "rqxigXgkesIpwxyz",

 "chapTargetUsername": "iJF4heBRT0TCwxyz",

 "chapUsername": "uh2aNCLSd6cNwxyz",

 "igroupName": "trident",

 "username": "vsadmin",

 "password": "secret",

 "defaults": {

 "spaceAllocation": "false",

 "encryption": "false",

 "qosPolicy": "standard"

 },

 "labels":{"store": "san_store", "kubernetes-cluster": "prod-cluster-

90

1"},

 "region": "us_east_1",

 "storage": [

 {

 "labels":{"protection":"gold", "creditpoints":"40000"},

 "zone":"us_east_1a",

 "defaults": {

 "spaceAllocation": "true",

 "encryption": "true",

 "adaptiveQosPolicy": "adaptive-extreme"

 }

 },

 {

 "labels":{"protection":"silver", "creditpoints":"20000"},

 "zone":"us_east_1b",

 "defaults": {

 "spaceAllocation": "false",

 "encryption": "true",

 "qosPolicy": "premium"

 }

 },

 {

 "labels":{"protection":"bronze", "creditpoints":"5000"},

 "zone":"us_east_1c",

 "defaults": {

 "spaceAllocation": "true",

 "encryption": "false"

 }

 }

]

}

Here is an iSCSI example for the ontap-san-economy driver:

{

 "version": 1,

 "storageDriverName": "ontap-san-economy",

 "managementLIF": "10.0.0.1",

 "svm": "svm_iscsi_eco",

 "useCHAP": true,

 "chapInitiatorSecret": "cl9qxIm36DKyawxy",

 "chapTargetInitiatorSecret": "rqxigXgkesIpwxyz",

 "chapTargetUsername": "iJF4heBRT0TCwxyz",

 "chapUsername": "uh2aNCLSd6cNwxyz",

 "igroupName": "trident",

91

 "username": "vsadmin",

 "password": "secret",

 "defaults": {

 "spaceAllocation": "false",

 "encryption": "false"

 },

 "labels":{"store":"san_economy_store"},

 "region": "us_east_1",

 "storage": [

 {

 "labels":{"app":"oracledb", "cost":"30"},

 "zone":"us_east_1a",

 "defaults": {

 "spaceAllocation": "true",

 "encryption": "true"

 }

 },

 {

 "labels":{"app":"postgresdb", "cost":"20"},

 "zone":"us_east_1b",

 "defaults": {

 "spaceAllocation": "false",

 "encryption": "true"

 }

 },

 {

 "labels":{"app":"mysqldb", "cost":"10"},

 "zone":"us_east_1c",

 "defaults": {

 "spaceAllocation": "true",

 "encryption": "false"

 }

 }

]

}

Map backends to StorageClasses

The following StorageClass definitions refer to the above virtual storage pools. Using the

parameters.selector field, each StorageClass calls out which virtual pool(s) can be used to host a

volume. The volume will have the aspects defined in the chosen virtual pool.

• The first StorageClass (protection-gold) will map to the first, second virtual storage pool in the

ontap-nas-flexgroup backend and the first virtual storage pool in the ontap-san backend. These are

the only pool offering gold level protection.

• The second StorageClass (protection-not-gold) will map to the third, fourth virtual storage pool in

92

ontap-nas-flexgroup backend and the second, third virtual storage pool in ontap-san backend.

These are the only pools offering protection level other than gold.

• The third StorageClass (app-mysqldb) will map to the fourth virtual storage pool in ontap-nas backend

and the third virtual storage pool in ontap-san-economy backend. These are the only pools offering

storage pool configuration for mysqldb type app.

• The fourth StorageClass (protection-silver-creditpoints-20k) will map to the third virtual

storage pool in ontap-nas-flexgroup backend and the second virtual storage pool in ontap-san

backend. These are the only pools offering gold-level protection at 20000 creditpoints.

• The fifth StorageClass (creditpoints-5k) will map to the second virtual storage pool in ontap-nas-

economy backend and the third virtual storage pool in ontap-san backend. These are the only pool

offerings at 5000 creditpoints.

Astra Trident will decide which virtual storage pool is selected and will ensure the storage requirement is met.

93

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: protection-gold

provisioner: netapp.io/trident

parameters:

 selector: "protection=gold"

 fsType: "ext4"

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: protection-not-gold

provisioner: netapp.io/trident

parameters:

 selector: "protection!=gold"

 fsType: "ext4"

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: app-mysqldb

provisioner: netapp.io/trident

parameters:

 selector: "app=mysqldb"

 fsType: "ext4"

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: protection-silver-creditpoints-20k

provisioner: netapp.io/trident

parameters:

 selector: "protection=silver; creditpoints=20000"

 fsType: "ext4"

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: creditpoints-5k

provisioner: netapp.io/trident

parameters:

 selector: "creditpoints=5000"

 fsType: "ext4"

94

Configure a backend with ONTAP NAS drivers

Learn about configuring an ONTAP backend with ONTAP and Cloud Volumes ONTAP NAS drivers.

• Preparation

• Configuration and examples

User permissions

Astra Trident expects to be run as either an ONTAP or SVM administrator, typically using the admin cluster

user or a vsadmin SVM user, or a user with a different name that has the same role. For Amazon FSx for

NetApp ONTAP deployments, Astra Trident expects to be run as either an ONTAP or SVM administrator, using

the cluster fsxadmin user or a vsadmin SVM user, or a user with a different name that has the same role.

The fsxadmin user is a limited replacement for the cluster admin user.

If you use the limitAggregateUsage parameter, cluster admin permissions are required.

When using Amazon FSx for NetApp ONTAP with Astra Trident, the limitAggregateUsage

parameter will not work with the vsadmin and fsxadmin user accounts. The configuration

operation will fail if you specify this parameter.

While it is possible to create a more restrictive role within ONTAP that a Trident driver can use, we don’t

recommend it. Most new releases of Trident will call additional APIs that would have to be accounted for,

making upgrades difficult and error-prone.

Preparation

Learn about how to prepare to configure an ONTAP backend with ONTAP NAS drivers. For all ONTAP

backends, Astra Trident requires at least one aggregate assigned to the SVM.

For all ONTAP backends, Astra Trident requires at least one aggregate assigned to the SVM.

Remember that you can also run more than one driver, and create storage classes that point to one or the

other. For example, you could configure a Gold class that uses the ontap-nas driver and a Bronze class that

uses the ontap-nas-economy one.

All of your Kubernetes worker nodes must have the appropriate NFS tools installed. See here for more details.

Authentication

Astra Trident offers two modes of authenticating an ONTAP backend.

• Credential-based: The username and password to an ONTAP user with the required permissions. It is

recommended to use a pre-defined security login role, such as admin or vsadmin to ensure maximum

compatibility with ONTAP versions.

• Certificate-based: Astra Trident can also communicate with an ONTAP cluster using a certificate installed

on the backend. Here, the backend definition must contain Base64-encoded values of the client certificate,

key, and the trusted CA certificate if used (recommended).

Users can also choose to update existing backends, opting to move from credential-based to certificate-based,

and vice-versa. If both credentials and certificates are provided, Astra Trident will default to using

certificates while issuing a warning to remove the credentials from the backend definition.

95

Enable credential-based authentication

Astra Trident requires the credentials to an SVM-scoped/cluster-scoped admin to communicate with the

ONTAP backend. It is recommended to make use of standard, pre-defined roles such as admin or vsadmin.

This ensures forward compatibility with future ONTAP releases that might expose feature APIs to be used by

future Astra Trident releases. A custom security login role can be created and used with Astra Trident, but is

not recommended.

A sample backend definition will look like this:

{

 "version": 1,

 "backendName": "ExampleBackend",

 "storageDriverName": "ontap-nas",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.2",

 "svm": "svm_nfs",

 "username": "vsadmin",

 "password": "secret"

}

Keep in mind that the backend definition is the only place the credentials are stored in plain text. After the

backend is created, usernames/passwords are encoded with Base64 and stored as Kubernetes secrets. The

creation/updation of a backend is the only step that requires knowledge of the credentials. As such, it is an

admin-only operation, to be performed by the Kubernetes/storage administrator.

Enable certificate-based Authentication

New and existing backends can use a certificate and communicate with the ONTAP backend. Three

parameters are required in the backend definition.

• clientCertificate: Base64-encoded value of client certificate.

• clientPrivateKey: Base64-encoded value of associated private key.

• trustedCACertificate: Base64-encoded value of trusted CA certificate. If using a trusted CA, this parameter

must be provided. This can be ignored if no trusted CA is used.

A typical workflow involves the following steps.

Steps

1. Generate a client certificate and key. When generating, set Common Name (CN) to the ONTAP user to

authenticate as.

openssl req -x509 -nodes -days 1095 -newkey rsa:2048 -keyout k8senv.key

-out k8senv.pem -subj "/C=US/ST=NC/L=RTP/O=NetApp/CN=vsadmin"

2. Add trusted CA certificate to the ONTAP cluster. This might be already handled by the storage

administrator. Ignore if no trusted CA is used.

96

security certificate install -type server -cert-name <trusted-ca-cert-

name> -vserver <vserver-name>

ssl modify -vserver <vserver-name> -server-enabled true -client-enabled

true -common-name <common-name> -serial <SN-from-trusted-CA-cert> -ca

<cert-authority>

3. Install the client certificate and key (from step 1) on the ONTAP cluster.

security certificate install -type client-ca -cert-name <certificate-

name> -vserver <vserver-name>

security ssl modify -vserver <vserver-name> -client-enabled true

4. Confirm the ONTAP security login role supports cert authentication method.

security login create -user-or-group-name vsadmin -application ontapi

-authentication-method cert -vserver <vserver-name>

security login create -user-or-group-name vsadmin -application http

-authentication-method cert -vserver <vserver-name>

5. Test authentication using certificate generated. Replace <ONTAP Management LIF> and <vserver name>

with Management LIF IP and SVM name. You must ensure the LIF has its service policy set to default-

data-management.

curl -X POST -Lk https://<ONTAP-Management-

LIF>/servlets/netapp.servlets.admin.XMLrequest_filer --key k8senv.key

--cert ~/k8senv.pem -d '<?xml version="1.0" encoding="UTF-8"?><netapp

xmlns="http://www.netapp.com/filer/admin" version="1.21"

vfiler="<vserver-name>"><vserver-get></vserver-get></netapp>'

6. Encode certificate, key and trusted CA certificate with Base64.

base64 -w 0 k8senv.pem >> cert_base64

base64 -w 0 k8senv.key >> key_base64

base64 -w 0 trustedca.pem >> trustedca_base64

7. Create backend using the values obtained from the previous step.

97

$ cat cert-backend-updated.json

{

"version": 1,

"storageDriverName": "ontap-nas",

"backendName": "NasBackend",

"managementLIF": "1.2.3.4",

"dataLIF": "1.2.3.8",

"svm": "vserver_test",

"clientCertificate": "Faaaakkkkeeee...Vaaalllluuuueeee",

"clientPrivateKey": "LS0tFaKE...0VaLuES0tLS0K",

"storagePrefix": "myPrefix_"

}

#Update backend with tridentctl

$ tridentctl update backend NasBackend -f cert-backend-updated.json -n

trident

+------------+----------------+--------------------------------------

+--------+---------+

| NAME | STORAGE DRIVER | UUID |

STATE | VOLUMES |

+------------+----------------+--------------------------------------

+--------+---------+

| NasBackend | ontap-nas | 98e19b74-aec7-4a3d-8dcf-128e5033b214 |

online | 9 |

+------------+----------------+--------------------------------------

+--------+---------+

Update authentication methods or rotate credentials

You can update an existing backend to make use of a different authentication method or to rotate their

credentials. This works both ways: backends that make use of username/password can be updated to use

certificates; backends that utilize certificates can be updated to username/password based. To do this, use an

updated backend.json file containing the required parameters to execute tridentctl backend update.

98

$ cat cert-backend-updated.json

{

"version": 1,

"storageDriverName": "ontap-nas",

"backendName": "NasBackend",

"managementLIF": "1.2.3.4",

"dataLIF": "1.2.3.8",

"svm": "vserver_test",

"username": "vsadmin",

"password": "secret",

"storagePrefix": "myPrefix_"

}

#Update backend with tridentctl

$ tridentctl update backend NasBackend -f cert-backend-updated.json -n

trident

+------------+----------------+--------------------------------------

+--------+---------+

| NAME | STORAGE DRIVER | UUID |

STATE | VOLUMES |

+------------+----------------+--------------------------------------

+--------+---------+

| NasBackend | ontap-nas | 98e19b74-aec7-4a3d-8dcf-128e5033b214 |

online | 9 |

+------------+----------------+--------------------------------------

+--------+---------+

When rotating passwords, the storage administrator must first update the password for the user

on ONTAP. This is followed by a backend update. When rotating certificates, multiple certificates

can be added to the user. The backend is then updated to use the new certificate, following

which the old certificate can be deleted from the ONTAP cluster.

Updating a backend does not disrupt access to volumes that have already been created, nor impact volume

connections made after. A successful backend update indicates that Astra Trident can communicate with the

ONTAP backend and handle future volume operations.

Manage NFS export policies

Astra Trident uses NFS export policies to control access to the volumes that it provisions.

Astra Trident provides two options when working with export policies:

• Astra Trident can dynamically manage the export policy itself; in this mode of operation, the storage

administrator specifies a list of CIDR blocks that represent admissible IP addresses. Astra Trident adds

node IPs that fall in these ranges to the export policy automatically. Alternatively, when no CIDRs are

specified, any global-scoped unicast IP found on the nodes will be added to the export policy.

• Storage administrators can create an export policy and add rules manually. Astra Trident uses the default

99

export policy unless a different export policy name is specified in the configuration.

Dynamically manage export policies

The 20.04 release of CSI Trident provides the ability to dynamically manage export policies for ONTAP

backends. This provides the storage administrator the ability to specify a permissible address space for worker

node IPs, rather than defining explicit rules manually. It greatly simplifies export policy management;

modifications to the export policy no longer require manual intervention on the storage cluster. Moreover, this

helps restrict access to the storage cluster only to worker nodes that have IPs in the range specified,

supporting a finegrained and automated managment.

The dynamic management of export policies is only available for CSI Trident. It is important to

ensure that the worker nodes are not being NATed.

Example

There are two configuration options that must be used. Here’s an example backend definition:

{

 "version": 1,

 "storageDriverName": "ontap-nas",

 "backendName": "ontap_nas_auto_export,

 "managementLIF": "192.168.0.135",

 "svm": "svm1",

 "username": "vsadmin",

 "password": "FaKePaSsWoRd",

 "autoExportCIDRs": ["192.168.0.0/24"],

 "autoExportPolicy": true

}

When using this feature, you must ensure that the root junction in your SVM has a precreated

export policy with an export rule that permits the node CIDR block (such as the default export

policy). Always follow NetApp’s recommended best practice of dedicating a SVM for Astra

Trident.

Here is an explanation of how this feature works using the example above:

• autoExportPolicy is set to true. This indicates that Astra Trident will create an export policy for the

svm1 SVM and handle the addition and deletion of rules using autoExportCIDRs address blocks. For

example, a backend with UUID 403b5326-8482-40db-96d0-d83fb3f4daec and autoExportPolicy set to

true creates an export policy named trident-403b5326-8482-40db-96d0-d83fb3f4daec on the

SVM.

• autoExportCIDRs contains a list of address blocks. This field is optional and it defaults to ["0.0.0.0/0",

"::/0"]. If not defined, Astra Trident adds all globally-scoped unicast addresses found on the worker nodes.

In this example, the 192.168.0.0/24 address space is provided. This indicates that Kubernetes node IPs

that fall within this address range will be added to the export policy that Astra Trident creates. When Astra

Trident registers a node it runs on, it retrieves the IP addresses of the node and checks them against the

address blocks provided in autoExportCIDRs. After filtering the IPs, Astra Trident creates export policy rules

100

for the client IPs it discovers, with one rule for each node it identifies.

You can update autoExportPolicy and autoExportCIDRs for backends after you create them. You can

append new CIDRs for a backend that is automatically managed or delete existing CIDRs. Exercise care when

deleting CIDRs to ensure that existing connections are not dropped. You can also choose to disable

autoExportPolicy for a backend and fall back to a manually created export policy. This will require setting

the exportPolicy parameter in your backend config.

After Astra Trident creates or updates a backend, you can check the backend using tridentctl or the

corresponding tridentbackend CRD:

$./tridentctl get backends ontap_nas_auto_export -n trident -o yaml

items:

- backendUUID: 403b5326-8482-40db-96d0-d83fb3f4daec

 config:

 aggregate: ""

 autoExportCIDRs:

 - 192.168.0.0/24

 autoExportPolicy: true

 backendName: ontap_nas_auto_export

 chapInitiatorSecret: ""

 chapTargetInitiatorSecret: ""

 chapTargetUsername: ""

 chapUsername: ""

 dataLIF: 192.168.0.135

 debug: false

 debugTraceFlags: null

 defaults:

 encryption: "false"

 exportPolicy: <automatic>

 fileSystemType: ext4

As nodes are added to a Kubernetes cluster and registered with the Astra Trident controller, export policies of

existing backends are updated (provided they fall in the address range specified in autoExportCIDRs for the

backend).

When a node is removed, Astra Trident checks all backends that are online to remove the access rule for the

node. By removing this node IP from the export policies of managed backends, Astra Trident prevents rogue

mounts, unless this IP is reused by a new node in the cluster.

For previously existing backends, updating the backend with tridentctl update backend will ensure that

Astra Trident manages the export policies automatically. This will create a new export policy named after the

backend’s UUID and volumes that are present on the backend will use the newly created export policy when

they are mounted again.

Deleting a backend with auto-managed export policies will delete the dynamically created export

policy. If the backend is re-created, it is treated as a new backend and will result in the creation

of a new export policy.

101

If the IP address of a live node is updated, you must restart the Astra Trident pod on the node. Astra Trident

will then update the export policy for backends it manages to reflect this IP change.

Configuration options and examples

Learn about how to create and use ONTAP NAS drivers with your Astra Trident installation. This section

provides backend configuration examples and details about how to map backends to StorageClasses.

Backend configuration options

See the following table for the backend configuration options:

Parameter Description Default

version Always 1

storageDriverName Name of the storage driver “ontap-nas”, “ontap-nas-economy”,

“ontap-nas-flexgroup”, “ontap-san”,

“ontap-san-economy”

backendName Custom name or the storage

backend

Driver name + “_” + dataLIF

managementLIF IP address of a cluster or SVM

management LIF

“10.0.0.1”, “[2001:1234:abcd::fefe]”

dataLIF IP address of protocol LIF. Use

square brackets for IPv6. Cannot

be updated after you set it

Derived by the SVM unless

specified

autoExportPolicy Enable automatic export policy

creation and updating [Boolean]

false

autoExportCIDRs List of CIDRs to filter Kubernetes’

node IPs against when

autoExportPolicy is enabled

[“0.0.0.0/0”, “::/0”]`

labels Set of arbitrary JSON-formatted

labels to apply on volumes

“”

clientCertificate Base64-encoded value of client

certificate. Used for certificate-

based auth

“”

clientPrivateKey Base64-encoded value of client

private key. Used for certificate-

based auth

“”

trustedCACertificate Base64-encoded value of trusted

CA certificate. Optional. Used for

certificate-based auth

“”

username Username to connect to the

cluster/SVM. Used for credential-

based auth

password Password to connect to the

cluster/SVM. Used for credential-

based auth

102

Parameter Description Default

svm Storage virtual machine to use Derived if an SVM

managementLIF is specified

igroupName Name of the igroup for SAN

volumes to use

“trident-<backend-UUID>”

storagePrefix Prefix used when provisioning new

volumes in the SVM. Cannot be

updated after you set it

“trident”

limitAggregateUsage Fail provisioning if usage is above

this percentage. Does not apply to

Amazon FSx for ONTAP

“” (not enforced by default)

limitVolumeSize Fail provisioning if requested

volume size is above this value for

the economy driver.

“” (not enforced by default)

lunsPerFlexvol Maximum LUNs per Flexvol, must

be in range [50, 200]

“100”

debugTraceFlags Debug flags to use when

troubleshooting. Example,

{“api”:false, “method”:true}

null

nfsMountOptions Comma-separated list of NFS

mount options

“”

qtreesPerFlexvol Maximum Qtrees per FlexVol, must

be in range [50, 300]

“200”

useREST Boolean parameter to use ONTAP

REST APIs. Tech preview

false

useREST is provided as a tech preview that is recommended for test environments and not for

production workloads. When set to true, Astra Trident will use ONTAP REST APIs to

communicate with the backend. This feature requires ONTAP 9.9 and later. In addition, the

ONTAP login role used must have access to the ontap application. This is satisfied by the pre-

defined vsadmin and cluster-admin roles.

To communicate with the ONTAP cluster, you should provide the authentication parameters. This could be the

username/password to a security login or an installed certificate.

If you are using an Amazon FSx for NetApp ONTAP backend, do not specify the

limitAggregateUsage parameter. The fsxadmin and vsadmin roles provided by Amazon

FSx for NetApp ONTAP do not contain the required access permissions to retrieve aggregate

usage and limit it through Astra Trident.

Do not use debugTraceFlags unless you are troubleshooting and require a detailed log dump.

When creating a backend, remember that the dataLIF and storagePrefix cannot be

modified after creation. To update these parameters, you will need to create a new backend.

103

A fully-qualified domain name (FQDN) can be specified for the managementLIF option. A FQDN may also be

specified for the dataLIF option, in which case the FQDN will be used for the NFS mount operations. This

way you can create a round-robin DNS to load-balance across multiple data LIFs.

managementLIF for all ONTAP drivers can also be set to IPv6 addresses. Make sure to install Astra Trident

with the --use-ipv6 flag. Care must be taken to define the managementLIF IPv6 address within square

brackets.

When using IPv6 addresses, make sure managementLIF and dataLIF (if included in your

backend definition) are defined within square brackets, such as

[28e8:d9fb:a825:b7bf:69a8:d02f:9e7b:3555]. If dataLIF is not provided, Astra Trident will fetch

the IPv6 data LIFs from the SVM.

Using the autoExportPolicy and autoExportCIDRs options, CSI Trident can manage export policies

automatically. This is supported for all ontap-nas-* drivers.

For the ontap-nas-economy driver, the limitVolumeSize option will also restrict the maximum size of the

volumes it manages for qtrees and LUNs, and the qtreesPerFlexvol option allows customizing the

maximum number of qtrees per FlexVol.

The nfsMountOptions parameter can be used to specify mount options. The mount options for Kubernetes

persistent volumes are normally specified in storage classes, but if no mount options are specified in a storage

class, Astra Trident will fall back to using the mount options specified in the storage backend’s configuration

file. If no mount options are specified in either the storage class or the configuration file, then Astra Trident will

not set any mount options on an associated persistent volume.

Astra Trident sets provisioning labels in the “Comments” field of all volumes created using

ontap-nas and ontap-nas-flexgroup. Based on the driver used, the comments are set on

the FlexVol (ontap-nas) or FlexGroup (ontap-nas-flexgroup). Astra Trident will copy all

labels present on a storage pool to the storage volume at the time it is provisioned. Storage

administrators can define labels per storage pool and group all volumes created in a storage

pool. This provides a convenient way of differentiating volumes based on a set of customizable

labels that are provided in the backend configuration.

Backend configuration options for provisioning volumes

You can control how each volume is provisioned by default using these options in a special section of the

configuration. For an example, see the configuration examples below.

Parameter Description Default

spaceAllocation Space-allocation for LUNs “true”

spaceReserve Space reservation mode; “none”

(thin) or “volume” (thick)

“none”

snapshotPolicy Snapshot policy to use “none”

qosPolicy QoS policy group to assign for

volumes created. Choose one of

qosPolicy or adaptiveQosPolicy per

storage pool/backend

“”

104

Parameter Description Default

adaptiveQosPolicy Adaptive QoS policy group to

assign for volumes created.

Choose one of qosPolicy or

adaptiveQosPolicy per storage

pool/backend. Not supported by

ontap-nas-economy.

“”

snapshotReserve Percentage of volume reserved for

snapshots “0”
If snapshotPolicy is “none”, else

“”

splitOnClone Split a clone from its parent upon

creation

“false”

encryption Enable NetApp volume encryption “false”

securityStyle Security style for new volumes “unix”

tieringPolicy Tiering policy to use “none” “snapshot-only” for pre-ONTAP 9.5

SVM-DR configuration

unixPermissions Mode for new volumes “777”

snapshotDir Controls visibility of the

.snapshot directory

“false”

exportPolicy Export policy to use “default”

securityStyle Security style for new volumes “unix”

Using QoS policy groups with Astra Trident requires ONTAP 9.8 or later. It is recommended to

use a non-shared QoS policy group and ensure the policy group is applied to each constituent

individually. A shared QoS policy group will enforce the ceiling for the total throughput of all

workloads.

Here’s an example with defaults defined:

105

{

 "version": 1,

 "storageDriverName": "ontap-nas",

 "backendName": "customBackendName",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.2",

 "labels": {"k8scluster": "dev1", "backend": "dev1-nasbackend"},

 "svm": "trident_svm",

 "username": "cluster-admin",

 "password": "password",

 "limitAggregateUsage": "80%",

 "limitVolumeSize": "50Gi",

 "nfsMountOptions": "nfsvers=4",

 "debugTraceFlags": {"api":false, "method":true},

 "defaults": {

 "spaceReserve": "volume",

 "qosPolicy": "premium",

 "exportPolicy": "myk8scluster",

 "snapshotPolicy": "default",

 "snapshotReserve": "10"

 }

}

For ontap-nas and ontap-nas-flexgroups, Astra Trident now uses a new calculation to ensure that the

FlexVol is sized correctly with the snapshotReserve percentage and PVC. When the user requests a PVC,

Astra Trident creates the original FlexVol with more space by using the new calculation. This calculation

ensures that the user receives the writable space they requested for in the PVC, and not lesser space than

what they requested. Before v21.07, when the user requests a PVC (for example, 5GiB), with the

snapshotReserve to 50 percent, they get only 2.5GiB of writeable space. This is because what the user

requested for is the whole volume and snapshotReserve is a percentage of that. With Trident 21.07, what

the user requests for is the writeable space and Astra Trident defines the snapshotReserve number as the

percentage of the whole volume. This does not apply to ontap-nas-economy. See the following example to

see how this works:

The calculation is as follows:

Total volume size = (PVC requested size) / (1 - (snapshotReserve

percentage) / 100)

For snapshotReserve = 50%, and PVC request = 5GiB, the total volume size is 2/.5 = 10GiB and the available

size is 5GiB, which is what the user requested in the PVC request. The volume show command should show

results similar to this example:

106

Existing backends from previous installs will provision volumes as explained above when upgrading Astra

Trident. For volumes that you created before upgrading, you should resize their volumes for the change to be

observed. For example, a 2GiB PVC with snapshotReserve=50 earlier resulted in a volume that provides

1GiB of writable space. Resizing the volume to 3GiB, for example, provides the application with 3GiB of

writable space on a 6 GiB volume.

Minimal configuration examples

The following examples show basic configurations that leave most parameters to default. This is the easiest

way to define a backend.

If you are using Amazon FSx on NetApp ONTAP with Trident, the recommendation is to specify

DNS names for LIFs instead of IP addresses.

ontap-nas driver with certificate-based authentication

This is a minimal backend configuration example. clientCertificate, clientPrivateKey, and

trustedCACertificate (optional, if using trusted CA) are populated in backend.json and take the

base64-encoded values of the client certificate, private key, and trusted CA certificate, respectively.

{

 "version": 1,

 "backendName": "DefaultNASBackend",

 "storageDriverName": "ontap-nas",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.15",

 "svm": "nfs_svm",

 "clientCertificate": "ZXR0ZXJwYXB...ICMgJ3BhcGVyc2",

 "clientPrivateKey": "vciwKIyAgZG...0cnksIGRlc2NyaX",

 "trustedCACertificate": "zcyBbaG...b3Igb3duIGNsYXNz",

 "storagePrefix": "myPrefix_"

}

ontap-nas driver with auto export policy

This example shows you how you can instruct Astra Trident to use dynamic export policies to create and

manage the export policy automatically. This works the same for the ontap-nas-economy and ontap-nas-

flexgroup drivers.

107

{

 "version": 1,

 "storageDriverName": "ontap-nas",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.2",

 "svm": "svm_nfs",

 "labels": {"k8scluster": "test-cluster-east-1a", "backend": "test1-

nasbackend"},

 "autoExportPolicy": true,

 "autoExportCIDRs": ["10.0.0.0/24"],

 "username": "admin",

 "password": "secret",

 "nfsMountOptions": "nfsvers=4",

}

ontap-nas-flexgroup driver

{

 "version": 1,

 "storageDriverName": "ontap-nas-flexgroup",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.2",

 "labels": {"k8scluster": "test-cluster-east-1b", "backend": "test1-

ontap-cluster"},

 "svm": "svm_nfs",

 "username": "vsadmin",

 "password": "secret",

}

ontap-nas driver with IPv6

{

 "version": 1,

 "storageDriverName": "ontap-nas",

 "backendName": "nas_ipv6_backend",

 "managementLIF": "[5c5d:5edf:8f:7657:bef8:109b:1b41:d491]",

 "labels": {"k8scluster": "test-cluster-east-1a", "backend": "test1-ontap-

ipv6"},

 "svm": "nas_ipv6_svm",

 "username": "vsadmin",

 "password": "netapp123"

}

108

ontap-nas-economy driver

{

 "version": 1,

 "storageDriverName": "ontap-nas-economy",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.2",

 "svm": "svm_nfs",

 "username": "vsadmin",

 "password": "secret"

}

Examples of backends with virtual storage pools

In the sample backend definition file shown below, specific defaults are set for all storage pools, such as

spaceReserve at none, spaceAllocation at false, and encryption at false. The virtual storage pools are

defined in the storage section.

In this example, some of the storage pool sets their own spaceReserve, spaceAllocation, and

encryption values, and some pools overwrite the default values set above.

ontap-nas driver

{

 {

 "version": 1,

 "storageDriverName": "ontap-nas",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.2",

 "svm": "svm_nfs",

 "username": "admin",

 "password": "secret",

 "nfsMountOptions": "nfsvers=4",

 "defaults": {

 "spaceReserve": "none",

 "encryption": "false",

 "qosPolicy": "standard"

 },

 "labels":{"store":"nas_store", "k8scluster": "prod-cluster-1"},

 "region": "us_east_1",

 "storage": [

 {

 "labels":{"app":"msoffice", "cost":"100"},

 "zone":"us_east_1a",

 "defaults": {

109

 "spaceReserve": "volume",

 "encryption": "true",

 "unixPermissions": "0755",

 "adaptiveQosPolicy": "adaptive-premium"

 }

 },

 {

 "labels":{"app":"slack", "cost":"75"},

 "zone":"us_east_1b",

 "defaults": {

 "spaceReserve": "none",

 "encryption": "true",

 "unixPermissions": "0755"

 }

 },

 {

 "labels":{"app":"wordpress", "cost":"50"},

 "zone":"us_east_1c",

 "defaults": {

 "spaceReserve": "none",

 "encryption": "true",

 "unixPermissions": "0775"

 }

 },

 {

 "labels":{"app":"mysqldb", "cost":"25"},

 "zone":"us_east_1d",

 "defaults": {

 "spaceReserve": "volume",

 "encryption": "false",

 "unixPermissions": "0775"

 }

 }

]

}

ontap-nas-flexgroup driver

{

 "version": 1,

 "storageDriverName": "ontap-nas-flexgroup",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.2",

 "svm": "svm_nfs",

 "username": "vsadmin",

110

 "password": "secret",

 "defaults": {

 "spaceReserve": "none",

 "encryption": "false"

 },

 "labels":{"store":"flexgroup_store", "k8scluster": "prod-cluster-1"},

 "region": "us_east_1",

 "storage": [

 {

 "labels":{"protection":"gold", "creditpoints":"50000"},

 "zone":"us_east_1a",

 "defaults": {

 "spaceReserve": "volume",

 "encryption": "true",

 "unixPermissions": "0755"

 }

 },

 {

 "labels":{"protection":"gold", "creditpoints":"30000"},

 "zone":"us_east_1b",

 "defaults": {

 "spaceReserve": "none",

 "encryption": "true",

 "unixPermissions": "0755"

 }

 },

 {

 "labels":{"protection":"silver", "creditpoints":"20000"},

 "zone":"us_east_1c",

 "defaults": {

 "spaceReserve": "none",

 "encryption": "true",

 "unixPermissions": "0775"

 }

 },

 {

 "labels":{"protection":"bronze", "creditpoints":"10000"},

 "zone":"us_east_1d",

 "defaults": {

 "spaceReserve": "volume",

 "encryption": "false",

 "unixPermissions": "0775"

 }

 }

]

111

}

ontap-nas-economy driver

{

 "version": 1,

 "storageDriverName": "ontap-nas-economy",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.2",

 "svm": "svm_nfs",

 "username": "vsadmin",

 "password": "secret",

 "defaults": {

 "spaceReserve": "none",

 "encryption": "false"

 },

 "labels":{"store":"nas_economy_store"},

 "region": "us_east_1",

 "storage": [

 {

 "labels":{"department":"finance", "creditpoints":"6000"},

 "zone":"us_east_1a",

 "defaults": {

 "spaceReserve": "volume",

 "encryption": "true",

 "unixPermissions": "0755"

 }

 },

 {

 "labels":{"department":"legal", "creditpoints":"5000"},

 "zone":"us_east_1b",

 "defaults": {

 "spaceReserve": "none",

 "encryption": "true",

 "unixPermissions": "0755"

 }

 },

 {

 "labels":{"department":"engineering", "creditpoints":"3000"},

 "zone":"us_east_1c",

 "defaults": {

 "spaceReserve": "none",

 "encryption": "true",

 "unixPermissions": "0775"

112

 }

 },

 {

 "labels":{"department":"humanresource",

"creditpoints":"2000"},

 "zone":"us_east_1d",

 "defaults": {

 "spaceReserve": "volume",

 "encryption": "false",

 "unixPermissions": "0775"

 }

 }

]

}

Map backends to StorageClasses

The following StorageClass definitions refer to the above virtual storage pools. Using the

parameters.selector field, each StorageClass calls out which virtual pool(s) can be used to host a

volume. The volume will have the aspects defined in the chosen virtual pool.

• The first StorageClass (protection-gold) will map to the first, second virtual storage pool in the

ontap-nas-flexgroup backend and the first virtual storage pool in the ontap-san backend. These are

the only pool offering gold level protection.

• The second StorageClass (protection-not-gold) will map to the third, fourth virtual storage pool in

ontap-nas-flexgroup backend and the second, third virtual storage pool in ontap-san backend.

These are the only pools offering protection level other than gold.

• The third StorageClass (app-mysqldb) will map to the fourth virtual storage pool in ontap-nas backend

and the third virtual storage pool in ontap-san-economy backend. These are the only pools offering

storage pool configuration for mysqldb type app.

• The fourth StorageClass (protection-silver-creditpoints-20k) will map to the third virtual

storage pool in ontap-nas-flexgroup backend and the second virtual storage pool in ontap-san

backend. These are the only pools offering gold-level protection at 20000 creditpoints.

• The fifth StorageClass (creditpoints-5k) will map to the second virtual storage pool in ontap-nas-

economy backend and the third virtual storage pool in ontap-san backend. These are the only pool

offerings at 5000 creditpoints.

Astra Trident will decide which virtual storage pool is selected and will ensure the storage requirement is met.

113

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: protection-gold

provisioner: netapp.io/trident

parameters:

 selector: "protection=gold"

 fsType: "ext4"

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: protection-not-gold

provisioner: netapp.io/trident

parameters:

 selector: "protection!=gold"

 fsType: "ext4"

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: app-mysqldb

provisioner: netapp.io/trident

parameters:

 selector: "app=mysqldb"

 fsType: "ext4"

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: protection-silver-creditpoints-20k

provisioner: netapp.io/trident

parameters:

 selector: "protection=silver; creditpoints=20000"

 fsType: "ext4"

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: creditpoints-5k

provisioner: netapp.io/trident

parameters:

 selector: "creditpoints=5000"

 fsType: "ext4"

114

Use Astra Trident with Amazon FSx for NetApp ONTAP

Amazon FSx for NetApp ONTAP, is a fully managed AWS service that enables customers to launch and run

file systems powered by NetApp’s ONTAP storage operating system. Amazon FSx for NetApp ONTAP enables

you to leverage NetApp features, performance, and administrative capabilities you are familiar with, while

taking advantage of the simplicity, agility, security, and scalability of storing data on AWS. FSx supports many

of ONTAP’s file system features and administration APIs.

A file system is the primary resource in Amazon FSx, analogous to an ONTAP cluster on premises. Within

each SVM you can create one or multiple volumes, which are data containers that store the files and folders in

your file system. With Amazon FSx for NetApp ONTAP, Data ONTAP will be provided as a managed file

system in the cloud. The new file system type is called NetApp ONTAP.

Using Astra Trident with Amazon FSx for NetApp ONTAP, you can ensure Kubernetes clusters running in

Amazon Elastic Kubernetes Service (EKS) can provision block and file persistent volumes backed by ONTAP.

Creating your Amazon FSx for ONTAP file system

Volumes created on Amazon FSx filesystems that have automatic backups enabled cannot be

deleted by Trident. To delete PVCs, you need to manually delete the PV and the FSx for ONTAP

volume.

To prevent this issue:

• Do not use Quick create to create the FSx for ONTAP file system. The quick create

workflow enables automatic backups and does not provide an opt-out option.

• When using Standard create, disable automatic backup. Disabling automatic backups

allows Trident to successfully delete a volume without further manual intervention.

Learn about Astra Trident

If you are new to Astra Trident, familiarize yourself by using the links provided below:

• FAQs

• Requirements for using Astra Trident

• Deploy Astra Trident

• Best practices for configuring ONTAP, Cloud Volumes ONTAP, and Amazon FSx for NetApp ONTAP

• Integrate Astra Trident

• ONTAP SAN backend configuration

115

https://docs.aws.amazon.com/fsx/latest/ONTAPGuide/what-is-fsx-ontap.html

• ONTAP NAS backend configuration

Learn more about driver capabilities here.

Amazon FSx for NetApp ONTAP uses FabricPool to manage storage tiers. It enables you to store data in a tier,

based on whether the data is frequently accessed.

Astra Trident expects to be run as a vsadmin SVM user or as a user with a different name that has the same

role. Amazon FSx for NetApp ONTAP has an fsxadmin user that is a limited replacement of the ONTAP

admin cluster user. It is not recommended to use the fsxadmin user, with Trident, as a vsadmin SVM user

has access to more Astra Trident capabilities.

Drivers

You can integrate Astra Trident with Amazon FSx for NetApp ONTAP by using the following drivers:

• ontap-san: Each PV provisioned is a LUN within its own Amazon FSx for NetApp ONTAP volume.

• ontap-san-economy: Each PV provisioned is a LUN with a configurable number of LUNs per Amazon

FSx for NetApp ONTAP volume.

• ontap-nas: Each PV provisioned is a full Amazon FSx for NetApp ONTAP volume.

• ontap-nas-economy: Each PV provisioned is a qtree, with a configurable number of qtrees per Amazon

FSx for NetApp ONTAP volume.

• ontap-nas-flexgroup: Each PV provisioned is a full Amazon FSx for NetApp ONTAP FlexGroup

volume.

Authentication

Astra Trident offers two modes of authentication:

• Certificate-based: Astra Trident will communicate with the SVM on your FSx file system using a certificate

installed on your SVM.

• Credential-based: You can use the fsxadmin user for your file system or the vsadmin user configured for

your SVM.

We strongly recommend using the vsadmin user instead of the fsxadmin to configure

your backend. Astra Trident will communicate with the FSx file system using this username

and password.

To learn more about authentication, see these links:

• ONTAP NAS

• ONTAP SAN

Deploy and configure Astra Trident on EKS with Amazon FSx for NetApp ONTAP

What you’ll need

• An existing Amazon EKS cluster or self-managed Kubernetes cluster with kubectl installed.

• An existing Amazon FSx for NetApp ONTAP file system and storage virtual machine (SVM) that is

reachable from your cluster’s worker nodes.

116

https://docs.netapp.com/ontap-9/topic/com.netapp.doc.dot-mgng-stor-tier-fp/GUID-5A78F93F-7539-4840-AB0B-4A6E3252CF84.html

• Worker nodes that are prepared for NFS and/or iSCSI.

Ensure that you follow the node preparation steps required for Amazon Linux and Ubuntu

Amazon Machine Images (AMIs) depending on your EKS AMI type.

For other Astra Trident requirements, see here.

Steps

1. Deploy Astra Trident using one of the ../trident-get-started/kubernetes-deploy.html[deployment methods^].

2. Configure Astra Trident as follows:

a. Collect your SVM’s management LIF DNS name. For example, by using the AWS CLI, find the

DNSName entry under Endpoints → Management after running the following command:

aws fsx describe-storage-virtual-machines --region <file system

region>

3. Create and install certificates for authentication. If you are using an ontap-san backend, see here. If you

are using an ontap-nas backend, see here.

You can log in to your file system (for example to install certificates) using SSH from

anywhere that can reach your file system. Use the fsxadmin user, the password you

configured when you created your file system, and the management DNS name from aws

fsx describe-file-systems.

4. Create a backend file using your certificates and the DNS name of your management LIF, as shown in the

sample below:

{

 "version": 1,

 "storageDriverName": "ontap-san",

 "backendName": "customBackendName",

 "managementLIF": "svm-XXXXXXXXXXXXXXXXX.fs-XXXXXXXXXXXXXXXXX.fsx.us-

east-2.aws.internal",

 "svm": "svm01",

 "clientCertificate": "ZXR0ZXJwYXB...ICMgJ3BhcGVyc2",

 "clientPrivateKey": "vciwKIyAgZG...0cnksIGRlc2NyaX",

 "trustedCACertificate": "zcyBbaG...b3Igb3duIGNsYXNz",

 }

For information about creating backends, see these links:

• Configure a backend with ONTAP NAS drivers

• Configure a backend with ONTAP SAN drivers

117

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html

Do not specify dataLIF for the ontap-san and ontap-san-economy drivers to allow Astra

Trident to use multipath.

The limitAggregateUsage parameter will not work with the vsadmin and fsxadmin user

accounts. The configuration operation will fail if you specify this parameter.

After deployment, perform the steps to create a storage class, provision a volume, and mount the volume in a

pod.

Find more information

• Amazon FSx for NetApp ONTAP documentation

• Blog post on Amazon FSx for NetApp ONTAP

Create backends with kubectl

A backend defines the relationship between Astra Trident and a storage system. It tells Astra Trident how to

communicate with that storage system and how Astra Trident should provision volumes from it. After Astra

Trident is installed, the next step is to create a backend. The TridentBackendConfig Custom Resource

Definition (CRD) enables you to create and manage Trident backends directly through the Kubernetes

interface. You can do this by using kubectl or the equivalent CLI tool for your Kubernetes distribution.

TridentBackendConfig

TridentBackendConfig (tbc, tbconfig, tbackendconfig) is a frontend, namespaced CRD that

enables you to manage Astra Trident backends using kubectl. Kubernetes and storage admins can now

create and manage backends directly through the Kubernetes CLI without requiring a dedicated command-line

utility (tridentctl).

Upon the creation of a TridentBackendConfig object, the following happens:

• A backend is created automatically by Astra Trident based on the configuration you provide. This is

represented internally as a TridentBackend (tbe, tridentbackend) CR.

• The TridentBackendConfig is uniquely bound to a TridentBackend that was created by Astra

Trident.

Each TridentBackendConfig maintains a one-to-one mapping with a TridentBackend. The former is the

interface provided to the user to design and configure backends; the latter is how Trident represents the actual

backend object.

TridentBackend CRs are created automatically by Astra Trident. You should not modify

them. If you want to make updates to backends, do this by modifying the

TridentBackendConfig object.

See the following example for the format of the TridentBackendConfig CR:

118

https://docs.aws.amazon.com/fsx/latest/ONTAPGuide/what-is-fsx-ontap.html
https://www.netapp.com/blog/amazon-fsx-for-netapp-ontap/

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

 name: backend-tbc-ontap-san

spec:

 version: 1

 backendName: ontap-san-backend

 storageDriverName: ontap-san

 managementLIF: 10.0.0.1

 dataLIF: 10.0.0.2

 svm: trident_svm

 credentials:

 name: backend-tbc-ontap-san-secret

You can also take a look at the examples in the trident-installer directory for sample configurations for the

desired storage platform/service.

The spec takes backend-specific configuration parameters. In this example, the backend uses the ontap-

san storage driver and uses the configuration parameters that are tabulated here. For the list of configuration

options for your desired storage driver, see the backend configuration information for your storage driver.

The spec section also includes credentials and deletionPolicy fields, which are newly introduced in

the TridentBackendConfig CR:

• credentials: This parameter is a required field and contains the credentials used to authenticate with

the storage system/service. This is set to a user-created Kubernetes Secret. The credentials cannot be

passed in plain text and will result in an error.

• deletionPolicy: This field defines what should happen when the TridentBackendConfig is deleted.

It can take one of two possible values:

◦ delete: This results in the deletion of both TridentBackendConfig CR and the associated

backend. This is the default value.

◦ retain: When a TridentBackendConfig CR is deleted, the backend definition will still be present

and can be managed with tridentctl. Setting the deletion policy to retain lets users downgrade to

an earlier release (pre-21.04) and retain the created backends. The value for this field can be updated

after a TridentBackendConfig is created.

The name of a backend is set using spec.backendName. If unspecified, the name of the

backend is set to the name of the TridentBackendConfig object (metadata.name). It is

recommended to explicitly set backend names using spec.backendName.

Backends that were created with tridentctl do not have an associated

TridentBackendConfig object. You can choose to manage such backends with kubectl by

creating a TridentBackendConfig CR. Care must be taken to specify identical config

parameters (such as spec.backendName, spec.storagePrefix,

spec.storageDriverName, and so on). Astra Trident will automatically bind the newly-

created TridentBackendConfig with the pre-existing backend.

119

https://github.com/NetApp/trident/tree/stable/v21.07/trident-installer/sample-input/backends-samples

Steps overview

To create a new backend by using kubectl, you should do the following:

1. Create a Kubernetes Secret. The secret contains the credentials Astra Trident needs to communicate with

the storage cluster/service.

2. Create a TridentBackendConfig object. This contains specifics about the storage cluster/service and

references the secret created in the previous step.

After you create a backend, you can observe its status by using kubectl get tbc <tbc-name> -n

<trident-namespace> and gather additional details.

Step 1: Create a Kubernetes Secret

Create a Secret that contains the access credentials for the backend. This is unique to each storage

service/platform. Here’s an example:

$ kubectl -n trident create -f backend-tbc-ontap-san-secret.yaml

apiVersion: v1

kind: Secret

metadata:

 name: backend-tbc-ontap-san-secret

type: Opaque

stringData:

 username: cluster-admin

 password: t@Ax@7q(>

This table summarizes the fields that must be included in the Secret for each storage platform:

Storage platform Secret Fields

description

Secret Fields description

Azure NetApp Files clientID The client ID from an app

registration

Cloud Volumes Service for GCP private_key_id ID of the private key. Part of API

key for GCP Service Account with

CVS admin role

Cloud Volumes Service for GCP private_key Private key. Part of API key for

GCP Service Account with CVS

admin role

Element (NetApp HCI/SolidFire) Endpoint MVIP for the SolidFire cluster with

tenant credentials

120

https://kubernetes.io/docs/concepts/configuration/secret/

Storage platform Secret Fields

description

Secret Fields description

ONTAP username Username to connect to the

cluster/SVM. Used for credential-

based authentication

ONTAP password Password to connect to the

cluster/SVM. Used for credential-

based authentication

ONTAP clientPrivateKey Base64-encoded value of client

private key. Used for certificate-

based authentication

ONTAP chapUsername Inbound username. Required if

useCHAP=true. For ontap-san

and ontap-san-economy

ONTAP chapInitiatorSecret CHAP initiator secret. Required if

useCHAP=true. For ontap-san

and ontap-san-economy

ONTAP chapTargetUsername Target username. Required if

useCHAP=true. For ontap-san

and ontap-san-economy

ONTAP chapTargetInitiatorSecret CHAP target initiator secret.

Required if useCHAP=true. For

ontap-san and ontap-san-

economy

The Secret created in this step will be referenced in the spec.credentials field of the

TridentBackendConfig object that is created in the next step.

Step 2: Create the TridentBackendConfig CR

You are now ready to create your TridentBackendConfig CR. In this example, a backend that uses the

ontap-san driver is created by using the TridentBackendConfig object shown below:

$ kubectl -n trident create -f backend-tbc-ontap-san.yaml

121

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

 name: backend-tbc-ontap-san

spec:

 version: 1

 backendName: ontap-san-backend

 storageDriverName: ontap-san

 managementLIF: 10.0.0.1

 dataLIF: 10.0.0.2

 svm: trident_svm

 credentials:

 name: backend-tbc-ontap-san-secret

Step 3: Verify the status of the TridentBackendConfig CR

Now that you created the TridentBackendConfig CR, you can verify the status. See the following example:

$ kubectl -n trident get tbc backend-tbc-ontap-san

NAME BACKEND NAME BACKEND UUID

PHASE STATUS

backend-tbc-ontap-san ontap-san-backend 8d24fce7-6f60-4d4a-8ef6-

bab2699e6ab8 Bound Success

A backend was successfully created and bound to the TridentBackendConfig CR.

Phase can take one of the following values:

• Bound: The TridentBackendConfig CR is associated with a backend, and that backend contains

configRef set to the TridentBackendConfig CR’s uid.

• Unbound: Represented using "". The TridentBackendConfig object is not bound to a backend. All

newly created TridentBackendConfig CRs are in this phase by default. After the phase changes, it

cannot revert to Unbound again.

• Deleting: The TridentBackendConfig CR’s deletionPolicy was set to delete. When the

TridentBackendConfig CR is deleted, it transitions to the Deleting state.

◦ If no persistent volume claims (PVCs) exist on the backend, deleting the TridentBackendConfig

will result in Astra Trident deleting the backend as well as the TridentBackendConfig CR.

◦ If one or more PVCs are present on the backend, it goes to a deleting state. The

TridentBackendConfig CR subsequently also enters deleting phase. The backend and

TridentBackendConfig are deleted only after all PVCs are deleted.

• Lost: The backend associated with the TridentBackendConfig CR was accidentally or deliberately

deleted and the TridentBackendConfig CR still has a reference to the deleted backend. The

TridentBackendConfig CR can still be deleted irrespective of the deletionPolicy value.

122

• Unknown: Astra Trident is unable to determine the state or existence of the backend associated with the

TridentBackendConfig CR. For example, if the API server is not responding or if the

tridentbackends.trident.netapp.io CRD is missing. This might require the user’s intervention.

At this stage, a backend is successfully created! There are several operations that can additionally be handled,

such as backend updates and backend deletions.

(Optional) Step 4: Get more details

You can run the following command to get more information about your backend:

kubectl -n trident get tbc backend-tbc-ontap-san -o wide

NAME BACKEND NAME BACKEND UUID

PHASE STATUS STORAGE DRIVER DELETION POLICY

backend-tbc-ontap-san ontap-san-backend 8d24fce7-6f60-4d4a-8ef6-

bab2699e6ab8 Bound Success ontap-san delete

In addition, you can also obtain a YAML/JSON dump of TridentBackendConfig.

$ kubectl -n trident get tbc backend-tbc-ontap-san -o yaml

123

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

 creationTimestamp: "2021-04-21T20:45:11Z"

 finalizers:

 - trident.netapp.io

 generation: 1

 name: backend-tbc-ontap-san

 namespace: trident

 resourceVersion: "947143"

 uid: 35b9d777-109f-43d5-8077-c74a4559d09c

spec:

 backendName: ontap-san-backend

 credentials:

 name: backend-tbc-ontap-san-secret

 managementLIF: 10.0.0.1

 dataLIF: 10.0.0.2

 storageDriverName: ontap-san

 svm: trident_svm

 version: 1

status:

 backendInfo:

 backendName: ontap-san-backend

 backendUUID: 8d24fce7-6f60-4d4a-8ef6-bab2699e6ab8

 deletionPolicy: delete

 lastOperationStatus: Success

 message: Backend 'ontap-san-backend' created

 phase: Bound

backendInfo contains the backendName and the backendUUID of the backend that got created in

response to the TridentBackendConfig CR. The lastOperationStatus field represents the status of

the last operation of the TridentBackendConfig CR, which can be user-triggered (for example, user

changed something in spec) or triggered by Astra Trident (for example, during Astra Trident restarts). It can

either be Success or Failed. phase represents the status of the relation between the

TridentBackendConfig CR and the backend. In the example above, phase has the value Bound, which

means that the TridentBackendConfig CR is associated with the backend.

You can run the kubectl -n trident describe tbc <tbc-cr-name> command to get details of the

event logs.

You cannot update or delete a backend which contains an associated

TridentBackendConfig object using tridentctl. To understand the steps involved in

switching between tridentctl and TridentBackendConfig, see here.

124

Perform backend management with kubectl

Learn about how to perform backend management operations by using kubectl.

Delete a backend

By deleting a TridentBackendConfig, you instruct Astra Trident to delete/retain backends (based on

deletionPolicy). To delete a backend, ensure that deletionPolicy is set to delete. To delete just the

TridentBackendConfig, ensure that deletionPolicy is set to retain. This will ensure the backend is still

present and can be managed by using tridentctl.

Run the following command:

$ kubectl delete tbc <tbc-name> -n trident

Astra Trident does not delete the Kubernetes Secrets that were in use by TridentBackendConfig. The

Kubernetes user is responsible for cleaning up secrets. Care must be taken when deleting secrets. You should

delete secrets only if they are not in use by the backends.

View the existing backends

Run the following command:

$ kubectl get tbc -n trident

You can also run tridentctl get backend -n trident or tridentctl get backend -o yaml -n

trident to obtain a list of all backends that exist. This list will also include backends that were created with

tridentctl.

Update a backend

There can be multiple reasons to update a backend:

• Credentials to the storage system have changed. To update credentials, the Kubernetes Secret that is used

in the TridentBackendConfig object must be updated. Astra Trident will automatically update the

backend with the latest credentials provided. Run the following command to update the Kubernetes Secret:

$ kubectl apply -f <updated-secret-file.yaml> -n trident

• Parameters (such as the name of the ONTAP SVM being used) need to be updated.

In this case, TridentBackendConfig objects can be updated directly through Kubernetes.

$ kubectl apply -f <updated-backend-file.yaml>

Alternatively, make changes to the existing TridentBackendConfig CR by running the following command:

125

$ kubectl edit tbc <tbc-name> -n trident

If a backend update fails, the backend continues to remain in its last known configuration. You can view the

logs to determine the cause by running kubectl get tbc <tbc-name> -o yaml -n trident or

kubectl describe tbc <tbc-name> -n trident.

After you identify and correct the problem with the configuration file, you can re-run the update command.

Perform backend management with tridentctl

Learn about how to perform backend management operations by using tridentctl.

Create a backend

After you create a backend configuration file, run the following command:

$ tridentctl create backend -f <backend-file> -n trident

If backend creation fails, something was wrong with the backend configuration. You can view the logs to

determine the cause by running the following command:

$ tridentctl logs -n trident

After you identify and correct the problem with the configuration file, you can simply run the create command

again.

Delete a backend

To delete a backend from Astra Trident, do the following:

1. Retrieve the backend name:

$ tridentctl get backend -n trident

2. Delete the backend:

$ tridentctl delete backend <backend-name> -n trident

If Astra Trident has provisioned volumes and snapshots from this backend that still exist,

deleting the backend prevents new volumes from being provisioned by it. The backend will

continue to exist in a “Deleting” state and Trident will continue to manage those volumes and

snapshots until they are deleted.

126

View the existing backends

To view the backends that Trident knows about, do the following:

• To get a summary, run the following command:

$ tridentctl get backend -n trident

• To get all the details, run the following command:

$ tridentctl get backend -o json -n trident

Update a backend

After you create a new backend configuration file, run the following command:

$ tridentctl update backend <backend-name> -f <backend-file> -n trident

If backend update fails, something was wrong with the backend configuration or you attempted an invalid

update. You can view the logs to determine the cause by running the following command:

$ tridentctl logs -n trident

After you identify and correct the problem with the configuration file, you can simply run the update command

again.

Identify the storage classes that use a backend

This is an example of the kind of questions you can answer with the JSON that tridentctl outputs for

backend objects. This uses the jq utility, which you need to install.

$ tridentctl get backend -o json | jq '[.items[] | {backend: .name,

storageClasses: [.storage[].storageClasses]|unique}]'

This also applies for backends that were created by using TridentBackendConfig.

Move between backend management options

Learn about the different ways of managing backends in Astra Trident. With the introduction of

TridentBackendConfig, administrators now have two unique ways of managing backends. This poses the

following questions:

• Can backends created using tridentctl be managed with TridentBackendConfig?

127

• Can backends created using TridentBackendConfig be managed using tridentctl?

Manage tridentctl backends using TridentBackendConfig

This section covers the steps required to manage backends that were created using tridentctl directly

through the Kubernetes interface by creating TridentBackendConfig objects.

This will apply to the following scenarios:

• Pre-existing backends, that don’t have a TridentBackendConfig because they were created with

tridentctl.

• New backends that were created with tridentctl, while other TridentBackendConfig objects exist.

In both scenarios, backends will continue to be present, with Astra Trident scheduling volumes and operating

on them. Administrators have one of two choices here:

• Continue using tridentctl to manage backends that were created using it.

• Bind backends created using tridentctl to a new TridentBackendConfig object. Doing so would

mean the backends will be managed using kubectl and not tridentctl.

To manage a pre-existing backend using kubectl, you will need to create a TridentBackendConfig that

binds to the existing backend. Here is an overview of how that works:

1. Create a Kubernetes Secret. The secret contains the credentials Astra Trident needs to communicate with

the storage cluster/service.

2. Create a TridentBackendConfig object. This contains specifics about the storage cluster/service and

references the secret created in the previous step. Care must be taken to specify identical config

parameters (such as spec.backendName, spec.storagePrefix, spec.storageDriverName, and

so on). spec.backendName must be set to the name of the existing backend.

Step 0: Identify the backend

To create a TridentBackendConfig that binds to an existing backend, you will need to obtain the backend’s

configuration. In this example, let us assume a backend was created using the following JSON definition:

$ tridentctl get backend ontap-nas-backend -n trident

+---------------------+----------------

+--------------------------------------+--------+---------+

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

+---------------------+----------------

+--------------------------------------+--------+---------+

| ontap-nas-backend | ontap-nas | 52f2eb10-e4c6-4160-99fc-

96b3be5ab5d7 | online | 25 |

+---------------------+----------------

+--------------------------------------+--------+---------+

$ cat ontap-nas-backend.json

128

{

 "version": 1,

 "storageDriverName": "ontap-nas",

 "managementLIF": "10.10.10.1",

 "dataLIF": "10.10.10.2",

 "backendName": "ontap-nas-backend",

 "svm": "trident_svm",

 "username": "cluster-admin",

 "password": "admin-password",

 "defaults": {

 "spaceReserve": "none",

 "encryption": "false"

 },

 "labels":{"store":"nas_store"},

 "region": "us_east_1",

 "storage": [

 {

 "labels":{"app":"msoffice", "cost":"100"},

 "zone":"us_east_1a",

 "defaults": {

 "spaceReserve": "volume",

 "encryption": "true",

 "unixPermissions": "0755"

 }

 },

 {

 "labels":{"app":"mysqldb", "cost":"25"},

 "zone":"us_east_1d",

 "defaults": {

 "spaceReserve": "volume",

 "encryption": "false",

 "unixPermissions": "0775"

 }

 }

]

}

Step 1: Create a Kubernetes Secret

Create a Secret that contains the credentials for the backend, as shown in this example:

129

$ cat tbc-ontap-nas-backend-secret.yaml

apiVersion: v1

kind: Secret

metadata:

 name: ontap-nas-backend-secret

type: Opaque

stringData:

 username: cluster-admin

 passWord: admin-password

$ kubectl create -f tbc-ontap-nas-backend-secret.yaml -n trident

secret/backend-tbc-ontap-san-secret created

Step 2: Create a TridentBackendConfig CR

The next step is to create a TridentBackendConfig CR that will automatically bind to the pre-existing

ontap-nas-backend (as in this example). Ensure the following requirements are met:

• The same backend name is defined in spec.backendName.

• Configuration parameters are identical to the original backend.

• Virtual Storage Pools (if present) must retain the same order as in the original backend.

• Credentials are provided through a Kubernetes Secret and not in plain text.

In this case, the TridentBackendConfig will look like this:

130

$ cat backend-tbc-ontap-nas.yaml

apiVersion: trident.netapp.io/v1

kind: TridentBackendConfig

metadata:

 name: tbc-ontap-nas-backend

spec:

 version: 1

 storageDriverName: ontap-nas

 managementLIF: 10.10.10.1

 dataLIF: 10.10.10.2

 backendName: ontap-nas-backend

 svm: trident_svm

 credentials:

 name: mysecret

 defaults:

 spaceReserve: none

 encryption: 'false'

 labels:

 store: nas_store

 region: us_east_1

 storage:

 - labels:

 app: msoffice

 cost: '100'

 zone: us_east_1a

 defaults:

 spaceReserve: volume

 encryption: 'true'

 unixPermissions: '0755'

 - labels:

 app: mysqldb

 cost: '25'

 zone: us_east_1d

 defaults:

 spaceReserve: volume

 encryption: 'false'

 unixPermissions: '0775'

$ kubectl create -f backend-tbc-ontap-nas.yaml -n trident

tridentbackendconfig.trident.netapp.io/tbc-ontap-nas-backend created

Step 3: Verify the status of the TridentBackendConfig CR

After the TridentBackendConfig has been created, its phase must be Bound. It should also reflect the

same backend name and UUID as that of the existing backend.

131

$ kubectl -n trident get tbc tbc-ontap-nas-backend -n trident

NAME BACKEND NAME BACKEND UUID

PHASE STATUS

tbc-ontap-nas-backend ontap-nas-backend 52f2eb10-e4c6-4160-99fc-

96b3be5ab5d7 Bound Success

#confirm that no new backends were created (i.e., TridentBackendConfig did

not end up creating a new backend)

$ tridentctl get backend -n trident

+---------------------+----------------

+--------------------------------------+--------+---------+

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

+---------------------+----------------

+--------------------------------------+--------+---------+

| ontap-nas-backend | ontap-nas | 52f2eb10-e4c6-4160-99fc-

96b3be5ab5d7 | online | 25 |

+---------------------+----------------

+--------------------------------------+--------+---------+

The backend will now be completely managed using the tbc-ontap-nas-backend

TridentBackendConfig object.

Manage TridentBackendConfig backends using tridentctl

tridentctl can be used to list backends that were created using TridentBackendConfig. In addition,

administrators can also choose to completely manage such backends through tridentctl by deleting

TridentBackendConfig and making sure spec.deletionPolicy is set to retain.

Step 0: Identify the backend

For example, let us assume the following backend was created using TridentBackendConfig:

132

$ kubectl get tbc backend-tbc-ontap-san -n trident -o wide

NAME BACKEND NAME BACKEND UUID

PHASE STATUS STORAGE DRIVER DELETION POLICY

backend-tbc-ontap-san ontap-san-backend 81abcb27-ea63-49bb-b606-

0a5315ac5f82 Bound Success ontap-san delete

$ tridentctl get backend ontap-san-backend -n trident

+-------------------+----------------

+--------------------------------------+--------+---------+

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

+-------------------+----------------

+--------------------------------------+--------+---------+

| ontap-san-backend | ontap-san | 81abcb27-ea63-49bb-b606-

0a5315ac5f82 | online | 33 |

+-------------------+----------------

+--------------------------------------+--------+---------+

From the output, it is seen that TridentBackendConfig was created successfully and is bound to a

backend [observe the backend’s UUID].

Step 1: Confirm deletionPolicy is set to retain

Let us take a look at the value of deletionPolicy. This needs to be set to retain. This will ensure that

when a TridentBackendConfig CR is deleted, the backend definition will still be present and can be

managed with tridentctl.

$ kubectl get tbc backend-tbc-ontap-san -n trident -o wide

NAME BACKEND NAME BACKEND UUID

PHASE STATUS STORAGE DRIVER DELETION POLICY

backend-tbc-ontap-san ontap-san-backend 81abcb27-ea63-49bb-b606-

0a5315ac5f82 Bound Success ontap-san delete

Patch value of deletionPolicy to retain

$ kubectl patch tbc backend-tbc-ontap-san --type=merge -p

'{"spec":{"deletionPolicy":"retain"}}' -n trident

tridentbackendconfig.trident.netapp.io/backend-tbc-ontap-san patched

#Confirm the value of deletionPolicy

$ kubectl get tbc backend-tbc-ontap-san -n trident -o wide

NAME BACKEND NAME BACKEND UUID

PHASE STATUS STORAGE DRIVER DELETION POLICY

backend-tbc-ontap-san ontap-san-backend 81abcb27-ea63-49bb-b606-

0a5315ac5f82 Bound Success ontap-san retain

133

Do not proceed to the next step unless deletionPolicy is set to retain.

Step 2: Delete the TridentBackendConfig CR

The final step is to delete the TridentBackendConfig CR. After confirming the deletionPolicy is set to

retain, you can go ahead with the deletion:

$ kubectl delete tbc backend-tbc-ontap-san -n trident

tridentbackendconfig.trident.netapp.io "backend-tbc-ontap-san" deleted

$ tridentctl get backend ontap-san-backend -n trident

+-------------------+----------------

+--------------------------------------+--------+---------+

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

+-------------------+----------------

+--------------------------------------+--------+---------+

| ontap-san-backend | ontap-san | 81abcb27-ea63-49bb-b606-

0a5315ac5f82 | online | 33 |

+-------------------+----------------

+--------------------------------------+--------+---------+

Upon the deletion of the TridentBackendConfig object, Astra Trident simply removes it without actually

deleting the backend itself.

Manage storage classes

Find information about creating a storage class, deleting a storage class, and viewing existing storage classes.

Design a storage class

See here for more information on what storage classes are and how you configure them.

Create a storage class

After you have a storage class file, run the following command:

kubectl create -f <storage-class-file>

<storage-class-file> should be replaced with your storage class file name.

Delete a storage class

To delete a storage class from Kubernetes, run the following command:

134

kubectl delete storageclass <storage-class>

<storage-class> should be replaced with your storage class.

Any persistent volumes that were created through this storage class will remain untouched, and Astra Trident

will continue to manage them.

Astra Trident enforces a blank fsType for the volumes it creates. For iSCSI backends, it is

recommended to enforce parameters.fsType in the StorageClass. You should delete

esixting StorageClasses and re-create them with parameters.fsType specified.

View the existing storage classes

• To view existing Kubernetes storage classes, run the following command:

kubectl get storageclass

• To view Kubernetes storage class detail, run the following command:

kubectl get storageclass <storage-class> -o json

• To view Astra Trident’s synchronized storage classes, run the following command:

tridentctl get storageclass

• To view Astra Trident’s synchronized storage class detail, run the following command:

tridentctl get storageclass <storage-class> -o json

Set a default storage class

Kubernetes 1.6 added the ability to set a default storage class. This is the storage class that will be used to

provision a Persistent Volume if a user does not specify one in a Persistent Volume Claim (PVC).

• Define a default storage class by setting the annotation storageclass.kubernetes.io/is-

default-class to true in the storage class definition. According to the specification, any other value or

absence of the annotation is interpreted as false.

• You can configure an existing storage class to be the default storage class by using the following

command:

kubectl patch storageclass <storage-class-name> -p '{"metadata":

{"annotations":{"storageclass.kubernetes.io/is-default-class":"true"}}}'

135

• Similarly, you can remove the default storage class annotation by using the following command:

kubectl patch storageclass <storage-class-name> -p '{"metadata":

{"annotations":{"storageclass.kubernetes.io/is-default-class":"false"}}}'

There are also examples in the Trident installer bundle that include this annotation.

You should only have one default storage class in your cluster at any given time. Kubernetes

does not technically prevent you from having more than one, but it will behave as if there is no

default storage class at all.

Identify the backend for a storage class

This is an example of the kind of questions you can answer with the JSON that tridentctl outputs for Astra

Trident backend objects. This uses the jq utility, which you may need to install first.

tridentctl get storageclass -o json | jq '[.items[] | {storageClass:

.Config.name, backends: [.storage]|unique}]'

Perform volume operations

Learn about the features Astra Trident provides for managing your volumes.

• Use CSI Topology

• Work with snapshots

• Expand volumes

• Import volumes

Use CSI Topology

Astra Trident can selectively create and attach volumes to nodes present in a Kubernetes cluster by making

use of the CSI Topology feature. Using the CSI Topology feature, access to volumes can be limited to a subset

of nodes, based on regions and availability zones. Cloud providers today enable Kubernetes administrators to

spawn nodes that are zone based. Nodes can be located in different availability zones within a region, or

across various regions. To facilitate the provisioning of volumes for workloads in a multi-zone architecture,

Astra Trident uses CSI Topology.

Learn more about the CSI Topology feature here.

Kubernetes provides two unique volume binding modes:

• With VolumeBindingMode set to Immediate, Astra Trident creates the volume without any topology

awareness. Volume binding and dynamic provisioning are handled when the PVC is created. This is the

default VolumeBindingMode and is suited for clusters that do not enforce topology constraints. Persistent

Volumes are created without having any dependency on the requesting pod’s scheduling requirements.

• With VolumeBindingMode set to WaitForFirstConsumer, the creation and binding of a Persistent

136

https://kubernetes-csi.github.io/docs/topology.html
https://kubernetes.io/blog/2018/10/11/topology-aware-volume-provisioning-in-kubernetes/

Volume for a PVC is delayed until a pod that uses the PVC is scheduled and created. This way, volumes

are created to meet the scheduling constraints that are enforced by topology requirements.

The WaitForFirstConsumer binding mode does not require topology labels. This can be

used independent of the CSI Topology feature.

What you’ll need

To make use of CSI Topology, you need the following:

• A Kubernetes cluster running 1.17 or later.

$ kubectl version

Client Version: version.Info{Major:"1", Minor:"19",

GitVersion:"v1.19.3",

GitCommit:"1e11e4a2108024935ecfcb2912226cedeafd99df",

GitTreeState:"clean", BuildDate:"2020-10-14T12:50:19Z",

GoVersion:"go1.15.2", Compiler:"gc", Platform:"linux/amd64"}

Server Version: version.Info{Major:"1", Minor:"19",

GitVersion:"v1.19.3",

GitCommit:"1e11e4a2108024935ecfcb2912226cedeafd99df",

GitTreeState:"clean", BuildDate:"2020-10-14T12:41:49Z",

GoVersion:"go1.15.2", Compiler:"gc", Platform:"linux/amd64"}

• Nodes in the cluster should have labels that introduce topology awareness

(topology.kubernetes.io/region and topology.kubernetes.io/zone). These labels should

be present on nodes in the cluster before Astra Trident is installed for Astra Trident to be topology

aware.

137

$ kubectl get nodes -o=jsonpath='{range .items[*]}[{.metadata.name},

{.metadata.labels}]{"\n"}{end}' | grep --color "topology.kubernetes.io"

[node1,

{"beta.kubernetes.io/arch":"amd64","beta.kubernetes.io/os":"linux","kube

rnetes.io/arch":"amd64","kubernetes.io/hostname":"node1","kubernetes.io/

os":"linux","node-

role.kubernetes.io/master":"","topology.kubernetes.io/region":"us-

east1","topology.kubernetes.io/zone":"us-east1-a"}]

[node2,

{"beta.kubernetes.io/arch":"amd64","beta.kubernetes.io/os":"linux","kube

rnetes.io/arch":"amd64","kubernetes.io/hostname":"node2","kubernetes.io/

os":"linux","node-

role.kubernetes.io/worker":"","topology.kubernetes.io/region":"us-

east1","topology.kubernetes.io/zone":"us-east1-b"}]

[node3,

{"beta.kubernetes.io/arch":"amd64","beta.kubernetes.io/os":"linux","kube

rnetes.io/arch":"amd64","kubernetes.io/hostname":"node3","kubernetes.io/

os":"linux","node-

role.kubernetes.io/worker":"","topology.kubernetes.io/region":"us-

east1","topology.kubernetes.io/zone":"us-east1-c"}]

Step 1: Create a topology-aware backend

Astra Trident storage backends can be designed to selectively provision volumes based on availability zones.

Each backend can carry an optional supportedTopologies block that represents a list of zones and regions

that must be supported. For StorageClasses that make use of such a backend, a volume would only be

created if requested by an application that is scheduled in a supported region/zone.

Here is what an example backend definition looks like:

138

{

 "version": 1,

 "storageDriverName": "ontap-san",

 "backendName": "san-backend-us-east1",

 "managementLIF": "192.168.27.5",

 "svm": "iscsi_svm",

 "username": "admin",

 "password": "xxxxxxxxxxxx",

 "supportedTopologies": [

{"topology.kubernetes.io/region": "us-east1",

"topology.kubernetes.io/zone": "us-east1-a"},

{"topology.kubernetes.io/region": "us-east1",

"topology.kubernetes.io/zone": "us-east1-b"}

]

}

supportedTopologies is used to provide a list of regions and zones per backend. These

regions and zones represent the list of permissible values that can be provided in a

StorageClass. For StorageClasses that contain a subset of the regions and zones provided in a

backend, Astra Trident will create a volume on the backend.

You can define supportedTopologies per storage pool as well. See the following example:

139

{"version": 1,

"storageDriverName": "ontap-nas",

"backendName": "nas-backend-us-central1",

"managementLIF": "172.16.238.5",

"svm": "nfs_svm",

"username": "admin",

"password": "Netapp123",

"supportedTopologies": [

 {"topology.kubernetes.io/region": "us-central1",

"topology.kubernetes.io/zone": "us-central1-a"},

 {"topology.kubernetes.io/region": "us-central1",

"topology.kubernetes.io/zone": "us-central1-b"}

]

"storage": [

 {

 "labels": {"workload":"production"},

 "region": "Iowa-DC",

 "zone": "Iowa-DC-A",

 "supportedTopologies": [

 {"topology.kubernetes.io/region": "us-central1",

"topology.kubernetes.io/zone": "us-central1-a"}

]

 },

 {

 "labels": {"workload":"dev"},

 "region": "Iowa-DC",

 "zone": "Iowa-DC-B",

 "supportedTopologies": [

 {"topology.kubernetes.io/region": "us-central1",

"topology.kubernetes.io/zone": "us-central1-b"}

]

 }

]

}

In this example, the region and zone labels stand for the location of the storage pool.

topology.kubernetes.io/region and topology.kubernetes.io/zone dictate where the storage

pools can be consumed from.

Step 2: Define StorageClasses that are topology aware

Based on the topology labels that are provided to the nodes in the cluster, StorageClasses can be defined to

contain topology information. This will determine the storage pools that serve as candidates for PVC requests

made, and the subset of nodes that can make use of the volumes provisioned by Trident.

See the following example:

140

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

name: netapp-san-us-east1

provisioner: csi.trident.netapp.io

volumeBindingMode: WaitForFirstConsumer

allowedTopologies:

- matchLabelExpressions:

- key: topology.kubernetes.io/zone

 values:

 - us-east1-a

 - us-east1-b

- key: topology.kubernetes.io/region

 values:

 - us-east1

parameters:

 fsType: "ext4"

In the StorageClass definition provided above, volumeBindingMode is set to WaitForFirstConsumer.

PVCs that are requested with this StorageClass will not be acted upon until they are referenced in a pod. And,

allowedTopologies provides the zones and region to be used. The netapp-san-us-east1 StorageClass

will create PVCs on the san-backend-us-east1 backend defined above.

Step 3: Create and use a PVC

With the StorageClass created and mapped to a backend, you can now create PVCs.

See the example spec below:

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

name: pvc-san

spec:

accessModes:

 - ReadWriteOnce

resources:

 requests:

 storage: 300Mi

storageClassName: netapp-san-us-east1

Creating a PVC using this manifest would result in the following:

141

$ kubectl create -f pvc.yaml

persistentvolumeclaim/pvc-san created

$ kubectl get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS

AGE

pvc-san Pending netapp-san-us-east1

2s

$ kubectl describe pvc

Name: pvc-san

Namespace: default

StorageClass: netapp-san-us-east1

Status: Pending

Volume:

Labels: <none>

Annotations: <none>

Finalizers: [kubernetes.io/pvc-protection]

Capacity:

Access Modes:

VolumeMode: Filesystem

Mounted By: <none>

Events:

 Type Reason Age From Message

 ---- ------ ---- ---- -------

 Normal WaitForFirstConsumer 6s persistentvolume-controller waiting

for first consumer to be created before binding

For Trident to create a volume and bind it to the PVC, use the PVC in a pod. See the following example:

142

apiVersion: v1

kind: Pod

metadata:

 name: app-pod-1

spec:

 affinity:

 nodeAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 nodeSelectorTerms:

 - matchExpressions:

 - key: topology.kubernetes.io/region

 operator: In

 values:

 - us-east1

 preferredDuringSchedulingIgnoredDuringExecution:

 - weight: 1

 preference:

 matchExpressions:

 - key: topology.kubernetes.io/zone

 operator: In

 values:

 - us-east1-a

 - us-east1-b

 securityContext:

 runAsUser: 1000

 runAsGroup: 3000

 fsGroup: 2000

 volumes:

 - name: vol1

 persistentVolumeClaim:

 claimName: pvc-san

 containers:

 - name: sec-ctx-demo

 image: busybox

 command: ["sh", "-c", "sleep 1h"]

 volumeMounts:

 - name: vol1

 mountPath: /data/demo

 securityContext:

 allowPrivilegeEscalation: false

This podSpec instructs Kubernetes to schedule the pod on nodes that are present in the us-east1 region,

and choose from any node that is present in the us-east1-a or us-east1-b zones.

See the following output:

143

$ kubectl get pods -o wide

NAME READY STATUS RESTARTS AGE IP NODE

NOMINATED NODE READINESS GATES

app-pod-1 1/1 Running 0 19s 192.168.25.131 node2

<none> <none>

$ kubectl get pvc -o wide

NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE VOLUMEMODE

pvc-san Bound pvc-ecb1e1a0-840c-463b-8b65-b3d033e2e62b 300Mi

RWO netapp-san-us-east1 48s Filesystem

Update backends to include supportedTopologies

Pre-existing backends can be updated to include a list of supportedTopologies using tridentctl

backend update. This will not affect volumes that have already been provisioned, and will only be used for

subsequent PVCs.

Find more information

• Manage resources for containers

• nodeSelector

• Affinity and anti-affinity

• Taints and Tolerations

Work with snapshots

Beginning with the 20.01 release of Astra Trident, you can create snapshots of PVs at the Kubernetes layer.

You can use these snapshots to maintain point-in-time copies of volumes that have been created by Astra

Trident and schedule the creation of additional volumes (clones). Volume snapshot is supported by the

ontap-nas, ontap-san, ontap-san-economy, solidfire-san, gcp-cvs, and azure-netapp-files

drivers.

This feature is available from Kubernetes 1.17 (beta) and is GA from 1.20. To understand the

changes involved in moving from beta to GA, see the release blog. With the graduation to GA,

the v1 API version is introduced and is backward compatible with v1beta1 snapshots.

What you’ll need

• Creating volume snapshots requires creating an external snapshot controller and Custom Resource

Definitions (CRDs). This is the responsibility of the Kubernetes orchestrator being used (for example:

Kubeadm, GKE, OpenShift).

If your Kubernetes distribution does not include the snapshot controller and CRDs, you can deploy them as

follows.

1. Create volume snapshot CRDs.

For Kubernetes 1.20 and above, use v1 snapshot CRDs with snapshot components of v5.0 or above. For

Kubernetes versions 1.18 and 1.19, use v1beta1 with v3.0.3 snapshot components.

144

https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/blog/2020/12/10/kubernetes-1.20-volume-snapshot-moves-to-ga/

v5.0 components

$ cat snapshot-setup.sh

#!/bin/bash

Create volume snapshot CRDs

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

5.0/client/config/crd/snapshot.storage.k8s.io_volumesnapshotclasses.

yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

5.0/client/config/crd/snapshot.storage.k8s.io_volumesnapshotcontents

.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-

5.0/client/config/crd/snapshot.storage.k8s.io_volumesnapshots.yaml

v3.0.3 components

$ cat snapshot-setup.sh

#!/bin/bash

Create volume snapshot CRDs

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-

snapshotter/v3.0.3/client/config/crd/snapshot.storage.k8s.io_volumes

napshotclasses.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-

snapshotter/v3.0.3/client/config/crd/snapshot.storage.k8s.io_volumes

napshotcontents.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-

snapshotter/v3.0.3/client/config/crd/snapshot.storage.k8s.io_volumes

napshots.yaml

2. Create the snapshot controller in the desired namespace. Edit the YAML manifests below to modify

namespace.

For Kubernetes 1.20 and above use v5.0 or above. For Kubernetes versions 1.18 and 1.19 use v3.0.3

Don’t create a snapshot controller if setting up on-demand volume snapshots in a GKE

environment. GKE uses a built-in, hidden snapshot-controller.

145

v5.0 controller

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-5.0/deploy/kubernetes/snapshot-

controller/rbac-snapshot-controller.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/release-5.0/deploy/kubernetes/snapshot-

controller/setup-snapshot-controller.yaml

v3.0.3 controller

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/v3.0.3/deploy/kubernetes/snapshot-

controller/rbac-snapshot-controller.yaml

kubectl apply -f https://raw.githubusercontent.com/kubernetes-

csi/external-snapshotter/v3.0.3/deploy/kubernetes/snapshot-

controller/setup-snapshot-controller.yaml

CSI Snapshotter provides a validating webhook to help users validate existing v1beta1

snapshots and confirm they are valid resource objects. The validating webhook automatically

labels invalid snapshot objects and prevents the creation of future invalid objects. The validating

webhook is deployed by the Kubernetes orchestrator. See the instructions to deploy the

validating webhook manually here. Find examples of invalid snapshot manifests here.

The example detailed below explains the constructs required for working with snapshots and shows how

snapshots can be created and used.

Step 1: Set up a VolumeSnapshotClass

Before creating a volume snapshot, set up a VolumeSnapshotClass.

$ cat snap-sc.yaml

#Use apiVersion v1 for Kubernetes 1.20 and above. For Kubernetes 1.18 and

1.19, use apiVersion v1beta1.

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshotClass

metadata:

 name: csi-snapclass

driver: csi.trident.netapp.io

deletionPolicy: Delete

The driver points to Astra Trident’s CSI driver. deletionPolicy can be Delete or Retain. When set to

Retain, the underlying physical snapshot on the storage cluster is retained even when the VolumeSnapshot

object is deleted.

146

https://github.com/kubernetes-csi/external-snapshotter#validating-webhook
https://github.com/kubernetes-csi/external-snapshotter/blob/release-3.0/deploy/kubernetes/webhook-example/README.md
https://github.com/kubernetes-csi/external-snapshotter/tree/release-3.0/examples/kubernetes

Step 2: Create a snapshot of an existing PVC

$ cat snap.yaml

#Use apiVersion v1 for Kubernetes 1.20 and above. For Kubernetes 1.18 and

1.19, use apiVersion v1beta1.

apiVersion: snapshot.storage.k8s.io/v1

kind: VolumeSnapshot

metadata:

 name: pvc1-snap

spec:

 volumeSnapshotClassName: csi-snapclass

 source:

 persistentVolumeClaimName: pvc1

The snapshot is being created for a PVC named pvc1, and the name of the snapshot is set to pvc1-snap.

$ kubectl create -f snap.yaml

volumesnapshot.snapshot.storage.k8s.io/pvc1-snap created

$ kubectl get volumesnapshots

NAME AGE

pvc1-snap 50s

This created a VolumeSnapshot object. A VolumeSnapshot is analogous to a PVC and is associated with a

VolumeSnapshotContent object that represents the actual snapshot.

It is possible to identify the VolumeSnapshotContent object for the pvc1-snap VolumeSnapshot by

describing it.

147

$ kubectl describe volumesnapshots pvc1-snap

Name: pvc1-snap

Namespace: default

.

.

.

Spec:

 Snapshot Class Name: pvc1-snap

 Snapshot Content Name: snapcontent-e8d8a0ca-9826-11e9-9807-525400f3f660

 Source:

 API Group:

 Kind: PersistentVolumeClaim

 Name: pvc1

Status:

 Creation Time: 2019-06-26T15:27:29Z

 Ready To Use: true

 Restore Size: 3Gi

.

.

The Snapshot Content Name identifies the VolumeSnapshotContent object which serves this snapshot.

The Ready To Use parameter indicates that the Snapshot can be used to create a new PVC.

Step 3: Create PVCs from VolumeSnapshots

See the following example for creating a PVC using a snapshot:

$ cat pvc-from-snap.yaml

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: pvc-from-snap

spec:

 accessModes:

 - ReadWriteOnce

 storageClassName: golden

 resources:

 requests:

 storage: 3Gi

 dataSource:

 name: pvc1-snap

 kind: VolumeSnapshot

 apiGroup: snapshot.storage.k8s.io

dataSource shows that the PVC must be created using a VolumeSnapshot named pvc1-snap as the

148

source of the data. This instructs Astra Trident to create a PVC from the snapshot. After the PVC is created, it

can be attached to a pod and used just like any other PVC.

When deleting a Persistent Volume with associated snapshots, the corresponding Trident

volume is updated to a “Deleting state”. For the Astra Trident volume to be deleted, the

snapshots of the volume should be removed.

Find more information

• Volume snapshots

• VolumeSnapshotClass

Expand volumes

Astra Trident provides Kubernetes users the ability to expand their volumes after they are created. Find

information about the configurations required to expand iSCSI and NFS volumes.

Expand an iSCSI volume

You can expand an iSCSI Persistent Volume (PV) by using the CSI provisioner.

iSCSI volume expansion is supported by the ontap-san, ontap-san-economy, solidfire-

san drivers and requires Kubernetes 1.16 and later.

Overview

Expanding an iSCSI PV includes the following steps:

• Editing the StorageClass definition to set the allowVolumeExpansion field to true.

• Editing the PVC definition and updating the spec.resources.requests.storage to reflect the newly

desired size, which must be greater than the original size.

• Attaching the PV must be attached to a pod for it to be resized. There are two scenarios when resizing an

iSCSI PV:

◦ If the PV is attached to a pod, Astra Trident expands the volume on the storage backend, rescans the

device, and resizes the filesystem.

◦ When attempting to resize an unattached PV, Astra Trident expands the volume on the storage

backend. After the PVC is bound to a pod, Trident rescans the device and resizes the filesystem.

Kubernetes then updates the PVC size after the expand operation has successfully completed.

The example below shows how expanding iSCSI PVs work.

Step 1: Configure the StorageClass to support volume expansion

149

$ cat storageclass-ontapsan.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: ontap-san

provisioner: csi.trident.netapp.io

parameters:

 backendType: "ontap-san"

allowVolumeExpansion: True

For an already existing StorageClass, edit it to include the allowVolumeExpansion parameter.

Step 2: Create a PVC with the StorageClass you created

$ cat pvc-ontapsan.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: san-pvc

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 1Gi

 storageClassName: ontap-san

Astra Trident creates a Persistent Volume (PV) and associates it with this Persistent Volume Claim (PVC).

$ kubectl get pvc

NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE

san-pvc Bound pvc-8a814d62-bd58-4253-b0d1-82f2885db671 1Gi

RWO ontap-san 8s

$ kubectl get pv

NAME CAPACITY ACCESS MODES

RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE

pvc-8a814d62-bd58-4253-b0d1-82f2885db671 1Gi RWO

Delete Bound default/san-pvc ontap-san 10s

150

Step 3: Define a pod that attaches the PVC

In this example, a pod is created that uses the san-pvc.

$ kubectl get pod

NAME READY STATUS RESTARTS AGE

centos-pod 1/1 Running 0 65s

$ kubectl describe pvc san-pvc

Name: san-pvc

Namespace: default

StorageClass: ontap-san

Status: Bound

Volume: pvc-8a814d62-bd58-4253-b0d1-82f2885db671

Labels: <none>

Annotations: pv.kubernetes.io/bind-completed: yes

 pv.kubernetes.io/bound-by-controller: yes

 volume.beta.kubernetes.io/storage-provisioner:

csi.trident.netapp.io

Finalizers: [kubernetes.io/pvc-protection]

Capacity: 1Gi

Access Modes: RWO

VolumeMode: Filesystem

Mounted By: centos-pod

Step 4: Expand the PV

To resize the PV that has been created from 1Gi to 2Gi, edit the PVC definition and update the

spec.resources.requests.storage to 2Gi.

151

$ kubectl edit pvc san-pvc

Please edit the object below. Lines beginning with a '#' will be

ignored,

and an empty file will abort the edit. If an error occurs while saving

this file will be

reopened with the relevant failures.

#

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 annotations:

 pv.kubernetes.io/bind-completed: "yes"

 pv.kubernetes.io/bound-by-controller: "yes"

 volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io

 creationTimestamp: "2019-10-10T17:32:29Z"

 finalizers:

 - kubernetes.io/pvc-protection

 name: san-pvc

 namespace: default

 resourceVersion: "16609"

 selfLink: /api/v1/namespaces/default/persistentvolumeclaims/san-pvc

 uid: 8a814d62-bd58-4253-b0d1-82f2885db671

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 2Gi

 ...

Step 5: Validate the expansion

You can validate the expansion worked correctly by checking the size of the PVC, PV, and the Astra Trident

volume:

152

$ kubectl get pvc san-pvc

NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE

san-pvc Bound pvc-8a814d62-bd58-4253-b0d1-82f2885db671 2Gi

RWO ontap-san 11m

$ kubectl get pv

NAME CAPACITY ACCESS MODES

RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON AGE

pvc-8a814d62-bd58-4253-b0d1-82f2885db671 2Gi RWO

Delete Bound default/san-pvc ontap-san 12m

$ tridentctl get volumes -n trident

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-8a814d62-bd58-4253-b0d1-82f2885db671 | 2.0 GiB | ontap-san |

block | a9b7bfff-0505-4e31-b6c5-59f492e02d33 | online | true |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

Expand an NFS volume

Astra Trident supports volume expansion for NFS PVs provisioned on ontap-nas, ontap-nas-economy,

ontap-nas-flexgroup, gcp-cvs, and azure-netapp-files backends.

Step 1: Configure the StorageClass to support volume expansion

To resize an NFS PV, the admin first needs to configure the storage class to allow volume expansion by setting

the allowVolumeExpansion field to true:

$ cat storageclass-ontapnas.yaml

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: ontapnas

provisioner: csi.trident.netapp.io

parameters:

 backendType: ontap-nas

allowVolumeExpansion: true

If you have already created a storage class without this option, you can simply edit the existing storage class

by using kubectl edit storageclass to allow volume expansion.

153

Step 2: Create a PVC with the StorageClass you created

$ cat pvc-ontapnas.yaml

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: ontapnas20mb

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 20Mi

 storageClassName: ontapnas

Astra Trident should create a 20MiB NFS PV for this PVC:

$ kubectl get pvc

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

ontapnas20mb Bound pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 20Mi

RWO ontapnas 9s

$ kubectl get pv pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7

NAME CAPACITY ACCESS MODES

RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON

AGE

pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 20Mi RWO

Delete Bound default/ontapnas20mb ontapnas

2m42s

Step 3: Expand the PV

To resize the newly created 20MiB PV to 1GiB, edit the PVC and set spec.resources.requests.storage

to 1GB:

154

$ kubectl edit pvc ontapnas20mb

Please edit the object below. Lines beginning with a '#' will be

ignored,

and an empty file will abort the edit. If an error occurs while saving

this file will be

reopened with the relevant failures.

#

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 annotations:

 pv.kubernetes.io/bind-completed: "yes"

 pv.kubernetes.io/bound-by-controller: "yes"

 volume.beta.kubernetes.io/storage-provisioner: csi.trident.netapp.io

 creationTimestamp: 2018-08-21T18:26:44Z

 finalizers:

 - kubernetes.io/pvc-protection

 name: ontapnas20mb

 namespace: default

 resourceVersion: "1958015"

 selfLink: /api/v1/namespaces/default/persistentvolumeclaims/ontapnas20mb

 uid: c1bd7fa5-a56f-11e8-b8d7-fa163e59eaab

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 1Gi

...

Step 4: Validate the expansion

You can validate the resize worked correctly by checking the size of the PVC, PV, and the Astra Trident

volume:

155

$ kubectl get pvc ontapnas20mb

NAME STATUS VOLUME

CAPACITY ACCESS MODES STORAGECLASS AGE

ontapnas20mb Bound pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 1Gi

RWO ontapnas 4m44s

$ kubectl get pv pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7

NAME CAPACITY ACCESS MODES

RECLAIM POLICY STATUS CLAIM STORAGECLASS REASON

AGE

pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 1Gi RWO

Delete Bound default/ontapnas20mb ontapnas

5m35s

$ tridentctl get volume pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 -n

trident

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-08f3d561-b199-11e9-8d9f-5254004dfdb7 | 1.0 GiB | ontapnas |

file | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | true |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

Import volumes

You can import existing storage volumes as a Kubernetes PV using tridentctl import.

Drivers that support volume import

This table depicts the drivers that support importing volumes and the release they were introduced in.

Driver Release

ontap-nas 19.04

ontap-nas-flexgroup 19.04

solidfire-san 19.04

azure-netapp-files 19.04

156

Driver Release

gcp-cvs 19.04

ontap-san 19.04

Why should I import volumes?

There are several use cases for importing a volume into Trident:

• Containerizing an application and reusing its existing data set

• Using a clone of a data set for an ephemeral application

• Rebuilding a failed Kubernetes cluster

• Migrating application data during disaster recovery

How does the import work?

The Persistent Volume Claim (PVC) file is used by the volume import process to create the PVC. At a

minimum, the PVC file should include the name, namespace, accessModes, and storageClassName fields as

shown in the following example.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: my_claim

 namespace: my_namespace

spec:

 accessModes:

 - ReadWriteOnce

 storageClassName: my_storage_class

The tridentctl client is used to import an existing storage volume. Trident imports the volume by persisting

volume metadata and creating the PVC and PV.

$ tridentctl import volume <backendName> <volumeName> -f <path-to-pvc-

file>

To import a storage volume, specify the name of the Astra Trident backend containing the volume, as well as

the name that uniquely identifies the volume on the storage (for example: ONTAP FlexVol, Element Volume,

CVS Volume path). The storage volume must allow read/write access and be accessible by the specified Astra

Trident backend. The -f string argument is required and specifies the path to the YAML or JSON PVC file.

When Astra Trident receives the import volume request, the existing volume size is determined and set in the

PVC. After the volume is imported by the storage driver, the PV is created with a ClaimRef to the PVC. The

reclaim policy is initially set to retain in the PV. After Kubernetes successfully binds the PVC and PV, the

reclaim policy is updated to match the reclaim policy of the Storage Class. If the reclaim policy of the Storage

157

Class is delete, the storage volume will be deleted when the PV is deleted.

When a volume is imported with the --no-manage argument, Trident does not perform any additional

operations on the PVC or PV for the lifecycle of the objects. Because Trident ignores PV and PVC events for

--no-manage objects, the storage volume is not deleted when the PV is deleted. Other operations such as

volume clone and volume resize are also ignored. This option is useful if you want to use Kubernetes for

containerized workloads but otherwise want to manage the lifecycle of the storage volume outside of

Kubernetes.

An annotation is added to the PVC and PV that serves a dual purpose of indicating that the volume was

imported and if the PVC and PV are managed. This annotation should not be modified or removed.

Trident 19.07 and later handle the attachment of PVs and mounts the volume as part of importing it. For

imports using earlier versions of Astra Trident, there will not be any operations in the data path and the volume

import will not verify if the volume can be mounted. If a mistake is made with volume import (for example, the

StorageClass is incorrect), you can recover by changing the reclaim policy on the PV to retain, deleting the

PVC and PV, and retrying the volume import command.

ontap-nas and ontap-nas-flexgroup imports

Each volume created with the ontap-nas driver is a FlexVol on the ONTAP cluster. Importing FlexVols with

the ontap-nas driver works the same. A FlexVol that already exists on an ONTAP cluster can be imported as

a ontap-nas PVC. Similarly, FlexGroup vols can be imported as ontap-nas-flexgroup PVCs.

An ONTAP volume must be of type rw to be imported by Trident. If a volume is of type dp, it is a

SnapMirror destination volume; you should break the mirror relationship before importing the

volume into Trident.

The ontap-nas driver cannot import and manage qtrees. The ontap-nas and ontap-nas-

flexgroup drivers do not allow duplicate volume names.

For example, to import a volume named managed_volume on a backend named ontap_nas, use the

following command:

$ tridentctl import volume ontap_nas managed_volume -f <path-to-pvc-file>

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-bf5ad463-afbb-11e9-8d9f-5254004dfdb7 | 1.0 GiB | standard |

file | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | true |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

To import a volume named unmanaged_volume (on the ontap_nas backend), which Trident will not

manage, use the following command:

158

$ tridentctl import volume nas_blog unmanaged_volume -f <path-to-pvc-file>

--no-manage

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-df07d542-afbc-11e9-8d9f-5254004dfdb7 | 1.0 GiB | standard |

file | c5a6f6a4-b052-423b-80d4-8fb491a14a22 | online | false |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

When using the --no-manage argument, Trident does not rename the volume or validate if the volume was

mounted. The volume import operation fails if the volume was not mounted manually.

A previously existing bug with importing volumes with custom UnixPermissions has been fixed.

You can specify unixPermissions in your PVC definition or backend configuration, and instruct

Astra Trident to import the volume accordingly.

ontap-san import

Astra Trident can also import ONTAP SAN FlexVols that contain a single LUN. This is consistent with the

ontap-san driver, which creates a FlexVol for each PVC and a LUN within the FlexVol. You can use the

tridentctl import command in the same way as in other cases:

• Include the name of the ontap-san backend.

• Provide the name of the FlexVol that needs to be imported. Remember, this FlexVol contains only one LUN

that must be imported.

• Provide the path of the PVC definition that must be used with the -f flag.

• Choose between having the PVC managed or unmanaged. By default, Trident will manage the PVC and

rename the FlexVol and LUN on the backend. To import as an unmanaged volume, pass the --no

-manage flag.

When importing an unmanaged ontap-san volume, you should make sure that the LUN in the

FlexVol is named lun0 and is mapped to an igroup with the desired initiators. Astra Trident

automatically handles this for a managed import.

Astra Trident will then import the FlexVol and associate it with the PVC definition. Astra Trident also renames

the FlexVol to the pvc-<uuid> format and the LUN within the FlexVol to lun0.

It is recommended to import volumes that do not have existing active connections. If you are

looking to import an actively used volume, clone the volume first and then do the import.

159

Example

To import the ontap-san-managed FlexVol that is present on the ontap_san_default backend, run the

tridentctl import command as:

$ tridentctl import volume ontapsan_san_default ontap-san-managed -f pvc-

basic-import.yaml -n trident -d

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-d6ee4f54-4e40-4454-92fd-d00fc228d74a | 20 MiB | basic |

block | cd394786-ddd5-4470-adc3-10c5ce4ca757 | online | true |

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

An ONTAP volume must be of type rw to be imported by Astra Trident. If a volume is of type dp,

it is a SnapMirror destination volume; you should break the mirror relationship before importing

the volume into Astra Trident.

element import

You can import NetApp Element software/NetApp HCI volumes to your Kubernetes cluster with Trident. You

need the name of your Astra Trident backend, and the unique name of the volume and the PVC file as the

arguments for the tridentctl import command.

$ tridentctl import volume element_default element-managed -f pvc-basic-

import.yaml -n trident -d

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-970ce1ca-2096-4ecd-8545-ac7edc24a8fe | 10 GiB | basic-element |

block | d3ba047a-ea0b-43f9-9c42-e38e58301c49 | online | true |

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

160

The Element driver supports duplicate volume names. If there are duplicate volume names,

Trident’s volume import process returns an error. As a workaround, clone the volume and

provide a unique volume name. Then import the cloned volume.

gcp-cvs import

To import a volume backed by the NetApp Cloud Volumes Service in GCP, identify the volume

by its volume path instead of its name.

To import an gcp-cvs volume on the backend called gcpcvs_YEppr with the volume path of adroit-

jolly-swift, use the following command:

$ tridentctl import volume gcpcvs_YEppr adroit-jolly-swift -f <path-to-

pvc-file> -n trident

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-a46ccab7-44aa-4433-94b1-e47fc8c0fa55 | 93 GiB | gcp-storage | file

| e1a6e65b-299e-4568-ad05-4f0a105c888f | online | true |

+--+--------+---------------

+----------+--------------------------------------+--------+---------+

The volume path is the portion of the volume’s export path after the :/. For example, if the export

path is 10.0.0.1:/adroit-jolly-swift, the volume path is adroit-jolly-swift.

azure-netapp-files import

To import an azure-netapp-files volume on the backend called azurenetappfiles_40517 with the

volume path importvol1, run the following command:

161

$ tridentctl import volume azurenetappfiles_40517 importvol1 -f <path-to-

pvc-file> -n trident

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| NAME | SIZE | STORAGE CLASS |

PROTOCOL | BACKEND UUID | STATE | MANAGED |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

| pvc-0ee95d60-fd5c-448d-b505-b72901b3a4ab | 100 GiB | anf-storage |

file | 1c01274f-d94b-44a3-98a3-04c953c9a51e | online | true |

+--+---------+---------------

+----------+--------------------------------------+--------+---------+

The volume path for the ANF volume is present in the mount path after the :/. For example, if the

mount path is 10.0.0.2:/importvol1, the volume path is importvol1.

Prepare the worker node

All of the worker nodes in the Kubernetes cluster need to be able to mount the volumes that you have

provisioned for your pods. If you are using the ontap-nas, ontap-nas-economy, or ontap-nas-

flexgroup driver for one of your backends, your worker nodes need the NFS tools. Otherwise they require

the iSCSI tools.

Recent versions of RedHat CoreOS have both NFS and iSCSI installed by default.

You should always reboot your worker nodes after installing the NFS or iSCSI tools, or else

attaching volumes to containers might fail.

NFS volumes

Protocol Operating system Commands

NFS RHEL/CentOS sudo yum install -y nfs-

utils

NFS Ubuntu/Debian sudo apt-get install -y

nfs-common

You should ensure that the NFS service is started up during boot time.

iSCSI volumes

Consider the following when using iSCSI volumes:

• Each node in the Kubernetes cluster must have a unique IQN. This is a necessary prerequisite.

162

• If using RHCOS version 4.5 or later, or RHEL or CentOS version 8.2 or later with the solidfire-san

driver, ensure that the CHAP authentication algorithm is set to MD5 in /etc/iscsi/iscsid.conf.

sudo sed -i 's/^\(node.session.auth.chap_algs\).*/\1 = MD5/'

/etc/iscsi/iscsid.conf

• When using worker nodes that run RHEL/RedHat CoreOS with iSCSI PVs, make sure to specify the

discard mountOption in the StorageClass to perform inline space reclamation. See RedHat’s

documentation.

163

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/discarding-unused-blocks_managing-file-systems
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/managing_file_systems/discarding-unused-blocks_managing-file-systems

Protocol Operating system Commands

iSCSI RHEL/CentOS 1. Install the following system

packages:

sudo yum install -y

lsscsi iscsi-initiator-

utils sg3_utils device-

mapper-multipath

2. Check that iscsi-initiator-utils

version is 6.2.0.874-2.el7 or

later:

rpm -q iscsi-initiator-

utils

3. Set scanning to manual:

sudo sed -i

's/^\(node.session.scan

\).*/\1 = manual/'

/etc/iscsi/iscsid.conf

4. Enable multipathing:

sudo mpathconf --enable

--with_multipathd y

--find_multipaths n

Ensure

etc/multipat

h.conf contains

find_multipa

ths no under

defaults.

5. Ensure that iscsid and

multipathd are running:

sudo systemctl enable

--now iscsid multipathd

6. Enable and start iscsi:

sudo systemctl enable

--now iscsi

164

Protocol Operating system Commands

iSCSI Ubuntu/Debian 1. Install the following system

packages:

sudo apt-get install -y

open-iscsi lsscsi sg3-

utils multipath-tools

scsitools

2. Check that open-iscsi version is

2.0.874-5ubuntu2.10 or later

(for bionic) or 2.0.874-

7.1ubuntu6.1 or later (for focal):

dpkg -l open-iscsi

3. Set scanning to manual:

sudo sed -i

's/^\(node.session.scan

\).*/\1 = manual/'

/etc/iscsi/iscsid.conf

4. Enable multipathing:

sudo tee

/etc/multipath.conf <

←'EOF'

defaults {

user_friendly_names yes

find_multipaths no

}

EOF

sudo systemctl enable

--now multipath-

tools.service

sudo service multipath-

tools restart

Ensure

etc/multipat

h.conf contains

find_multipa

ths no under

defaults.

5. Ensure that open-iscsi and

multipath-tools are

enabled and running:

sudo systemctl status

multipath-tools

sudo systemctl enable

--now open-

iscsi.service 165

sudo systemctl status

open-iscsi

For Ubuntu 18.04, you must discover target ports with iscsiadm before starting open-iscsi

for the iSCSI daemon to start. You can alternatively modify the iscsi service to start iscsid

automatically.

If you want to learn more about automatic worker node preparation, which is a beta feature, see

here.

Automatic worker node preparation

Astra Trident can automatically install the required NFS and iSCSI tools on the nodes present in the

Kubernetes cluster. This is a beta feature and is not meant for production clusters. Today, the feature is

available for nodes that run CentOS, RHEL, and Ubuntu.

For this feature, Astra Trident includes a new install flag: --enable-node-prep for installations deployed

with tridentctl. For deployments with the Trident operator, use the Boolean option enableNodePrep.

The --enable-node-prep installation option tells Astra Trident to install and ensure that NFS

and iSCSI packages and/or services are running when a volume is mounted on a worker node.

This is a beta feature meant to be used in dev/test environments that is not qualified for

production use.

When the --enable-node-prep flag is included for Astra Trident installations deployed with tridentctl,

here is what happens:

1. As part of the installation, Astra Trident registers the nodes it runs on.

2. When a Persistent Volume Claim (PVC) request is made, Astra Trident creates a PV from one of the

backends it manages.

3. Using the PVC in a pod would require Astra Trident to mount the volume on the node the pod runs on.

Astra Trident attempts to install the required NFS/iSCSI client utilities and to ensure that the required

services are active. This is done before the volume is mounted.

The preparation of a worker node is done only once as part of the first attempt made to mount a volume. All

subsequent volume mounts should succeed as long as no changes outside Astra Trident touch the NFS and

iSCSI utilities.

In this manner, Astra Trident can ensure that all the nodes in a Kubernetes cluster have the required utilities

needed to mount and attach volumes. For NFS volumes, the export policy should also permit the volume to be

mounted. Trident can automatically manage export policies per backend; alternatively, users can manage

export policies out-of-band.

Monitor Astra Trident

Astra Trident provides a set of Prometheus metrics endpoints that you can use to monitor Astra Trident’s

performance.

The metrics provided by Astra Trident enable you to do the following:

• Keep tabs on Astra Trident’s health and configuration. You can examine how successful operations are and

if it can communicate with the backends as expected.

166

• Examine backend usage information and understand how many volumes are provisioned on a backend

and the amount of space consumed, and so on.

• Maintain a mapping of the amount of volumes provisioned on available backends.

• Track performance. You can take a look at how long it takes for Astra Trident to communicate to backends

and perform operations.

By default, Trident’s metrics are exposed on the target port 8001 at the /metrics endpoint.

These metrics are enabled by default when Trident is installed.

What you’ll need

• A Kubernetes cluster with Astra Trident installed.

• A Prometheus instance. This can be a containerized Prometheus deployment or you can choose to run

Prometheus as a native application.

Step 1: Define a Prometheus target

You should define a Prometheus target to gather the metrics and obtain information about the backends Astra

Trident manages, the volumes it creates, and so on. This blog explains how you can use Prometheus and

Grafana with Astra Trident to retrieve metrics. The blog explains how you can run Prometheus as an operator

in your Kubernetes cluster and the creation of a ServiceMonitor to obtain Astra Trident’s metrics.

Step 2: Create a Prometheus ServiceMonitor

To consume the Trident metrics, you should create a Prometheus ServiceMonitor that watches the trident-

csi service and listens on the metrics port. A sample ServiceMonitor looks like this:

apiVersion: monitoring.coreos.com/v1

kind: ServiceMonitor

metadata:

 name: trident-sm

 namespace: monitoring

 labels:

 release: prom-operator

 spec:

 jobLabel: trident

 selector:

 matchLabels:

 app: controller.csi.trident.netapp.io

 namespaceSelector:

 matchNames:

 - trident

 endpoints:

 - port: metrics

 interval: 15s

This ServiceMonitor definition retrieves metrics returned by the trident-csi service and specifically looks

for the metrics endpoint of the service. As a result, Prometheus is now configured to understand Astra

167

https://github.com/prometheus-operator/prometheus-operator
https://prometheus.io/download/
https://netapp.io/2020/02/20/prometheus-and-trident/

Trident’s

metrics.

In addition to metrics available directly from Astra Trident, kubelet exposes many kubelet_volume_* metrics

via it’s own metrics endpoint. Kubelet can provide information about the volumes that are attached, and pods

and other internal operations it handles. See here.

Step 3: Query Trident metrics with PromQL

PromQL is good for creating expressions that return time-series or tabular data.

Here are some PromQL queries that you can use:

Get Trident health information

• Percentage of HTTP 2XX responses from Astra Trident

(sum (trident_rest_ops_seconds_total_count{status_code=~"2.."} OR on()

vector(0)) / sum (trident_rest_ops_seconds_total_count)) * 100

• Percentage of REST responses from Astra Trident via status code

(sum (trident_rest_ops_seconds_total_count) by (status_code) / scalar

(sum (trident_rest_ops_seconds_total_count))) * 100

• Average duration in ms of operations performed by Astra Trident

sum by (operation)

(trident_operation_duration_milliseconds_sum{success="true"}) / sum by

(operation)

(trident_operation_duration_milliseconds_count{success="true"})

Get Astra Trident usage information

• Average volume size

trident_volume_allocated_bytes/trident_volume_count

• Total volume space provisioned by each backend

sum (trident_volume_allocated_bytes) by (backend_uuid)

168

https://kubernetes.io/docs/concepts/cluster-administration/monitoring/

Get individual volume usage

This is enabled only if kubelet metrics are also gathered.

• Percentage of used space for each volume

kubelet_volume_stats_used_bytes / kubelet_volume_stats_capacity_bytes *

100

Learn about Astra Trident AutoSupport telemetry

By default, Astra Trident sends Prometheus metrics and basic backend information to NetApp on a daily

cadence.

• To stop Astra Trident from sending Prometheus metrics and basic backend information to NetApp, pass the

--silence-autosupport flag during Astra Trident installation.

• Astra Trident can also send container logs to NetApp Support on-demand via tridentctl send

autosupport. You will need to trigger Astra Trident to upload it’s logs. Before you submit logs, you should

accept NetApp’s

privacy policy.

• Unless specified, Astra Trident fetches the logs from the past 24 hours.

• You can specify the log retention timeframe with the --since flag. For example: tridentctl send

autosupport --since=1h. This information is collected and sent via a trident-autosupport

container

that is installed alongside Astra Trident. You can obtain the container image at Trident AutoSupport.

• Trident AutoSupport does not gather or transmit Personally Identifiable Information (PII) or Personal

Information. It comes with a EULA that is not applicable to the Trident container image itself. You can learn

more about NetApp’s commitment to data security and trust here.

An example payload sent by Astra Trident looks like this:

169

https://www.netapp.com/company/legal/privacy-policy/
https://hub.docker.com/r/netapp/trident-autosupport
https://www.netapp.com/us/media/enduser-license-agreement-worldwide.pdf
https://www.netapp.com/pdf.html?item=/media/14114-enduserlicenseagreementworldwidepdf.pdf

{

 "items": [

 {

 "backendUUID": "ff3852e1-18a5-4df4-b2d3-f59f829627ed",

 "protocol": "file",

 "config": {

 "version": 1,

 "storageDriverName": "ontap-nas",

 "debug": false,

 "debugTraceFlags": null,

 "disableDelete": false,

 "serialNumbers": [

 "nwkvzfanek_SN"

],

 "limitVolumeSize": ""

 },

 "state": "online",

 "online": true

 }

]

}

• The AutoSupport messages are sent to NetApp’s AutoSupport endpoint. If you are using a private registry

to store container images, you can use the --image-registry flag.

• You can also configure proxy URLs by generating the installation YAML files. This can be done by using

tridentctl install --generate-custom-yaml to create the YAML files and adding the --proxy

-url argument for the trident-autosupport container in trident-deployment.yaml.

Disable Astra Trident metrics

To disable metrics from being reported, you should generate custom YAMLs (using the --generate-custom

-yaml flag) and edit them to remove the --metrics flag from being invoked for the trident-main

container.

170

Astra Trident for Docker

Prerequisites for deployment

You have to install and configure the necessary protocol prerequisites on your host before you can deploy

Astra Trident.

• Verify that your deployment meets all of the requirements.

• Verify that you have a supported version of Docker installed. If your Docker version is out of date, install or

update it.

docker --version

• Verify that the protocol prerequisites are installed and configured on your host:

Protocol Operating system Commands

NFS RHEL/CentOS sudo yum install -y nfs-

utils

NFS Ubuntu/Debian sudo apt-get install -y

nfs-common

171

https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/

Protocol Operating system Commands

iSCSI RHEL/CentOS 7 1. Install the following system

packages:

sudo yum install -y

lsscsi iscsi-initiator-

utils sg3_utils device-

mapper-multipath

2. Check that iscsi-initiator-utils

version is 6.2.0.874-2.el7 or

later:

rpm -q iscsi-initiator-

utils

3. Set scanning to manual:

sudo sed -i

's/^\(node.session.scan

\).*/\1 = manual/'

/etc/iscsi/iscsid.conf

4. Enable multipathing:

sudo mpathconf --enable

--with_multipathd y

--find_multipaths n

Ensure

etc/multipat

h.conf contains

find_multipa

ths no under

defaults.

5. Ensure that iscsid and

multipathd are running:

sudo systemctl enable

--now iscsid multipathd

6. Enable and start iscsi:

sudo systemctl enable

--now iscsi

172

Protocol Operating system Commands

iSCSI Ubuntu 1. Install the following system

packages:

sudo apt-get install -y

open-iscsi lsscsi sg3-

utils multipath-tools

scsitools

2. Check that open-iscsi version is

2.0.874-5ubuntu2.10 or later

(for bionic) or 2.0.874-

7.1ubuntu6.1 or later (for focal):

dpkg -l open-iscsi

3. Set scanning to manual:

sudo sed -i

's/^\(node.session.scan

\).*/\1 = manual/'

/etc/iscsi/iscsid.conf

4. Enable multipathing:

sudo tee

/etc/multipath.conf <

←'EOF'

defaults {

user_friendly_names yes

find_multipaths no

}

EOF

sudo systemctl enable

--now multipath-

tools.service

sudo service multipath-

tools restart

Ensure

etc/multipat

h.conf contains

find_multipa

ths no under

defaults.

5. Ensure that open-iscsi and

multipath-tools are

enabled and running:

sudo systemctl status

multipath-tools

sudo systemctl enable

--now open-

iscsi.service 173

sudo systemctl status

open-iscsi

Deploy Astra Trident

Astra Trident for Docker provides direct integration with the Docker ecosystem for NetApp’s storage platforms.

It supports the provisioning and management of storage resources from the storage platform to Docker hosts,

with a framework for adding additional platforms in the future.

Multiple instances of Astra Trident can run concurrently on the same host. This allows simultaneous

connections to multiple storage systems and storage types, with the ablity to customize the storage used for

the Docker volumes.

What you’ll need

See the prerequisites for deployment. After you ensure the prerequisites are met, you are ready to deploy

Astra Trident.

Docker managed plugin method (version 1.13/17.03 and later)

Before you begin

If you have used Astra Trident pre Docker 1.13/17.03 in the traditional daemon method, ensure

that you stop the Astra Trident process and restart your Docker daemon before using the

managed plugin method.

1. Stop all running instances:

pkill /usr/local/bin/netappdvp

pkill /usr/local/bin/trident

2. Restart Docker.

systemctl restart docker

3. Ensure that you have Docker Engine 17.03 (new 1.13) or later installed.

docker --version

If your version is out of date, install or update your installation.

Steps

1. Create a configuration file and specify the options as follows:

◦ config: The default filename is config.json, however you can use any name you choose by

specifying the config option with the filename. The configuration file must be located in the

/etc/netappdvp directory on the host system.

◦ log-level: Specify the logging level (debug, info, warn, error, fatal). The default is info.

◦ debug: Specify whether debug logging is enabled. Default is false. Overrides log-level if true.

a. Create a location for the configuration file:

174

https://docs.docker.com/engine/install/

sudo mkdir -p /etc/netappdvp

b. Create the configuration file:

cat << EOF > /etc/netappdvp/config.json

{

 "version": 1,

 "storageDriverName": "ontap-nas",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.2",

 "svm": "svm_nfs",

 "username": "vsadmin",

 "password": "secret",

 "aggregate": "aggr1"

}

EOF

2. Start Astra Trident using the managed plugin system.

docker plugin install --grant-all-permissions --alias netapp

netapp/trident-plugin:21.07 config=myConfigFile.json

3. Begin using Astra Trident to consume storage from the configured system.

a. Create a volume named "firstVolume":

docker volume create -d netapp --name firstVolume

b. Create a default volume when the container starts:

docker run --rm -it --volume-driver netapp --volume

secondVolume:/my_vol alpine ash

c. Remove the volume "firstVolume":

docker volume rm firstVolume

Traditional method (version 1.12 or earlier)

Before you begin

1. Ensure that you have Docker version 1.10 or later.

175

docker --version

If your version is out of date, update your installation.

curl -fsSL https://get.docker.com/ | sh

Or, follow the instructions for your distribution.

2. Ensure that NFS and/or iSCSI is configured for your system.

Steps

1. Install and configure the NetApp Docker Volume Plugin:

a. Download and unpack the application:

wget

https://github.com/NetApp/trident/releases/download/v21.04.0/trident-

installer-21.07.0.tar.gz

tar zxf trident-installer-21.07.0.tar.gz

b. Move to a location in the bin path:

sudo mv trident-installer/extras/bin/trident /usr/local/bin/

sudo chown root:root /usr/local/bin/trident

sudo chmod 755 /usr/local/bin/trident

c. Create a location for the configuration file:

sudo mkdir -p /etc/netappdvp

d. Create the configuration file:

176

https://docs.docker.com/engine/install/

cat << EOF > /etc/netappdvp/ontap-nas.json

{

 "version": 1,

 "storageDriverName": "ontap-nas",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.2",

 "svm": "svm_nfs",

 "username": "vsadmin",

 "password": "secret",

 "aggregate": "aggr1"

}

EOF

2. After placing the binary and creating the configuration file(s), start the Trident daemon using the desired

configuration file.

sudo trident --config=/etc/netappdvp/ontap-nas.json

Unless specified, the default name for the volume driver is “netapp”.

After the daemon is started, you can create and manage volumes by using the Docker CLI interface

3. Create a volume:

docker volume create -d netapp --name trident_1

4. Provision a Docker volume when starting a container:

docker run --rm -it --volume-driver netapp --volume trident_2:/my_vol

alpine ash

5. Remove a Docker volume:

docker volume rm trident_1

docker volume rm trident_2

Start Astra Trident at system startup

A sample unit file for systemd based systems can be found at contrib/trident.service.example in the

Git repo. To use the file with CentOS/RHEL, do the following:

1. Copy the file to the correct location.

177

You should use unique names for the unit files if you have more than one instance running.

cp contrib/trident.service.example

/usr/lib/systemd/system/trident.service

2. Edit the file, change the description (line 2) to match the driver name and the configuration file path (line 9)

to reflect your environment.

3. Reload systemd for it to ingest changes:

systemctl daemon-reload

4. Enable the service.

This name varies depending on what you named the file in the /usr/lib/systemd/system directory.

systemctl enable trident

5. Start the service.

systemctl start trident

6. View the status.

systemctl status trident

Any time you modify the unit file, run the systemctl daemon-reload command for it to be

aware of the changes.

Upgrade or uninstall Astra Trident

You can safely upgrade Astra Trident for Docker without any impact to volumes that are in use. During the

upgrade process there will be a brief period where docker volume commands directed at the plugin will not

succeed, and applications will be unable to mount volumes until the plugin is running again. Under most

circumstances, this is a matter of seconds.

Upgrade

Perform the steps below to upgrade Astra Trident for Docker.

Steps

1. List the existing volumes:

178

docker volume ls

DRIVER VOLUME NAME

netapp:latest my_volume

2. Disable the plugin:

docker plugin disable -f netapp:latest

docker plugin ls

ID NAME DESCRIPTION

ENABLED

7067f39a5df5 netapp:latest nDVP - NetApp Docker Volume

Plugin false

3. Upgrade the plugin:

docker plugin upgrade --skip-remote-check --grant-all-permissions

netapp:latest netapp/trident-plugin:21.07

The 18.01 release of Astra Trident replaces the nDVP. You should upgrade directly from the

netapp/ndvp-plugin image to the netapp/trident-plugin image.

4. Enable the plugin:

docker plugin enable netapp:latest

5. Verify that the plugin is enabled:

docker plugin ls

ID NAME DESCRIPTION

ENABLED

7067f39a5df5 netapp:latest Trident - NetApp Docker Volume

Plugin true

6. Verify that the volumes are visible:

docker volume ls

DRIVER VOLUME NAME

netapp:latest my_volume

179

If you are upgrading from an old version of Astra Trident (pre-20.10) to Astra Trident 20.10

or later, you might run into an error. For more information, see Known Issues. If you run into

the error, you should first disable the plugin, then remove the plugin, and then install the

required Astra Trident version by passing an extra config parameter: docker plugin

install netapp/trident-plugin:20.10 --alias netapp --grant-all

-permissions config=config.json

Uninstall

Perform the steps below to uninstall Astra Trident for Docker.

Steps

1. Remove any volumes that the plugin created.

2. Disable the plugin:

docker plugin disable netapp:latest

docker plugin ls

ID NAME DESCRIPTION

ENABLED

7067f39a5df5 netapp:latest nDVP - NetApp Docker Volume

Plugin false

3. Remove the plugin:

docker plugin rm netapp:latest

Work with volumes

You can easily create, clone, and remove volumes using the standard docker volume commands with the

Astra Trident driver name specified when needed.

Create a volume

• Create a volume with a driver using the default name:

docker volume create -d netapp --name firstVolume

• Create a volume with a specific Astra Trident instance:

docker volume create -d ntap_bronze --name bronzeVolume

If you do not specify any options, the defaults for the driver are used.

180

• Override the default volume size. See the following example to create a 20GiB volume with a driver:

docker volume create -d netapp --name my_vol --opt size=20G

Volume sizes are expressed as strings containing an integer value with optional units

(example: 10G, 20GB, 3TiB). If no units are specified, the default is G. Size units can be

expressed either as powers of 2 (B, KiB, MiB, GiB, TiB) or powers of 10 (B, KB, MB, GB,

TB). Shorthand units use powers of 2 (G = GiB, T = TiB, …).

Remove a volume

• Remove the volume just like any other Docker volume:

docker volume rm firstVolume

When using the solidfire-san driver, the above example deletes and purges the

volume.

Perform the steps below to upgrade Astra Trident for Docker.

Clone a volume

When using the ontap-nas, ontap-san, solidfire-san, and gcp-cvs storage drivers, Astra

Trident can clone volumes. When using the ontap-nas-flexgroup or ontap-nas-economy drivers,

cloning is not supported. Creating a new volume from an existing volume will result in a new snapshot being

created.

• Inspect the volume to enumerate snapshots:

docker volume inspect <volume_name>

• Create a new volume from an existing volume. This will result in a new snapshot being created:

docker volume create -d <driver_name> --name <new_name> -o

from=<source_docker_volume>

• Create a new volume from an existing snapshot on a volume. This will not create a new snapshot:

docker volume create -d <driver_name> --name <new_name> -o

from=<source_docker_volume> -o fromSnapshot=<source_snap_name>

181

Example

[me@host ~]$ docker volume inspect firstVolume

[

 {

 "Driver": "ontap-nas",

 "Labels": null,

 "Mountpoint": "/var/lib/docker-volumes/ontap-

nas/netappdvp_firstVolume",

 "Name": "firstVolume",

 "Options": {},

 "Scope": "global",

 "Status": {

 "Snapshots": [

 {

 "Created": "2017-02-10T19:05:00Z",

 "Name": "hourly.2017-02-10_1505"

 }

]

 }

 }

]

[me@host ~]$ docker volume create -d ontap-nas --name clonedVolume -o

from=firstVolume

clonedVolume

[me@host ~]$ docker volume rm clonedVolume

[me@host ~]$ docker volume create -d ontap-nas --name volFromSnap -o

from=firstVolume -o fromSnapshot=hourly.2017-02-10_1505

volFromSnap

[me@host ~]$ docker volume rm volFromSnap

Access externally created volumes

You can access externally created block devices (or their clones) by containers using Trident only if they have

no partitions and if their filesystem is supported by Astra Trident (for example: an ext4-formatted /dev/sdc1

will not be accessible via Astra Trident).

Driver-specific volume options

Each storage driver has a different set of options, which you can specify at volume creation time to customize

the outcome. See below for options that apply to your configured storage system.

Using these options during the volume create operation is simple. Provide the option and the value using the

182

-o operator during the CLI operation. These override any equivalent values from the JSON configuration file.

ONTAP volume options

Volume create options for both NFS and iSCSI include the following:

Option Description

size The size of the volume, defaults to 1 GiB.

spaceReserve Thin or thick provision the volume, defaults to thin.

Valid values are none (thin provisioned) and volume

(thick provisioned).

snapshotPolicy This will set the snapshot policy to the desired value.

The default is none, meaning no snapshots will

automatically be created for the volume. Unless

modified by your storage administrator, a policy

named “default” exists on all ONTAP systems which

creates and retains six hourly, two daily, and two

weekly snapshots. The data preserved in a snapshot

can be recovered by browsing to the .snapshot

directory in any directory in the volume.

snapshotReserve This will set the snapshot reserve to the desired

percentage. The default is no value, meaning ONTAP

will select the snapshotReserve (usually 5%) if you

have selected a snapshotPolicy, or 0% if the

snapshotPolicy is none. You can set the default

snapshotReserve value in the config file for all

ONTAP backends, and you can use it as a volume

creation option for all ONTAP backends except ontap-

nas-economy.

splitOnClone When cloning a volume, this will cause ONTAP to

immediately split the clone from its parent. The default

is false. Some use cases for cloning volumes are

best served by splitting the clone from its parent

immediately upon creation, because there is unlikely

to be any opportunity for storage efficiencies. For

example, cloning an empty database can offer large

time savings but little storage savings, so it’s best to

split the clone immediately.

encryption This will enable NetApp Volume Encryption (NVE) on

the new volume, defaults to false. NVE must be

licensed and enabled on the cluster to use this option.

NetApp Aggregate Encryption (NAE) is

not currently supported in Trident.

183

Option Description

tieringPolicy Sets the tiering policy to be used for the volume. This

decides whether data is moved to the cloud tier when

it becomes inactive (cold).

The following additional options are for NFS only:

Option Description

unixPermissions This controls the permission set for the volume itself.

By default the permissions will be set to `---rwxr-

xr-x, or in numerical notation 0755, and root will be

the owner. Either the text or numerical format will

work.

snapshotDir Setting this to true will make the .snapshot

directory visible to clients accessing the volume. The

default value is false, meaning that visibility of the

.snapshot directory is disabled by default. Some

images, for example the official MySQL image, don’t

function as expected when the .snapshot directory

is visible.

exportPolicy Sets the export policy to be used for the volume. The

default is default.

securityStyle Sets the security style to be used for access to the

volume. The default is unix. Valid values are unix

and mixed.

The following additional options are for iSCSI only:

Option Description

fileSystemType Sets the file system used to format iSCSI volumes.

The default is ext4. Valid values are ext3, ext4,

and xfs.

spaceAllocation Setting this to false will turn off the LUN’s space-

allocation feature. The default value is true, meaning

ONTAP notifies the host when the volume has run out

of space and the LUN in the volume cannot accept

writes. This option also enables ONTAP to reclaim

space automatically when your host deletes data.

Examples

See the examples below:

• Create a 10GiB volume:

184

docker volume create -d netapp --name demo -o size=10G -o

encryption=true

• Create a 100GiB volume with snapshots:

docker volume create -d netapp --name demo -o size=100G -o

snapshotPolicy=default -o snapshotReserve=10

• Create a volume which has the setUID bit enabled:

docker volume create -d netapp --name demo -o unixPermissions=4755

The minimum volume size is 20MiB.

If the snapshot reserve is not specified and the snapshot policy is none, Trident will use a snapshot reserve of

0%.

• Create a volume with no snapshot policy and no snapshot reserve:

docker volume create -d netapp --name my_vol --opt snapshotPolicy=none

• Create a volume with no snapshot policy and a custom snapshot reserve of 10%:

docker volume create -d netapp --name my_vol --opt snapshotPolicy=none

--opt snapshotReserve=10

• Create a volume with a snapshot policy and a custom snapshot reserve of 10%:

docker volume create -d netapp --name my_vol --opt

snapshotPolicy=myPolicy --opt snapshotReserve=10

• Create a volume with a snapshot policy, and accept ONTAP’s default snapshot reserve (usually 5%):

docker volume create -d netapp --name my_vol --opt

snapshotPolicy=myPolicy

Element software volume options

The Element software options expose the size and quality of service (QoS) policies associated with the

volume. When the volume is created, the QoS policy associated with it is specified using the -o

185

type=service_level nomenclature.

The first step to defining a QoS service level with the Element driver is to create at least one type and specify

the minimum, maximum, and burst IOPS associated with a name in the configuration file.

Other Element software volume create options include the following:

Option Description

size The size of the volume, defaults to 1GiB or config

entry … "defaults": {"size": "5G"}.

blocksize Use either 512 or 4096, defaults to 512 or config entry

DefaultBlockSize.

Example

See the following sample configuration file with QoS definitions:

186

{

 "...": "..."

 "Types": [

 {

 "Type": "Bronze",

 "Qos": {

 "minIOPS": 1000,

 "maxIOPS": 2000,

 "burstIOPS": 4000

 }

 },

 {

 "Type": "Silver",

 "Qos": {

 "minIOPS": 4000,

 "maxIOPS": 6000,

 "burstIOPS": 8000

 }

 },

 {

 "Type": "Gold",

 "Qos": {

 "minIOPS": 6000,

 "maxIOPS": 8000,

 "burstIOPS": 10000

 }

 }

]

}

In the above configuration, we have three policy definitions: Bronze, Silver, and Gold. These names are

arbitrary.

• Create a 10GiB Gold volume:

docker volume create -d solidfire --name sfGold -o type=Gold -o size=10G

• Create a 100GiB Bronze volume:

docker volume create -d solidfire --name sfBronze -o type=Bronze -o

size=100G

187

CVS on GCP volume options

Volume create options for the CVS on GCP driver include the following:

Option Description

size The size of the volume, defaults to 100 GiB for CVS-

Performance volumes or 300 GiB for CVS volumes.

serviceLevel The CVS service level of the volume, defaults to

standard. Valid values are standard, premium, and

extreme.

snapshotReserve This will set the snapshot reserve to the desired

percentage. The default is no value, meaning CVS

will select the snapshot reserve (usually 0%).

Examples

• Create a 2TiB volume:

docker volume create -d netapp --name demo -o size=2T

• Create a 5TiB premium volume:

docker volume create -d netapp --name demo -o size=5T -o

serviceLevel=premium

The minimum volume size is 100 GiB for CVS-Performance volumes, or 300 GiB for CVS volumes.

Azure NetApp Files volume options

Volume create options for the Azure NetApp Files driver include the following:

Option Description

size The size of the volume, defaults to 100 GB.

Examples

• Create a 200GiB volume:

docker volume create -d netapp --name demo -o size=200G

The minimum volume size is 100 GB.

188

Collect logs

You can collect logs for help with troubleshooting. The method you use to collect the logs varies based on how

you are running the Docker plugin.

Collect logs for troubleshooting

Steps

1. If you are running Astra Trident using the recommended managed plugin method (i.e., using docker

plugin commands), view them as follows:

docker plugin ls

ID NAME DESCRIPTION

ENABLED

4fb97d2b956b netapp:latest nDVP - NetApp Docker Volume

Plugin false

journalctl -u docker | grep 4fb97d2b956b

The standard logging level should allow you to diagnose most issues. If you find that’s not enough, you can

enable debug logging.

2. To enable debug logging, install the plugin with debug logging enabled:

docker plugin install netapp/trident-plugin:<version> --alias <alias>

debug=true

Or, enable debug logging when the plugin is already installed:

docker plugin disable <plugin>

docker plugin set <plugin> debug=true

docker plugin enable <plugin>

3. If you are running the binary itself on the host, logs are available in the host’s /var/log/netappdvp

directory. To enable debug logging, specify -debug when you run the plugin.

General troubleshooting tips

• The most common problem new users run into is a misconfiguration that prevents the plugin from

initializing. When this happens you will likely see a message such as this when you try to install or enable

the plugin:

Error response from daemon: dial unix /run/docker/plugins/<id>/netapp.sock:

connect: no such file or directory

This means that the plugin failed to start. Luckily, the plugin has been built with a comprehensive logging

capability that should help you diagnose most of the issues you are likely to come across.

189

• If there are problems with mounting a PV to a container, ensure that rpcbind is installed and running. Use

the required package manager for the host OS and check if rpcbind is running. You can check the status

of the rpcbind service by running a systemctl status rpcbind or its equivalent.

Manage multiple Astra Trident instances

Multiple instances of Trident are needed when you desire to have multiple storage configurations available

simultaneously. The key to multiple instances is to give them different names using the --alias option with

the containerized plugin, or --volume-driver option when instantiating Trident on the host.

Steps for Docker managed plugin (version 1.13/17.03 or later)

1. Launch the first instance specifying an alias and configuration file.

docker plugin install --grant-all-permissions --alias silver

netapp/trident-plugin:21.07 config=silver.json

2. Launch the second instance, specifying a different alias and configuration file.

docker plugin install --grant-all-permissions --alias gold

netapp/trident-plugin:21.07 config=gold.json

3. Create volumes specifying the alias as the driver name.

For example, for gold volume:

docker volume create -d gold --name ntapGold

For example, for silver volume:

docker volume create -d silver --name ntapSilver

Steps for traditional (version 1.12 or earlier)

1. Launch the plugin with an NFS configuration using a custom driver ID:

sudo trident --volume-driver=netapp-nas --config=/path/to/config

-nfs.json

2. Launch the plugin with an iSCSI configuration using a custom driver ID:

190

sudo trident --volume-driver=netapp-san --config=/path/to/config

-iscsi.json

3. Provision Docker volumes for each driver instance:

For example, for NFS:

docker volume create -d netapp-nas --name my_nfs_vol

For example, for iSCSI:

docker volume create -d netapp-san --name my_iscsi_vol

Storage configuration options

See the configuration options available for your Astra Trident configurations.

Global configuration options

These configuration options apply to all Astra Trident configurations, regardless of the storage platform being

used.

Option Description Example

version Config file version number 1

storageDriverName Name of storage driver ontap-nas, ontap-san, ontap-

nas-economy,

ontap-nas-flexgroup,

solidfire-san, azure-

netapp-files, or gcp-cvs

storagePrefix Optional prefix for volume names.

Default: “netappdvp_”.

staging_

limitVolumeSize Optional restriction on volume

sizes. Default: “” (not enforced)

10g

Do not use storagePrefix (including the default) for Element backends. By default, the

solidfire-san driver will ignore this setting and not use a prefix. We recommend using either

a specific tenantID for Docker volume mapping or using the attribute data which is populated

with the Docker version, driver info, and raw name from Docker in cases where any name

munging may have been used.

191

Default options are available to avoid having to specify them on every volume you create. The size option is

available for all the controller types. See the ONTAP configuration section for an example of how to set the

default volume size.

Option Description Example

size Optional default size for new

volumes. Default: “1G”

10G

ONTAP configuration

In addition to the global configuration values above, when using ONTAP, the following top-level options are

available.

Option Description Example

managementLIF IP address of ONTAP management

LIF. You can specify a fully-qualified

domain name (FQDN).

10.0.0.1

dataLIF IP address of protocol LIF; will be

derived if not specified. For the

ontap-nas drivers only, you can

specify an FQDN, in which case

the FQDN will be used for the NFS

mount operations. For the ontap-

san drivers, the default is to use all

data LIF IPs from the SVM and to

use iSCSI multipath. Specifying an

IP address for dataLIF for the

ontap-san drivers forces the

driver to disable multipath and use

only the specified address.

10.0.0.2

svm Storage virtual machine to use

(required, if management LIF is a

cluster LIF)

svm_nfs

username Username to connect to the

storage device

vsadmin

password Password to connect to the storage

device

secret

192

Option Description Example

aggregate Aggregate for provisioning

(optional; if set, must be assigned

to the SVM). For the ontap-nas-

flexgroup driver, this option is

ignored. All aggregates assigned to

the SVM are used to provision a

FlexGroup Volume.

aggr1

limitAggregateUsage Optional, fail provisioning if usage

is above this percentage

75%

nfsMountOptions Fine grained control of NFS mount

options; defaults to “-o nfsvers=3”.

Available only for the ontap-nas

and ontap-nas-economy

drivers. See NFS host

configuration information here.

-o nfsvers=4

igroupName The igroup used by the plugin;

defaults to “netappdvp”. Available

only for the `ontap-san`driver.

myigroup

limitVolumeSize Maximum requestable volume size

and qtree parent volume size. For

the ontap-nas-economy driver,

this option additionally limits the

size of the FlexVols that it

creates.

300g

qtreesPerFlexvol Maximum qtrees per FlexVol, must

be in range [50, 300], default is

200. For the ontap-nas-

economy driver, this option

allows customizing the

maximum number of qtrees per

FlexVol.

300

Default options are available to avoid having to specify them on every volume you create:

Option Description Example

spaceReserve Space reservation mode; “none”

(thin provisioned) or “volume”

(thick)

none

snapshotPolicy Snapshot policy to use, default is

“none”

none

193

https://www.netapp.com/pdf.html?item=/media/10720-tr-4067.pdf
https://www.netapp.com/pdf.html?item=/media/10720-tr-4067.pdf

Option Description Example

snapshotReserve Snapshot reserve percentage,

default is “” to accept ONTAP’s

default

10

splitOnClone Split a clone from its parent upon

creation, defaults to “false”

false

encryption Enable NetApp Volume Encryption,

defaults to “false”

true

unixPermissions NAS option for provisioned NFS

volumes, defaults to “777”

777

snapshotDir NAS option for access to the

.snapshot directory, defaults to

“false”

true

exportPolicy NAS option for the NFS export

policy to use, defaults to “default”

default

securityStyle NAS option for access to the

provisioned NFS volume, defaults

to “unix”

mixed

fileSystemType SAN option to select the file system

type, defaults to “ext4”

xfs

tieringPolicy Tiering policy to use, default is

“none”; “snapshot-only” for pre-

ONTAP 9.5 SVM-DR configuration

none

Scaling options

The ontap-nas and ontap-san drivers create an ONTAP FlexVol for each Docker volume. ONTAP supports

up to 1000 FlexVols per cluster node with a cluster maximum of 12,000 FlexVols. If your Docker volume

requirements fit within that limitation, the ontap-nas driver is the preferred NAS solution due to the additional

features offered by FlexVols, such as Docker-volume-granular snapshots and cloning.

If you need more Docker volumes than can be accommodated by the FlexVol limits, choose the ontap-nas-

economy or the ontap-san-economy driver.

The ontap-nas-economy driver creates Docker volumes as ONTAP Qtrees within a pool of automatically

managed FlexVols. Qtrees offer far greater scaling, up to 100,000 per cluster node and 2,400,000 per cluster,

at the expense of some features. The ontap-nas-economy driver does not support Docker-volume-granular

snapshots or cloning.

194

The ontap-nas-economy driver is not currently supported in Docker Swarm, because Swarm

does not orchestrate volume creation across multiple nodes.

The ontap-san-economy driver creates Docker volumes as ONTAP LUNs within a shared pool of

automatically managed FlexVols. This way, each FlexVol is not restricted to only one LUN and it offers better

scalability for SAN workloads. Depending on the storage array, ONTAP supports up to 16384 LUNs per cluster.

Because the volumes are LUNs underneath, this driver supports Docker-volume-granular snapshots and

cloning.

Choose the ontap-nas-flexgroup driver to increase parallelism to a single volume that can grow into the

petabyte range with billions of files. Some ideal use cases for FlexGroups include AI/ML/DL, big data and

analytics, software builds, streaming, file repositories, and so on. Trident uses all aggregates assigned to an

SVM when provisioning a FlexGroup Volume. FlexGroup support in Trident also has the following

considerations:

• Requires ONTAP version 9.2 or greater.

• As of this writing, FlexGroups only support NFS v3.

• Recommended to enable the 64-bit NFSv3 identifiers for the SVM.

• The minimum recommended FlexGroup size is 100GB.

• Cloning is not supported for FlexGroup Volumes.

For information about FlexGroups and workloads that are appropriate for FlexGroups see the NetApp

FlexGroup Volume Best Practices and Implementation Guide.

To get advanced features and huge scale in the same environment, you can run multiple instances of the

Docker Volume Plugin, with one using ontap-nas and another using ontap-nas-economy.

Example ONTAP configuration files

NFS example for ontap-nas driver

{

 "version": 1,

 "storageDriverName": "ontap-nas",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.2",

 "svm": "svm_nfs",

 "username": "vsadmin",

 "password": "secret",

 "aggregate": "aggr1",

 "defaults": {

 "size": "10G",

 "spaceReserve": "none",

 "exportPolicy": "default"

 }

}

195

https://www.netapp.com/pdf.html?item=/media/12385-tr4571pdf.pdf
https://www.netapp.com/pdf.html?item=/media/12385-tr4571pdf.pdf

NFS example for ontap-nas-flexgroup driver

{

 "version": 1,

 "storageDriverName": "ontap-nas-flexgroup",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.2",

 "svm": "svm_nfs",

 "username": "vsadmin",

 "password": "secret",

 "defaults": {

 "size": "100G",

 "spaceReserve": "none",

 "exportPolicy": "default"

 }

}

NFS example for ontap-nas-economy driver

{

 "version": 1,

 "storageDriverName": "ontap-nas-economy",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.2",

 "svm": "svm_nfs",

 "username": "vsadmin",

 "password": "secret",

 "aggregate": "aggr1"

}

iSCSI example for ontap-san driver

{

 "version": 1,

 "storageDriverName": "ontap-san",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.3",

 "svm": "svm_iscsi",

 "username": "vsadmin",

 "password": "secret",

 "aggregate": "aggr1",

 "igroupName": "myigroup"

}

196

NFS example for ontap-san-economy driver

{

 "version": 1,

 "storageDriverName": "ontap-san-economy",

 "managementLIF": "10.0.0.1",

 "dataLIF": "10.0.0.3",

 "svm": "svm_iscsi_eco",

 "username": "vsadmin",

 "password": "secret",

 "aggregate": "aggr1",

 "igroupName": "myigroup"

}

Element software configuration

In addition to the global configuration values, when using Element software (NetApp HCI/SolidFire), these

options are available.

Option Description Example

Endpoint <a

href="https://<login>:<passw

ord>@<mvip>/json-

rpc/<element-version>"

class="bare">https://<login>:&l

t;password>@<mvip>/json-

rpc/<element-version>;

https://admin:admin@192.168.160.

3/json-rpc/8.0

SVIP iSCSI IP address and port 10.0.0.7:3260

TenantName SolidFireF Tenant to use (created if

not found)

“docker”

InitiatorIFace Specify interface when restricting

iSCSI traffic to non-default interface

“default”

Types QoS specifications See example below

LegacyNamePrefix Prefix for upgraded Trident installs.

If you used a version of Trident

prior to 1.3.2 and perform an

upgrade with existing volumes,

you’ll need to set this value to

access your old volumes that were

mapped via the volume-name

method.

“netappdvp-”

197

https://admin:admin@192.168.160.3/json-rpc/8.0
https://admin:admin@192.168.160.3/json-rpc/8.0

The solidfire-san driver does not support Docker Swarm.

Example Element software configuration file

{

 "version": 1,

 "storageDriverName": "solidfire-san",

 "Endpoint": "https://admin:admin@192.168.160.3/json-rpc/8.0",

 "SVIP": "10.0.0.7:3260",

 "TenantName": "docker",

 "InitiatorIFace": "default",

 "Types": [

 {

 "Type": "Bronze",

 "Qos": {

 "minIOPS": 1000,

 "maxIOPS": 2000,

 "burstIOPS": 4000

 }

 },

 {

 "Type": "Silver",

 "Qos": {

 "minIOPS": 4000,

 "maxIOPS": 6000,

 "burstIOPS": 8000

 }

 },

 {

 "Type": "Gold",

 "Qos": {

 "minIOPS": 6000,

 "maxIOPS": 8000,

 "burstIOPS": 10000

 }

 }

]

}

Cloud Volumes Service (CVS) on GCP configuration

Trident now includes support for smaller volumes with the default CVS service type on GCP. For backends

created with storageClass=software, volumes will now have a minimum provisioning size of 300 GiB.

NetApp recommends customers consume sub-1TiB volumes for non-production workloads. CVS

currently provides this feature under Controlled Availability and does not provide technical support.

198

https://cloud.google.com/architecture/partners/netapp-cloud-volumes/service-types

Sign up for access to sub-1TiB volumes here.

When deploying backends using the default CVS service type storageClass=software, you

should obtain access to the sub-1TiB volumes feature on GCP for the Project Number(s) and

Project ID(s) in question. This is necessary for Trident to provision sub-1TiB volumes. If not,

volume creations will fail for PVCs that are <600 GiB. Obtain access to sub-1TiB volumes using

this form.

Volumes created by Trident for the default CVS service level will be provisioned as follows:

• PVCs that are smaller than 300 GiB will result in Trident creating a 300 GiB CVS volume.

• PVCs that are between 300 GiB to 600 GiB will result in Trident creating a CVS volume of the requested

size.

• PVCs that are between 600 GiB and 1 TiB will result in Trident creating a 1TiB CVS volume.

• PVCs that are greater than 1 TiB will result in Trident creating a CVS volume of the requested size.

In addition to the global configuration values, when using CVS on GCP, these options are available.

Option Description Example

apiRegion CVS account region (required). Is

the GCP region where this backend

will provision volumes.

“us-west2”

projectNumber GCP project number (required).

Can be found in the GCP web

portal’s Home screen.

“123456789012”

hostProjectNumber GCP shared VPC host project

number (required if using a shared

VPC)

“098765432109”

apiKey API key for GCP service account

with CVS admin role (required). Is

the JSON-formatted contents of a

GCP service account’s private key

file (copied verbatim into the

backend config file). The service

account must have the

netappcloudvolumes.admin role.

(contents of the private key file)

secretKey CVS account secret key (required).

Can be found in the CVS web

portal in Account settings > API

access.

“default”

199

https://docs.google.com/forms/d/e/1FAIpQLSc7_euiPtlV8bhsKWvwBl3gm9KUL4kOhD7lnbHC3LlQ7m02Dw/viewform
https://docs.google.com/forms/d/e/1FAIpQLSc7_euiPtlV8bhsKWvwBl3gm9KUL4kOhD7lnbHC3LlQ7m02Dw/viewform

Option Description Example

proxyURL Proxy URL if proxy server required

to connect to the CVS account. The

proxy server can either be an

HTTP proxy or an HTTPS proxy. In

case of an HTTPS proxy, certificate

validation is skipped to allow the

usage of self-signed certificates in

the proxy server. Proxy servers

with authentication enabled are

not supported.

“http://proxy-server-hostname/”

nfsMountOptions NFS mount options; defaults to “-o

nfsvers=3”

“nfsvers=3,proto=tcp,timeo=600”

serviceLevel Performance level (standard,

premium, extreme), defaults to

“standard”

“premium”

network GCP network used for CVS

volumes, defaults to “default”

“default”

If using a shared VPC network, you should specify both projectNumber and

hostProjectNumber. In that case, projectNumber is the service project and

hostProjectNumber is the host project.

The NetApp Cloud Volumes Service for GCP does not support CVS-Performance volumes less

than 100 GiB in size, or CVS volumes less than 300 GiB in size. To make it easier to deploy

applications, Trident automatically creates volumes of the minimum size if a too-small volume is

requested.

When using CVS on GCP, these default volume option settings are available.

Option Description Example

exportRule NFS access list (addresses and/or

CIDR subnets), defaults to

“0.0.0.0/0”

“10.0.1.0/24,10.0.2.100”

snapshotDir Controls visibility of the

.snapshot directory

“false”

snapshotReserve Snapshot reserve percentage,

default is “” to accept the CVS

default of 0

“10”

size Volume size, defaults to “100GiB” “10T”

200

Example CVS on GCP configuration file

{

 "version": 1,

 "storageDriverName": "gcp-cvs",

 "projectNumber": "012345678901",

 "apiRegion": "us-west2",

 "apiKey": {

 "type": "service_account",

 "project_id": "my-gcp-project",

 "private_key_id": "<id_value>",

 "private_key": "

 -----BEGIN PRIVATE KEY-----

 <key_value>

 -----END PRIVATE KEY-----\n",

 "client_email": "cloudvolumes-admin-sa@my-gcp-

project.iam.gserviceaccount.com",

 "client_id": "123456789012345678901",

 "auth_uri": "https://accounts.google.com/o/oauth2/auth",

 "token_uri": "https://oauth2.googleapis.com/token",

 "auth_provider_x509_cert_url":

"https://www.googleapis.com/oauth2/v1/certs",

 "client_x509_cert_url":

"https://www.googleapis.com/robot/v1/metadata/x509/cloudvolumes-admin-

sa%40my-gcp-project.iam.gserviceaccount.com"

 },

 "proxyURL": "http://proxy-server-hostname/"

}

Azure NetApp Files configuration

To configure and use an Azure NetApp Files backend, you will need the following:

• subscriptionID from an Azure subscription with Azure NetApp Files enabled

• tenantID, clientID, and clientSecret from an App Registration in Azure Active Directory with

sufficient permissions to the Azure NetApp Files service

• Azure location that contains at least one delegated subnet

If you’re using Azure NetApp Files for the first time or in a new location, some initial

configuration is required that the quickstart guide will walk you through.

Astra Trident 21.04.0 and earlier do not support Manual QoS capacity pools.

201

https://azure.microsoft.com/en-us/services/netapp/
https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-create-service-principal-portal
https://docs.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-delegate-subnet
https://docs.microsoft.com/en-us/azure/azure-netapp-files/azure-netapp-files-quickstart-set-up-account-create-volumes?tabs=azure-portal

Option Description Default

version Always 1

storageDriverName “azure-netapp-files”

backendName Custom name for the storage

backend

Driver name + “_” + random

characters

subscriptionID The subscription ID from your

Azure subscription

tenantID The tenant ID from an App

Registration

clientID The client ID from an App

Registration

clientSecret The client secret from an App

Registration

serviceLevel One of “Standard”, “Premium” or

“Ultra”

“” (random)

location Name of the Azure location new

volumes will be created in

“” (random)

virtualNetwork Name of a virtual network with a

delegated subnet

“” (random)

subnet Name of a subnet delegated to

Microsoft.Netapp/volumes

“” (random)

nfsMountOptions Fine-grained control of NFS mount

options

“-o nfsvers=3”

limitVolumeSize Fail provisioning if requested

volume size is above this value

“” (not enforced by default)

The Azure NetApp Files service does not support volumes less than 100 GB in size. To make it

easier to deploy applications, Trident automatically creates 100 GB volumes if a smaller volume

is requested.

You can control how each volume is provisioned by default using these options in a special section of the

configuration.

202

Option Description Default

exportRule The export rule(s) for new volumes.

Must be a comma-separated list of

any combination of IPv4 addresses

or IPv4 subnets in CIDR notation.

“0.0.0.0/0”

snapshotDir Controls visibility of the

.snapshot directory

“false”

size The default size of new volumes “100G”

Example Azure NetApp Files configurations

Example 1: Minimal backend configuration for azure-netapp-files

This is the absolute minimum backend configuration. With this configuration, Trident will discover all of your

NetApp accounts, capacity pools, and subnets delegated to ANF in every location worldwide, and place new

volumes on one of them randomly.

This configuration is useful when you’re just getting started with ANF and trying things out, but in practice

you’re going to want to provide additional scoping for the volumes you provision to make sure that they have

the characteristics you want and end up on a network that’s close to the compute that’s using it. See the

subsequent examples for more details.

{

 "version": 1,

 "storageDriverName": "azure-netapp-files",

 "subscriptionID": "9f87c765-4774-fake-ae98-a721add45451",

 "tenantID": "68e4f836-edc1-fake-bff9-b2d865ee56cf",

 "clientID": "dd043f63-bf8e-fake-8076-8de91e5713aa",

 "clientSecret": "SECRET"

}

Example 2: Single location and specific service level for azure-netapp-files

This backend configuration places volumes in Azure’s “eastus” location in a “Premium” capacity pool. Trident

automatically discovers all of the subnets delegated to ANF in that location and will place a new volume on one

of them randomly.

203

{

 "version": 1,

 "storageDriverName": "azure-netapp-files",

 "subscriptionID": "9f87c765-4774-fake-ae98-a721add45451",

 "tenantID": "68e4f836-edc1-fake-bff9-b2d865ee56cf",

 "clientID": "dd043f63-bf8e-fake-8076-8de91e5713aa",

 "clientSecret": "SECRET",

 "location": "eastus",

 "serviceLevel": "Premium"

}

Example 3: Advanced configuration for azure-netapp-files

This backend configuration further reduces the scope of volume placement to a single subnet, and also

modifies some volume provisioning defaults.

{

 "version": 1,

 "storageDriverName": "azure-netapp-files",

 "subscriptionID": "9f87c765-4774-fake-ae98-a721add45451",

 "tenantID": "68e4f836-edc1-fake-bff9-b2d865ee56cf",

 "clientID": "dd043f63-bf8e-fake-8076-8de91e5713aa",

 "clientSecret": "SECRET",

 "location": "eastus",

 "serviceLevel": "Premium",

 "virtualNetwork": "my-virtual-network",

 "subnet": "my-subnet",

 "nfsMountOptions": "nfsvers=3,proto=tcp,timeo=600",

 "limitVolumeSize": "500Gi",

 "defaults": {

 "exportRule": "10.0.0.0/24,10.0.1.0/24,10.0.2.100",

 "size": "200Gi"

 }

}

Example 4: Virtual storage pools with azure-netapp-files

This backend configuration defines multiple pools of storage in a single file. This is useful when you have

multiple capacity pools supporting different service levels and you want to create storage classes in

Kubernetes that represent those.

This is just scratching the surface of the power of virtual storage pools and their labels.

204

{

 "version": 1,

 "storageDriverName": "azure-netapp-files",

 "subscriptionID": "9f87c765-4774-fake-ae98-a721add45451",

 "tenantID": "68e4f836-edc1-fake-bff9-b2d865ee56cf",

 "clientID": "dd043f63-bf8e-fake-8076-8de91e5713aa",

 "clientSecret": "SECRET",

 "nfsMountOptions": "nfsvers=3,proto=tcp,timeo=600",

 "labels": {

 "cloud": "azure"

 },

 "location": "eastus",

 "storage": [

 {

 "labels": {

 "performance": "gold"

 },

 "serviceLevel": "Ultra"

 },

 {

 "labels": {

 "performance": "silver"

 },

 "serviceLevel": "Premium"

 },

 {

 "labels": {

 "performance": "bronze"

 },

 "serviceLevel": "Standard",

 }

]

}

Known issues and limitations

Find information about known issues and limitations when using Astra Trident with Docker.

Upgrading Trident Docker Volume Plugin to 20.10 and later from older versions
results in upgrade failure with the no such file or directory error.

Workaround

1. Disable the plugin.

205

docker plugin disable -f netapp:latest

2. Remove the plugin.

docker plugin rm -f netapp:latest

3. Reinstall the plugin by providing the extra config parameter.

docker plugin install netapp/trident-plugin:20.10 --alias netapp --grant

-all-permissions config=config.json

Volume names must be a minimum of 2 characters in length.

This is a Docker client limitation. The client will interpret a single character name as being a

Windows path. See bug 25773.

Docker Swarm has certain behaviors that prevent Astra Trident from supporting it
with every storage and driver combination.

• Docker Swarm presently makes use of volume name instead of volume ID as its unique volume identifier.

• Volume requests are simultaneously sent to each node in a Swarm cluster.

• Volume plugins (including Astra Trident) must run independently on each node in a Swarm cluster.

Due to the way ONTAP works and how the ontap-nas and ontap-san drivers function, they are the only

ones that happen to be able to operate within these limitations.

The rest of the drivers are subject to issues like race conditions that can result in the creation of a large

number of volumes for a single request without a clear “winner”; for example, Element has a feature that allows

volumes to have the same name but different IDs.

NetApp has provided feedback to the Docker team, but does not have any indication of future recourse.

If a FlexGroup is being provisioned, ONTAP does not provision a second
FlexGroup if the second FlexGroup has one or more aggregates in common with
the FlexGroup being provisioned.

206

https://github.com/moby/moby/issues/25773

Frequently asked questions
Find answers to the frequently asked questions about installing, configuring, upgrading, and troubleshooting

Astra Trident.

General questions

How frequently is Astra Trident released?

Astra Trident is released every three months: January, April, July, and October. This is one month after a

Kubernetes release.

Does Astra Trident support all the features that are released in a particular version
of Kubernetes?

Astra Trident usually does not support alpha features in Kubernetes. Trident might support beta features within

the two Trident releases that follow the Kubernetes beta release.

Does Astra Trident have any dependencies on other NetApp products for its
functioning?

Astra Trident does not have any dependencies on other NetApp software products and it works as a

standalone application. However, you should have a NetApp backend storage device.

How can I obtain complete Astra Trident configuration details?

Use the tridentctl get command to obtain more information about your Astra Trident configuration.

Can I obtain metrics on how storage is provisioned by Astra Trident?

Yes. Trident 20.01 introduces Prometheus endpoints that can be used to gather information about Astra

Trident’s operation, such as the number of backends managed, the number of volumes provisioned, bytes

consumed, and so on. You can also use Cloud Insights for monitoring and analysis.

Does the user experience change when using Astra Trident as a CSI Provisioner?

No. There are no changes as far as the user experience and functionalities are concerned. The provisioner

name used is csi.trident.netapp.io. This method of installing Astra Trident is recommended if you want

to use all the new features provided by current and future releases.

Install and use Astra Trident on a Kubernetes cluster

What are the supported versions of etcd?

Astra Trident no longer needs an etcd. It uses CRDs to maintain state.

Does Astra Trident support an offline install from a private registry?

Yes, Astra Trident can be installed offline. See here.

207

https://docs.netapp.com/us-en/trident/trident-get-started/kubernetes-deploy.html

Can I install Astra Trident be remotely?

Yes. Astra Trident 18.10 and later support remote installation capability from any machine that has kubectl

access to the cluster. After kubectl access is verified (for example, initiate a kubectl get nodes

command from the remote machine to verify), follow the installation instructions.

Can I configure High Availability with Astra Trident?

Astra Trident is installed as a Kubernetes Deployment (ReplicaSet) with one instance, and so it has HA built in.

You should not increase the number of replicas in the deployment. If the node where Astra Trident is installed

is lost or the pod is otherwise inaccessible, Kubernetes automatically re-deploys the pod to a healthy node in

your cluster. Astra Trident is control-plane only, so currently mounted pods are not affected if Astra Trident is

re-deployed.

Does Astra Trident need access to the kube-system namespace?

Astra Trident reads from the Kubernetes API Server to determine when applications request new PVCs, so it

needs access to kube-system.

What are the roles and privileges used by Astra Trident?

The Trident installer creates a Kubernetes ClusterRole, which has specific access to the cluster’s

PersistentVolume, PersistentVolumeClaim, StorageClass, and Secret resources of the Kubernetes cluster. See

here.

Can I locally generate the exact manifest files Astra Trident uses for installation?

You can locally generate and modify the exact manifest files Astra Trident uses for installation, if needed. See

here.

Can I share the same ONTAP backend SVM for two separate Astra Trident
instances for two separate Kubernetes clusters?

Although it is not advised, you can use the same backend SVM for two Astra Trident instances. Specify a

unique volume name for each instance during installation and/or specify a unique StoragePrefix parameter

in the setup/backend.json file. This is to ensure the same FlexVol is not used for both instances.

Is it possible to install Astra Trident under ContainerLinux (formerly CoreOS)?

Astra Trident is simply a Kubernetes pod and can be installed wherever Kubernetes is running.

Can I use Astra Trident with NetApp Cloud Volumes ONTAP?

Yes, Astra Trident is supported on AWS, Google Cloud, and Azure.

Does Astra Trident work with Cloud Volumes Services?

Yes, Astra Trident supports the Azure NetApp Files service in Azure as well as the Cloud Volumes Service in

GCP.

208

https://docs.netapp.com/us-en/trident/trident-get-started/kubernetes-customize-deploy-tridentctl.html
https://docs.netapp.com/us-en/trident/trident-get-started/kubernetes-customize-deploy-tridentctl.html

Troubleshooting and support

Does NetApp support Astra Trident?

Although Astra Trident is open source and provided for free, NetApp fully supports it provided your NetApp

backend is supported.

How do I raise a support case?

To raise a support case, do one of the following:

1. Contact your Support Account Manager and get help to raise a ticket.

2. Raise a support case by contacting NetApp Support.

How do I generate a support log bundle?

You can create a support bundle by running tridentctl logs -a. In addition to the logs captured in the

bundle, capture the kubelet log to diagnose the mount problems on the Kubernetes side. The instructions to

get the kubelet log varies based on how Kubernetes is installed.

What do I do if I need to raise a request for a new feature?

Create an issue on Trident Github and mention RFE in the subject and description of the issue.

Where do I raise a defect?

Create an issue on Astra Trident Github. Make sure to include all the necessary information and logs pertaining

to the issue.

What happens if I have quick question on Astra Trident that I need clarification on?
Is there a community or a forum?

If you have any questions, issues, or requests, reach out to us through our Slack team or GitHub.

My storage system’s password has changed and Astra Trident no longer works,
how do I recover?

Update the backend’s password with tridentctl update backend myBackend -f

</path/to_new_backend.json> -n trident. Replace myBackend in the example with your backend

name, and `/path/to_new_backend.json with the path to the correct backend.json file.

Astra Trident cannot find my Kubernetes node. How do I fix this?

There are two likely scenarios why Astra Trident cannot find a Kubernetes node. It can be because of a

networking issue within Kubernetes or a DNS issue. The Trident node daemonset that runs on each

Kubernetes node must be able to communicate with the Trident controller to register the node with Trident. If

networking changes occurred after Astra Trident was installed, you encounter this problem only with new

Kubernetes nodes that are added to the cluster.

209

https://www.netapp.com/company/contact-us/support/
https://github.com/NetApp/trident
https://github.com/NetApp/trident
http://netapp.io/slack

If the Trident pod is destroyed, will I lose the data?

Data will not be lost if the Trident pod is destroyed. Trident’s metadata is stored in CRD objects. All PVs that

have been provisioned by Trident will function normally.

Upgrade Astra Trident

Can I upgrade from a older version directly to a newer version (skipping a few
versions)?

NetApp supports upgrading Astra Trident from one major release to the next immediate major release. You can

upgrade from version 18.xx to 19.xx, 19.xx to 20.xx, and so on. You should test upgrading in a lab before

production deployment.

Is it possible to downgrade Trident to a previous release?

There are a number of factors to be evaluated if you want to downgrade. See the section on downgrading.

Manage backends and volumes

Do I need to define both Management and Data LIFs in an ONTAP backend
definition file?

NetApp recommends having both in the backend definition file. However, the Management LIF is the only one

that is mandatory.

Can Astra Trident configure CHAP for ONTAP backends?

Yes. Beginning with 20.04, Astra Trident supports bidirectional CHAP for ONTAP backends. This requires

setting useCHAP=true in your backend configuration.

How do I manage export policies with Astra Trident?

Astra Trident can dynamically create and manage export policies from version 20.04 onwards. This enables

the storage administrator to provide one or more CIDR blocks in their backend configuration and have Trident

add node IPs that fall within these ranges to an export policy it creates. In this manner, Astra Trident

automatically manages the addition and deletion of rules for nodes with IPs within the given CIDRs. This

feature requires CSI Trident.

Can we specify a port in the DataLIF?

Astra Trident 19.01 and later support specifying a port in the DataLIF. Configure it in the backend.json file as

“managementLIF”: <ip address>:<port>”. For example, if the IP address of your management LIF is

192.0.2.1, and the port is 1000, configure "managementLIF": "192.0.2.1:1000".

Can IPv6 addresses be used for the Management and Data LIFs?

Yes. Astra Trident 20.01 supports defining IPv6 addresses for the managementLIF and dataLIF parameters for

ONTAP backends. You should ensure that the address follows IPv6 semantics and the managementLIF is

defined within square brackets, (for example, [ec0d:6504:a9c1:ae67:53d1:4bdf:ab32:e233]). You

should also ensure that Astra Trident is installed using the `--use-ipv6 flag for it to function over IPv6.

210

https://docs.netapp.com/us-en/trident/trident-managing-k8s/downgrade-trident.html

Is it possible to update the Management LIF on the backend?

Yes, it is possible to update the backend Management LIF using the tridentctl update backend

command.

Is it possible to update the Data LIF on the backend?

No, it is not possible to update the Data LIF on the backend.

Can I create multiple backends in Astra Trident for Kubernetes?

Astra Trident can support many backends simultaneously, either with the same driver or different drivers.

How does Astra Trident store backend credentials?

Astra Trident stores the backend credentials as Kubernetes Secrets.

How does Astra Trident select a specific backend?

If the backend attributes cannot be used to automatically select the right pools for a class, the storagePools

and additionalStoragePools parameters are used to select a specific set of pools.

How do I ensure that Astra Trident will not provision from a specific backend?

The excludeStoragePools parameter is used to filter the set of pools that Astra Trident will use for

provisioning and will remove any pools that match.

If there are multiple backends of the same kind, how does Astra Trident select
which backend to use?

If there are multiple configured backends of the same type, Astra Trident selects the appropriate backend

based on the parameters present in StorageClass and PersistentVolumeClaim. For example, if there

are multiple ontap-nas driver backends, Astra Trident tries to match parameters in the StorageClass and

PersistentVolumeClaim combined and match a backend which can deliver the requirements listed in

StorageClass and PersistentVolumeClaim. If there are multiple backends that match the request, Astra

Trident selects from one of them at random.

Does Astra Trident support bi-directional CHAP with Element/SolidFire?

Yes.

How does Astra Trident deploy Qtrees on an ONTAP volume? How many Qtrees
can be deployed on a single volume?

The ontap-nas-economy driver creates up to 200 Qtrees in the same FlexVol (configurable between 50 and

300), 100,000 Qtrees per cluster node, and 2.4M per cluster. When you enter a new

PersistentVolumeClaim that is serviced by the economy driver, the driver looks to see if a FlexVol already

exists that can service the new Qtree. If the FlexVol does not exist that can service the Qtree, a new FlexVol is

created.

211

How can I set Unix permissions for volumes provisioned on ONTAP NAS?

You can set Unix permissions on the volume provisioned by Astra Trident by setting a parameter in the

backend definition file.

How can I configure an explicit set of ONTAP NFS mount options while
provisioning a volume?

By default, Astra Trident does not set mount options to any value with Kubernetes. To specify the mount

options in the Kubernetes Storage Class, follow the example given here.

How do I set the provisioned volumes to a specific export policy?

To allow the appropriate hosts access to a volume, use the exportPolicy parameter configured in the

backend definition file.

How do I set volume encryption through Astra Trident with ONTAP?

You can set encryption on the volume provisioned by Trident by using the encryption parameter in the backend

definition file.

What is the best way to implement QoS for ONTAP through Astra Trident?

Use StorageClasses to implement QoS for ONTAP.

How do I specify thin or thick provisioning through Astra Trident?

The ONTAP drivers support either thin or thick provisioning. The ONTAP drivers default to thin provisioning. If

thick provisioning is desired, you should configure either the backend definition file or the StorageClass. If

both are configured, StorageClass takes precedence. Configure the following for ONTAP:

1. On StorageClass, set the provisioningType attribute as thick.

2. In the backend definition file, enable thick volumes by setting backend spaceReserve parameter as

volume.

How do I make sure that the volumes being used are not deleted even if I
accidentally delete the PVC?

PVC protection is automatically enabled on Kubernetes starting from version 1.10.

Can I grow NFS PVCs that were created by Astra Trident?

Yes. You can expand a PVC that has been created by Astra Trident. Note that volume autogrow is an ONTAP

feature that is not applicable to Trident.

If I have a volume that was created outside Astra Trident can I import it into Astra
Trident?

Starting in 19.04, you can use the volume import feature to bring volumes into Kubernetes.

212

https://github.com/NetApp/trident/blob/master/trident-installer/sample-input/storage-class-samples/storage-class-ontapnas-k8s1.8-mountoptions.yaml

Can I import a volume while it is in SnapMirror Data Protection (DP) or offline
mode?

The volume import fails if the external volume is in DP mode or is offline. You receive the following error

message:

Error: could not import volume: volume import failed to get size of

volume: volume <name> was not found (400 Bad Request) command terminated

with exit code 1.

Make sure to remove the DP mode or put the volume online before importing

the volume.

Can I expand iSCSI PVCs that were created by Astra Trident?

Trident 19.10 supports expanding iSCSI PVs using the CSI Provisioner.

How is resource quota translated to a NetApp cluster?

Kubernetes Storage Resource Quota should work as long as NetApp storage has capacity. When the NetApp

storage cannot honor the Kubernetes quota settings due to lack of capacity, Astra Trident tries to provision but

errors out.

Can I create Volume Snapshots using Astra Trident?

Yes. Creating on-demand volume snapshots and Persistent Volumes from Snapshots are supported by Astra

Trident. To create PVs from snapshots, ensure that the VolumeSnapshotDataSource feature gate has been

enabled.

What are the drivers that support Astra Trident volume snapshots?

As of today, on-demand snapshot support is available for our ontap-nas, ontap-nas-flexgroup, ontap-

san, ontap-san-economy, solidfire-san, gcp-cvs, and azure-netapp-files backend drivers.

How do I take a snapshot backup of a volume provisioned by Astra Trident with
ONTAP?

This is available on ontap-nas, ontap-san, and ontap-nas-flexgroup drivers. You can also specify a

snapshotPolicy for the ontap-san-economy driver at the FlexVol level.

This is also available on the ontap-nas-economy drivers but on the FlexVol level granularity and not on the

qtree level granularity. To enable the ability to snapshot volumes provisioned by Astra Trident, set the backend

parameter option snapshotPolicy to the desired snapshot policy as defined on the ONTAP backend. Any

snapshots taken by the storage controller are not known by Astra Trident.

Can I set a snapshot reserve percentage for a volume provisioned through Astra
Trident?

Yes, you can reserve a specific percentage of disk space for storing the snapshot copies through Astra Trident

by setting the snapshotReserve attribute in the backend definition file. If you have configured

snapshotPolicy and snapshotReserve in the backend definition file, snapshot reserve percentage is set

213

according to the snapshotReserve percentage mentioned in the backend file. If the snapshotReserve

percentage number is not mentioned, ONTAP by default takes the snapshot reserve percentage as 5. If the

snapshotPolicy option is set to none, the snapshot reserve percentage is set to 0.

Can I directly access the volume snapshot directory and copy files?

Yes, you can access the snapshot directory on the volume provisioned by Trident by setting the snapshotDir

parameter in the backend definition file.

Can I set up SnapMirror for volumes through Astra Trident?

Currently, SnapMirror has to be set externally by using ONTAP CLI or OnCommand System Manager.

How do I restore Persistent Volumes to a specific ONTAP snapshot?

To restore a volume to an ONTAP snapshot, perform the following steps:

1. Quiesce the application pod which is using the Persistent volume.

2. Revert to the required snapshot through ONTAP CLI or OnCommand System Manager.

3. Restart the application pod.

Can Trident provision volumes on SVMs that have a Load-Sharing Mirror
configured?

Load-sharing mirrors can be created for root volumes of SVMs that serve data over NFS. ONTAP automatically

updates load-sharing mirrors for volumes that have been created by Trident. This may result in delays in

mounting volumes. When multiple volumes are created using Trident, provisioning a volume is dependent on

ONTAP updating the load-sharing mirror.

How can I separate out storage class usage for each customer/tenant?

Kubernetes does not allow storage classes in namespaces. However, you can use Kubernetes to limit usage of

a specific storage class per namespace by using Storage Resource Quotas, which are per namespace. To

deny a specific namespace access to specific storage, set the resource quota to 0 for that storage class.

214

Support
Astra Trident is an officially supported NetApp project. You can reach out to NetApp using any of the standard

mechanisms and get the enterprise grade support that you need.

There is also a vibrant public community of container users (including Astra Trident developers) on the

containers channel on NetApp’s Slack work. This is a great place to ask general questions about the project

and discuss related topics with like-minded peers.

215

http://netapp.io/slack

Troubleshooting
Use the pointers provided here for troubleshooting issues you might encounter while installing and using Astra

Trident.

For help with Astra Trident, create a support bundle using tridentctl logs -a -n

trident and send it to NetApp Support <Getting Help>.

For a comprehensive list of troubleshooting articles, see the NetApp Knowledgebase (login

required). You can also find information about troubleshooting issues related to Astra here.

General troubleshooting

• If the Trident pod fails to come up properly (for example, when the Trident pod is stuck in the

ContainerCreating phase with fewer than two ready containers), running kubectl -n trident

describe deployment trident and kubectl -n trident describe pod trident--** can

provide additional insights. Obtaining kubelet logs (for example, via journalctl -xeu kubelet) can

also be helpful.

• If there is not enough information in the Trident logs, you can try enabling the debug mode for Trident by

passing the -d flag to the install parameter based on your installation option.

Then confirm debug is set using ./tridentctl logs -n trident and searching for level=debug

msg in the log.

Installed with Operator

kubectl patch torc trident -n <namespace> --type=merge -p

'{"spec":{"debug":true}}'

This will restart all Trident pods, which can take several seconds. You can check this by observing the

'AGE' column in the output of kubectl get pod -n trident.

For Astra Trident 20.07 and 20.10 use tprov in place of torc.

Installed with Helm

$ helm upgrade <name> trident-operator-21.07.1-custom.tgz --set

tridentDebug=true`

Installed with tridentctl

./tridentctl uninstall -n trident

./tridentctl install -d -n trident

• You can also obtain debug logs for each backend by including debugTraceFlags in your backend

definition. For example, include debugTraceFlags: {“api”:true, “method”:true,} to obtain API

calls and method traversals in the Trident logs. Existing backends can have debugTraceFlags

216

https://kb.netapp.com/Advice_and_Troubleshooting/Cloud_Services/Trident_Kubernetes
https://kb.netapp.com/Advice_and_Troubleshooting/Cloud_Services/Trident_Kubernetes
https://kb.netapp.com/Advice_and_Troubleshooting/Cloud_Services/Astra

configured with a tridentctl backend update.

• When using RedHat CoreOS, ensure that iscsid is enabled on the worker nodes and started by default.

This can be done using OpenShift MachineConfigs or by modifying the ignition templates.

• A common problem you could encounter when using Trident with Azure NetApp Files is when the tenant

and client secrets come from an app registration with insufficient permissions. For a complete list of Trident

requirements, see Azure NetApp Files configuration.

• If there are problems with mounting a PV to a container, ensure that rpcbind is installed and running. Use

the required package manager for the host OS and check if rpcbind is running. You can check the status

of the rpcbind service by running a systemctl status rpcbind or its equivalent.

• If a Trident backend reports that it is in the failed state despite having worked before, it is likely caused

by changing the SVM/admin credentials associated with the backend. Updating the backend information

using tridentctl update backend or bouncing the Trident pod will fix this issue.

• If you are upgrading your Kubernetes cluster and/or Trident to use beta Volume Snapshots, ensure that all

the existing alpha snapshot CRs are completely removed. You can then use the tridentctl

obliviate alpha-snapshot-crd command to delete alpha snapshot CRDs. See this blog to

understand the steps involved in migrating alpha snapshots.

• If you encounter permission issues when installing Trident with Docker as the container runtime, attempt

the installation of Trident with the --in cluster=false flag. This will not use an installer pod and avoid

permission troubles seen due to the trident-installer user.

• Use the uninstall parameter <Uninstalling Trident> for cleaning up after a failed run. By

default, the script does not remove the CRDs that have been created by Trident, making it safe to uninstall

and install again even in a running deployment.

• If you are looking to downgrade to an earlier version of Trident, first run the tridenctl uninstall

command to remove Trident. Download the desired Trident version and install using the tridentctl

install command. Only consider a downgrade if there are no new PVs created and if no changes have

been made to already existing PVs/backends/ storage classes. Since Trident now uses CRDs for

maintaining state, all storage entities created (backends, storage classes, PVs and Volume Snapshots)

have associated CRD objects <Kubernetes CustomResourceDefinition Objects> instead

of data written into the PV that was used by the earlier installed version of Trident. Newly created PVs will

not be usable when moving back to an earlier version. Changes made to objects, such as

backends, PVs, storage classes, and volume snapshots (created/updated/deleted) will not be

visible to Trident when downgraded. The PV that was used by the earlier version of Trident installed will

still be visible to Trident. Going back to an earlier version will not disrupt access for PVs that were already

created using the older release, unless they have been upgraded.

• To completely remove Trident, run the tridentctl obliviate crd command. This will remove all

CRD objects and undefine the CRDs. Trident will no longer manage any PVs it had already provisioned.

Trident will need to be reconfigured from scratch after this.

• After a successful install, if a PVC is stuck in the Pending phase, running kubectl describe pvc can

provide additional information about why Trident failed to provision a PV for this PVC.

Troubleshooting an unsuccessful Trident deployment using
the operator

If you are deploying Trident using the operator, the status of TridentOrchestrator changes from

Installing to Installed. If you observe the Failed status, and the operator is unable to recover by itself,

217

https://azure.microsoft.com/en-us/services/netapp/
https://docs.netapp.com/us-en/trident/trident-use/anf.html
https://netapp.io/2020/01/30/alpha-to-beta-snapshots/
https://github.com/NetApp/trident/releases

you should check the logs of the operator by running following command:

tridentctl logs -l trident-operator

Trailing the logs of the trident-operator container can point to where the problem lies. For example, one such

issue could be the inability to pull the required container images from upstream registries in an airgapped

environment.

To understand why the installation of Trident was unsuccessful, you

should take a look at the TridentOrchestrator status.

$ kubectl describe torc trident-2

Name: trident-2

Namespace:

Labels: <none>

Annotations: <none>

API Version: trident.netapp.io/v1

Kind: TridentOrchestrator

...

Status:

 Current Installation Params:

 IPv6:

 Autosupport Hostname:

 Autosupport Image:

 Autosupport Proxy:

 Autosupport Serial Number:

 Debug:

 Enable Node Prep:

 Image Pull Secrets: <nil>

 Image Registry:

 k8sTimeout:

 Kubelet Dir:

 Log Format:

 Silence Autosupport:

 Trident Image:

 Message: Trident is bound to another CR 'trident'

 Namespace: trident-2

 Status: Error

 Version:

Events:

 Type Reason Age From Message

 ---- ------ ---- ---- -------

 Warning Error 16s (x2 over 16s) trident-operator.netapp.io Trident

is bound to another CR 'trident'

218

This error indicates that there already exists a TridentOrchestrator

that was used to install Trident. Since each Kubernetes cluster can only

have one instance of Trident, the operator ensures that at any given

time there only exists one active TridentOrchestrator that it can

create.

In addition, observing the status of the Trident pods can often indicate if something is not right.

$ kubectl get pods -n trident

NAME READY STATUS RESTARTS

AGE

trident-csi-4p5kq 1/2 ImagePullBackOff 0

5m18s

trident-csi-6f45bfd8b6-vfrkw 4/5 ImagePullBackOff 0

5m19s

trident-csi-9q5xc 1/2 ImagePullBackOff 0

5m18s

trident-csi-9v95z 1/2 ImagePullBackOff 0

5m18s

trident-operator-766f7b8658-ldzsv 1/1 Running 0

8m17s

You can clearly see that the pods are not able to initialize completely

because one or more container images were not fetched.

To address the problem, you should edit the TridentOrchestrator CR.

Alternatively, you can delete TridentOrchestrator, and create a new

one with the modified and accurate definition.

Troubleshooting an unsuccessful Trident deployment using
tridentctl

To help figure out what went wrong, you could run the installer again using the -d argument, which will turn on

debug mode and help you understand what the problem is:

./tridentctl install -n trident -d

After addressing the problem, you can clean up the installation as follows, and then run the tridentctl

install command again:

219

./tridentctl uninstall -n trident

INFO Deleted Trident deployment.

INFO Deleted cluster role binding.

INFO Deleted cluster role.

INFO Deleted service account.

INFO Removed Trident user from security context constraint.

INFO Trident uninstallation succeeded.

220

Best practices and recommendations

Deployment

Use the recommendations listed here when you deploy Astra Trident.

Deploy to a dedicated namespace

Namespaces provide administrative separation between different applications and are a barrier for resource

sharing. For example, a PVC from one namespace cannot be consumed from another. Astra Trident provides

PV resources to all the namespaces in the Kubernetes cluster and consequently leverages a service account

which has elevated privileges.

Additionally, access to the Trident pod might enable a user to access storage system credentials and other

sensitive information. It is important to ensure that application users and management applications do not have

the ability to access the Trident object definitions or the pods themselves.

Use quotas and range limits to control storage consumption

Kubernetes has two features which, when combined, provide a powerful mechanism for limiting the resource

consumption by applications. The storage quota mechanism enables the administrator to implement global,

and storage class specific, capacity and object count consumption limits on a per-namespace basis. Further,

using a range limit ensures that the PVC requests are within both a minimum and maximum value before the

request is forwarded to the provisioner.

These values are defined on a per-namespace basis, which means that each namespace should have values

defined which fall in line with their resource requirements. See here for information about how to leverage

quotas.

Storage configuration

Each storage platform in NetApp’s portfolio has unique capabilities that benefit applications, containerized or

not. Trident works with ONTAP and Element. There is not one platform which is better suited for all applications

and scenarios than another, however, the needs of the application and the team administering the device

should be taken into account when choosing a platform.

You should follow the baseline best practices for the host operating system with the protocol that you are

leveraging. Optionally, you might want to consider incorporating application best practices, when available, with

backend, storage class, and PVC settings to optimize storage for specific applications.

ONTAP and Cloud Volumes ONTAP best practices

Learn the best practices for configuring ONTAP and Cloud Volumes ONTAP for Trident.

The following recommendations are guidelines for configuring ONTAP for containerized workloads, which

consume volumes that are dynamically provisioned by Trident. Each should be considered and evaluated for

appropriateness in your environment.

Use SVM(s) dedicated to Trident

Storage Virtual Machines (SVMs) provide isolation and administrative separation between tenants on an

ONTAP system. Dedicating an SVM to applications enables the delegation of privileges and enables applying

221

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/policy/resource-quotas/#storage-resource-quota
https://kubernetes.io/docs/tasks/administer-cluster/limit-storage-consumption/#limitrange-to-limit-requests-for-storage
https://netapp.io/2017/06/09/self-provisioning-storage-kubernetes-without-worry
https://netapp.io/2017/06/09/self-provisioning-storage-kubernetes-without-worry

best practices for limiting resource consumption.

There are several options available for the management of the SVM:

• Provide the cluster management interface in the backend configuration, along with appropriate credentials,

and specify the SVM name.

• Create a dedicated management interface for the SVM by using ONTAP System Manager or the CLI.

• Share the management role with an NFS data interface.

In each case, the interface should be in DNS, and the DNS name should be used when configuring Trident.

This helps to facilitate some DR scenarios, for example, SVM-DR without the use of network identity retention.

There is no preference between having a dedicated or shared management LIF for the SVM, however, you

should ensure that your network security policies align with the approach you choose. Regardless, the

management LIF should be accessible via DNS to facilitate maximum flexibility should SVM-DR be used in

conjunction with Trident.

Limit the maximum volume count

ONTAP storage systems have a maximum volume count, which varies based on the software version and

hardware platform. See NetApp Hardware Universe for your specific platform and ONTAP version to determine

the exact limits. When the volume count is exhausted, provisioning operations fail not only for Trident, but for

all the storage requests.

Trident’s ontap-nas and ontap-san drivers provision a FlexVolume for each Kubernetes Persistent Volume

(PV) that is created. The ontap-nas-economy driver creates approximately one FlexVolume for every 200

PVs (configurable between 50 and 300). The ontap-san-economy driver creates approximately one

FlexVolume for every 100 PVs (configurable between 50 and 200). To prevent Trident from consuming all the

available volumes on the storage system, you should set a limit on the SVM. You can do this from the

command line:

vserver modify -vserver <svm_name> -max-volumes <num_of_volumes>

The value for max-volumes varies based on several criteria specific to your environment:

• The number of existing volumes in the ONTAP cluster

• The number of volumes you expect to provision outside of Trident for other applications

• The number of persistent volumes expected to be consumed by Kubernetes applications

The max-volumes value is the total volumes provisioned across all the nodes in the ONTAP cluster, and not

on an individual ONTAP node. As a result, you might encounter some conditions where an ONTAP cluster

node might have far more or less Trident provisioned volumes than another node.

For example, a two-node ONTAP cluster has the ability to host a maximum of 2000 FlexVolumes. Having the

maximum volume count set to 1250 appears very reasonable. However, if only aggregates from one node are

assigned to the SVM, or the aggregates assigned from one node are unable to be provisioned against (for

example, due to capacity), then the other node becomes the target for all Trident provisioned volumes. This

means that the volume limit might be reached for that node before the max-volumes value is reached,

resulting in impacting both Trident and other volume operations that use that node. You can avoid this

situation by ensuring that aggregates from each node in the cluster are assigned to the SVM used by

Trident in equal numbers.

222

https://docs.netapp.com/ontap-9/topic/com.netapp.doc.pow-dap/GUID-B9E36563-1C7A-48F5-A9FF-1578B99AADA9.html
https://hwu.netapp.com/
https://library.netapp.com/ecmdocs/ECMP1368859/html/GUID-3AC7685D-B150-4C1F-A408-5ECEB3FF0011.html

Limit the maximum size of volumes created by Trident

To configure the maximum size for volumes that can be created by Trident, use the limitVolumeSize

parameter in your backend.json definition.

In addition to controlling the volume size at the storage array, you should also leverage Kubernetes

capabilities.

Configure Trident to use bidirectional CHAP

You can specify the CHAP initiator and target usernames and passwords in your backend definition and have

Trident enable CHAP on the SVM. Using the useCHAP parameter in your backend configuration, Trident

authenticates iSCSI connections for ONTAP backends with CHAP. Bidirectional CHAP support is available with

Trident 20.04 and above.

Create and use an SVM QoS policy

Leveraging an ONTAP QoS policy, applied to the SVM, limits the number of IOPS consumable by the Trident

provisioned volumes. This helps to prevent a bully or out-of-control container from affecting workloads outside

of the Trident SVM.

You can create a QoS policy for the SVM in a few steps. See the documentation for your version of ONTAP for

the most accurate information. The example below creates a QoS policy that limits the total IOPS available to

the SVM to 5000.

create the policy group for the SVM

qos policy-group create -policy-group <policy_name> -vserver <svm_name>

-max-throughput 5000iops

assign the policy group to the SVM, note this will not work

if volumes or files in the SVM have existing QoS policies

vserver modify -vserver <svm_name> -qos-policy-group <policy_name>

Additionally, if your version of ONTAP supports it, you can consider using a QoS minimum to guarantee an

amount of throughput to containerized workloads. Adaptive QoS is not compatible with an SVM level policy.

The number of IOPS dedicated to the containerized workloads depends on many aspects. Among other things,

these include:

• Other workloads using the storage array. If there are other workloads, not related to the Kubernetes

deployment, utilizing the storage resources, care should be taken to ensure that those workloads are not

accidentally adversely impacted.

• Expected workloads running in containers. If workloads which have high IOPS requirements will be running

in containers, a low QoS policy results in a bad experience.

It’s important to remember that a QoS policy assigned at the SVM level results in all the volumes provisioned to

the SVM sharing the same IOPS pool. If one, or a small number, of the containerized applications have a high

IOPS requirement, it could become a bully to the other containerized workloads. If this is the case, you might

want to consider using external automation to assign per-volume QoS policies.

223

http://docs.netapp.com/ontap-9/topic/com.netapp.doc.pow-perf-mon/GUID-77DF9BAF-4ED7-43F6-AECE-95DFB0680D2F.html?cp=7_1_2_1_2

You should assign the QoS policy group to the SVM only if your ONTAP version is earlier than

9.8.

Create QoS policy groups for Trident

Quality of service (QoS) guarantees that performance of critical workloads is not degraded by competing

workloads. ONTAP QoS policy groups provide QoS options for volumes, and enable users to define the

throughput ceiling for one or more workloads. For more information about QoS, see Guaranteeing throughput

with QoS.

You can specify QoS policy groups in the backend or in a storage pool, and they are applied to each volume

created in that pool or backend.

ONTAP has two kinds of QoS policy groups: traditional and adaptive. Traditional policy groups provide a flat

maximum (or minimum, in later versions) throughput in IOPS. Adaptive QoS automatically scales the

throughput to workload size, maintaining the ratio of IOPS to TBs|GBs as the size of the workload changes.

This provides a significant advantage when you are managing hundreds or thousands of workloads in a large

deployment.

Consider the following when you create QoS policy groups:

• You should set the qosPolicy key in the defaults block of the backend configuration. See the following

backend configuration example:

224

https://docs.netapp.com/ontap-9/topic/com.netapp.doc.pow-perf-mon/GUID-77DF9BAF-4ED7-43F6-AECE-95DFB0680D2F.html
https://docs.netapp.com/ontap-9/topic/com.netapp.doc.pow-perf-mon/GUID-77DF9BAF-4ED7-43F6-AECE-95DFB0680D2F.html

 {

 "version": 1,

 "storageDriverName": "ontap-nas",

 "managementLIF": "0.0.0.0",

 "dataLIF": "0.0.0.0",

 "svm": "svm0",

 "username": "user",

 "password": "pass",

 "defaults": {

 "qosPolicy": "standard-pg"

 },

 "storage": [

 {

 "labels": {"performance": "extreme"},

 "defaults": {

 "adaptiveQosPolicy": "extremely-adaptive-pg"

 }

 },

 {

 "labels": {"performance": "premium"},

 "defaults": {

 "qosPolicy": "premium-pg"

 }

 }

]

 }

• You should apply the policy groups per volume, so that each volume gets the entire throughput as specified

by the policy group. Shared policy groups are not supported.

For more information about QoS policy groups, see ONTAP 9.8 QoS commands.

Limit storage resource access to Kubernetes cluster members

Limiting access to the NFS volumes and iSCSI LUNs created by Trident is a critical component of the security

posture for your Kubernetes deployment. Doing so prevents hosts that are not a part of the Kubernetes cluster

from accessing the volumes and potentially modifying data unexpectedly.

It’s important to understand that namespaces are the logical boundary for resources in Kubernetes. The

assumption is that resources in the same namespace are able to be shared, however, importantly, there is no

cross-namespace capability. This means that even though PVs are global objects, when bound to a PVC they

are only accessible by pods which are in the same namespace. It is critical to ensure that namespaces are

used to provide separation when appropriate.

The primary concern for most organizations with regard to data security in a Kubernetes context is that a

process in a container can access storage mounted to the host, but which is not intended for the container.

Namespaces are designed to prevent this type of compromise. However, there is one exception: privileged

containers.

225

https://docs.netapp.com/ontap-9/topic/com.netapp.doc.dot-cm-cmpr-980/TOC__qos.html
https://en.wikipedia.org/wiki/Linux_namespaces

A privileged container is one that is run with substantially more host-level permissions than normal. These are

not denied by default, so ensure that you disable the capability by using pod security policies.

For volumes where access is desired from both Kubernetes and external hosts, the storage should be

managed in a traditional manner, with the PV introduced by the administrator and not managed by Trident. This

ensures that the storage volume is destroyed only when both the Kubernetes and external hosts have

disconnected and are no longer using the volume. Additionally, a custom export policy can be applied, which

enables access from the Kubernetes cluster nodes and targeted servers outside of the Kubernetes cluster.

For deployments which have dedicated infrastructure nodes (for example, OpenShift) or other nodes which are

not schedulable for user applications, separate export policies should be used to further limit access to storage

resources. This includes creating an export policy for services which are deployed to those infrastructure

nodes (for example, the OpenShift Metrics and Logging services), and standard applications which are

deployed to non-infrastructure nodes.

Use a dedicated export policy

You should ensure that an export policy exists for each backend that only allows access to the nodes present

in the Kubernetes cluster. Trident can automatically create and manage export policies starting from the 20.04

release. This way, Trident limits access to the volumes it provisions to the nodes in the Kubernetes cluster and

simplifies the addition/deletion of nodes.

Alternatively, you can also create an export policy manually and populate it with one or more export rules that

process each node access request:

• Use the vserver export-policy create ONTAP CLI command to create the export policy.

• Add rules to the export policy by using the vserver export-policy rule create ONTAP CLI

command.

Running these commands enables you to restrict which Kubernetes nodes have access to the data.

Disable showmount for the application SVM

The showmount feature enables an NFS client to query the SVM for a list of available NFS exports. A pod

deployed to the Kubernetes cluster can issue the showmount -e command against the data LIF and receive

a list of available mounts, including those which it does not have access to. While this, by itself, is not a

security compromise, it does provide unnecessary information potentially aiding an unauthorized user with

connecting to an NFS export.

You should disable showmount by using the SVM-level ONTAP CLI command:

vserver nfs modify -vserver <svm_name> -showmount disabled

SolidFire best practices

Learn the best practices for configuring SolidFire storage for Trident.

Create Solidfire Account

Each SolidFire account represents a unique volume owner and receives its own set of Challenge-Handshake

Authentication Protocol (CHAP) credentials. You can access volumes assigned to an account either by using

the account name and the relative CHAP credentials or through a volume access group. An account can have

226

https://kubernetes.io/docs/concepts/policy/pod-security-policy/

up to two-thousand volumes assigned to it, but a volume can belong to only one account.

Create a QoS policy

Use SolidFire Quality of Service (QoS) policies if you want to create and save a standardized quality of service

setting that can be applied to many volumes.

You can set QoS parameters on a per-volume basis. Performance for each volume can be assured by setting

three configurable parameters that define the QoS: Min IOPS, Max IOPS, and Burst IOPS.

Here are the possible minimum, maximum, and burst IOPS values for the 4Kb block size.

IOPS parameter Definition Min. value Default value Max. value(4Kb)

Min IOPS The guaranteed

level of performance

for a volume.

50 50 15000

Max IOPS The performance

will not exceed this

limit.

50 15000 200,000

Burst IOPS Maximum IOPS

allowed in a short

burst scenario.

50 15000 200,000

Although the Max IOPS and Burst IOPS can be set as high as 200,000, the real-world maximum

performance of a volume is limited by cluster usage and per-node performance.

Block size and bandwidth have a direct influence on the number of IOPS. As block sizes increase, the system

increases bandwidth to a level necessary to process the larger block sizes. As bandwidth increases, the

number of IOPS the system is able to attain decreases. See SolidFire Quality of Service for more information

about QoS and performance.

SolidFire authentication

Element supports two methods for authentication: CHAP and Volume Access Groups (VAG). CHAP uses the

CHAP protocol to authenticate the host to the backend. Volume Access Groups controls access to the volumes

it provisions. NetApp recommends using CHAP for authentication as it’s simpler and has no scaling limits.

Trident with the enhanced CSI provisioner supports the use of CHAP authentication. VAGs

should only be used in the traditional non-CSI mode of operation.

CHAP authentication (verification that the initiator is the intended volume user) is supported only with account-

based access control. If you are using CHAP for authentication, two options are available: unidirectional CHAP

and bidirectional CHAP. Unidirectional CHAP authenticates volume access by using the SolidFire account

name and initiator secret. The bidirectional CHAP option provides the most secure way of authenticating the

volume because the volume authenticates the host through the account name and the initiator secret, and then

the host authenticates the volume through the account name and the target secret.

However, if CHAP cannot be enabled and VAGs are required, create the access group and add the host

initiators and volumes to the access group. Each IQN that you add to an access group can access each

227

https://www.netapp.com/pdf.html?item=/media/10502-tr-4644pdf.pdf

volume in the group with or without CHAP authentication. If the iSCSI initiator is configured to use CHAP

authentication, account-based access control is used. If the iSCSI initiator is not configured to use CHAP

authentication, then Volume Access Group access control is used.

Where to find more information?

Some of the best practices documentation is listed below. Search the NetApp library for the most current

versions.

ONTAP

• NFS Best Practice and Implementation Guide

• SAN Administration Guide (for iSCSI)

• iSCSI Express Configuration for RHEL

Element software

• Configuring SolidFire for Linux

NetApp HCI

• NetApp HCI deployment prerequisites

• Access the NetApp Deployment Engine

Application best practices information

• Best practices for MySQL on ONTAP

• Best practices for MySQL on SolidFire

• NetApp SolidFire and Cassandra

• Oracle best practices on SolidFire

• PostgreSQL best practices on SolidFire

Not all applications have specific guidelines, it’s important to work with your NetApp team and to use the

NetApp library to find the most up-to-date documentation.

Integrate Astra Trident

To integrate Astra Trident, the following design and architectural elements require

integration: driver selection and deployment, storage class design, virtual storage pool

design, Persistent Volume Claim (PVC) impacts on storage provisioning, volume

operations, and OpenShift services deployment using Astra Trident.

Driver selection and deployment

Choose a backend driver for ONTAP

Four different backend drivers are available for ONTAP systems. These drivers are differentiated by the

protocol being used and how the volumes are provisioned on the storage system. Therefore, give careful

consideration regarding which driver to deploy.

228

https://www.netapp.com/search/
https://www.netapp.com/pdf.html?item=/media/10720-tr-4067.pdf
http://docs.netapp.com/ontap-9/topic/com.netapp.doc.dot-cm-sanag/home.html
http://docs.netapp.com/ontap-9/topic/com.netapp.doc.exp-iscsi-rhel-cg/home.html
https://www.netapp.com/pdf.html?item=/media/10507-tr4639pdf.pdf
https://docs.netapp.com/us-en/hci/docs/hci_prereqs_overview.html
https://docs.netapp.com/us-en/hci/docs/concept_nde_access_overview.html
https://docs.netapp.com/us-en/ontap-apps-dbs/mysql/mysql-overview.html
https://www.netapp.com/pdf.html?item=/media/10510-tr-4605.pdf
https://www.netapp.com/pdf.html?item=/media/10513-tr-4635pdf.pdf
https://www.netapp.com/pdf.html?item=/media/10511-tr4606pdf.pdf
https://www.netapp.com/pdf.html?item=/media/10512-tr-4610pdf.pdf
https://www.netapp.com/search/

At a higher level, if your application has components which need shared storage (multiple pods accessing the

same PVC), NAS-based drivers would be the default choice, while the block-based iSCSI drivers meet the

needs of non-shared storage. Choose the protocol based on the requirements of the application and the

comfort level of the storage and infrastructure teams. Generally speaking, there is little difference between

them for most applications, so often the decision is based upon whether or not shared storage (where more

than one pod will need simultaneous access) is needed.

The five drivers for ONTAP backends are listed below:

• ontap-nas: Each PV provisioned is a full ONTAP FlexVolume.

• ontap-nas-economy: Each PV provisioned is a qtree, with a configurable number of qtrees per

FlexVolume (default is 200).

• ontap-nas-flexgroup: Each PV provisioned as a full ONTAP FlexGroup, and all aggregates assigned

to a SVM are used.

• ontap-san: Each PV provisioned is a LUN within its own FlexVolume.

• ontap-san-economy: Each PV provisioned is a LUN, with a configurable number of LUNs per

FlexVolume (default is 100).

Choosing between the three NAS drivers has some ramifications to the features, which are made available to

the application.

Note that, in the tables below, not all of the capabilities are exposed through Astra Trident. Some must be

applied by the storage administrator after provisioning if that functionality is desired. The superscript footnotes

distinguish the functionality per feature and driver.

ONTAP NAS drivers Snapshot

s

Clones Dynamic

export

policies

Multi-

attach

QoS Resize Replicatio

n

ontap-nas Yes Yes Yes [5] Yes Yes [1] Yes Yes [1]

ontap-nas-economy Yes [3] Yes [3] Yes [5] Yes Yes [3] Yes Yes [3]

ontap-nas-

flexgroup

Yes [1] No Yes [5] Yes Yes [1] Yes Yes [1]

Astra Trident offers 2 SAN drivers for ONTAP, whose capabilities are shown below.

ONTAP SAN drivers Snapshot

s

Clones Multi-

attach

Bi-

directiona

l CHAP

QoS Resize Replicatio

n

ontap-san Yes Yes Yes [4] Yes Yes [1] Yes Yes [1]

ontap-san-economy Yes Yes Yes [4] Yes Yes [3] Yes [1] Yes [3]

229

Footnote for the above tables:

Yes [1]: Not managed by Astra Trident

Yes [2]: Managed by Astra Trident, but not PV granular

Yes [3]: Not managed by Astra Trident and not PV granular

Yes [4]: Supported for raw-block volumes

Yes [5]: Supported by CSI Trident

The features that are not PV granular are applied to the entire FlexVolume and all of the PVs (that is, qtrees or

LUNs in shared FlexVols) will share a common schedule.

As we can see in the above tables, much of the functionality between the ontap-nas and ontap-nas-

economy is the same. However, because the ontap-nas-economy driver limits the ability to control the

schedule at per-PV granularity, this can affect your disaster recovery and backup planning in particular. For

development teams which desire to leverage PVC clone functionality on ONTAP storage, this is only possible

when using the ontap-nas, ontap-san or ontap-san-economy drivers.

The solidfire-san driver is also capable of cloning PVCs.

Choose a backend driver for Cloud Volumes ONTAP

Cloud Volumes ONTAP provides data control along with enterprise-class storage features for various use

cases, including file shares and block-level storage serving NAS and SAN protocols (NFS, SMB / CIFS, and

iSCSI). The compatible drivers for Cloud Volume ONTAP are ontap-nas, ontap-nas-economy, ontap-

san and ontap-san-economy. These are applicable for Cloud Volume ONTAP for Azure, Cloud Volume

ONTAP for GCP.

Choose a backend driver for Amazon FSx for ONTAP

Amazon FSx for ONTAP enables customers to leverage NetApp features, performance, and administrative

capabilities they’re familiar with, while taking advantage of the simplicity, agility, security, and scalability of

storing data on AWS. FSx for ONTAP supports many of ONTAP’s file system features and administration APIs.

The compatible drivers for Cloud Volume ONTAP are ontap-nas, ontap-nas-economy, ontap-nas-

flexgroup, ontap-san and ontap-san-economy.

Choose a backend driver for NetApp HCI/SolidFire

The solidfire-san driver used with the NetApp HCI/SolidFire platforms, helps the admin configure an

Element backend for Trident on the basis of QoS limits. If you would like to design your backend to set the

specific QoS limits on the volumes provisioned by Trident, use the type parameter in the backend file. The

admin also can restrict the volume size that could be created on the storage using the limitVolumeSize

parameter. Currently, Element storage features like volume resize and volume replication are not supported

through the solidfire-san driver. These operations should be done manually through Element Software

web UI.

230

SolidFire Driver Snapshot

s

Clones Multi-

attach

CHAP QoS Resize Replicatio

n

solidfire-san Yes Yes Yes [2] Yes Yes Yes Yes [1]

Footnote:

Yes [1]: Not managed by Astra Trident

Yes [2]: Supported for raw-block volumes

Choose a backend driver for Azure NetApp Files

Astra Trident uses the azure-netapp-files driver to manage the Azure NetApp Files service.

More information about this driver and how to configure it can be found in Astra Trident backend configuration

for Azure NetApp Files.

Azure NetApp Files

Driver

Snapshots Clones Multi-attach QoS Expand Replication

azure-netapp-files Yes Yes Yes Yes Yes Yes [1]

Footnote:

Yes [1]: Not managed by Astra Trident

Choose a backend driver for Cloud Volumes Service with GCP

Astra Trident uses the gcp-cvs driver to link with the Cloud Volumes Service on the GCP backend. To

configure the GCP backend on Trident, you are required specify projectNumber, apiRegion, and apiKey

in the backend file. The project number may be found in the GCP web portal, while the API key must be taken

from the service account private key file that you created while setting up API access for Cloud Volumes on

GCP. Astra Trident can create CVS volumes in one of two service types:

1. CVS: The base CVS service type, which provides high zonal availability with limited/moderate performance

levels.

2. CVS-Performance: Performance-optimized service type best suited for production workloads that value

performance. Choose from three unique service levels [standard, premium, and extreme]. Currently,

100 GiB is the minimum CVS-Performance volume size that will be provisioned, while CVS volumes must

be at least 300 GiB. Future releases of CVS may remove this restriction.

When deploying backends using the default CVS service type [storageClass=software],

users must obtain access to the sub-1TiB volumes feature on GCP for the Project Number(s)

and Project ID(s) in question. This is necessary for Trident to provision sub-1TiB volumes. If not,

volume creations will fail for PVCs that are <600 GiB. Use this form to obtain access to sub-

1TiB volumes.

231

https://azure.microsoft.com/en-us/services/netapp/
https://azure.microsoft.com/en-us/services/netapp/
https://azure.microsoft.com/en-us/services/netapp/
https://cloud.google.com/architecture/partners/netapp-cloud-volumes/service-types
https://docs.google.com/forms/d/e/1FAIpQLSc7_euiPtlV8bhsKWvwBl3gm9KUL4kOhD7lnbHC3LlQ7m02Dw/viewform

CVS for GCP Driver Snapshots Clones Multi-attach QoS Expand Replication

gcp-cvs Yes Yes Yes Yes Yes Yes [1]

Footnote:

Yes [1]: Not managed by Astra Trident

The gcp-cvs driver uses virtual storage pools. Virtual storage pools abstract the backend, letting Astra Trident

decide volume placement. The administrator defines the virtual storage pools in the backend.json file(s).

Storage classes identify the virtual storage pools with the use of labels.

Storage class design

Individual Storage classes need to be configured and applied to create a Kubernetes Storage Class object.

This section discusses how to design a storage class for your application.

Storage class design for specific backend utilization

Filtering can be used within a specific storage class object to determine which storage pool or set of pools are

to be used with that specific storage class. Three sets of filters can be set in the Storage Class:

storagePools, additionalStoragePools, and/or excludeStoragePools.

The storagePools parameter helps restrict storage to the set of pools that match any specified attributes.

The additionalStoragePools parameter is used to extend the set of pools that Astra Trident will use for

provisioning along with the set of pools selected by the attributes and storagePools parameters. You can

use either parameter alone or both together to make sure that the appropriate set of storage pools are

selected.

The excludeStoragePools parameter is used to specifically exclude the listed set of pools that match the

attributes.

Storage class design to emulate QoS policies

If you would like to design Storage Classes to emulate Quality of Service policies, create a Storage Class with

the media attribute as hdd or ssd. Based on the media attribute mentioned in the storage class, Trident will

select the appropriate backend that serves hdd or ssd aggregates to match the media attribute and then direct

the provisioning of the volumes on to the specific aggregate. Therefore we can create a storage class

PREMIUM which would have media attribute set as ssd which could be classified as the PREMIUM QoS

policy. We can create another storage class STANDARD which would have the media attribute set as `hdd'

which could be classified as the STANDARD QoS policy. We could also use the ``IOPS'' attribute in the storage

class to redirect provisioning to an Element appliance which can be defined as a QoS Policy.

Storage class design to utilize backend based on specific features

Storage classes can be designed to direct volume provisioning on a specific backend where features such as

thin and thick provisioning, snapshots, clones, and encryption are enabled. To specify which storage to use,

create Storage Classes that specify the appropriate backend with the required feature enabled.

Storage class design for Virtual Storage Pools

Virtual Storage Pools are available for all Astra Trident backends. You can define Virtual Storage Pools for any

232

backend, using any driver that Astra Trident provides.

Virtual Storage Pools allow an administrator to create a level of abstraction over backends which can be

referenced through Storage Classes, for greater flexibility and efficient placement of volumes on backends.

Different backends can be defined with the same class of service. Moreover, multiple Storage Pools can be

created on the same backend but with different characteristics. When a Storage Class is configured with a

selector with the specific labels, Astra Trident chooses a backend which matches all the selector labels to

place the volume. If the Storage Class selector labels matches multiple Storage Pools, Astra Trident will

choose one of them to provision the volume from.

Virtual Storage Pool Design

While creating a backend, you can generally specify a set of parameters. It was impossible for the

administrator to create another backend with the same storage credentials and with a different set of

parameters. With the introduction of Virtual Storage Pools, this issue has been alleviated. Virtual Storage Pools

is a level abstraction introduced between the backend and the Kubernetes Storage Class so that the

administrator can define parameters along with labels which can be referenced through Kubernetes Storage

Classes as a selector, in a backend-agnostic way. Virtual Storage Pools can be defined for all supported

NetApp backends with Astra Trident. That list includes SolidFire/NetApp HCI, ONTAP, Cloud Volumes Service

on GCP, as well as Azure NetApp Files.

When defining Virtual Storage Pools, it is recommended to not attempt to rearrange the order of

existing virtual pools in a backend definition. It is also advisable to not edit/modify attributes for

an existing virtual pool and define a new virtual pool instead.

Design Virtual Storage Pools for emulating different service levels/QoS

It is possible to design Virtual Storage Pools for emulating service classes. Using the virtual pool

implementation for Cloud Volume Service for Azure NetApp Files, let us examine how we can setup up

different service classes. Configure the ANF backend with multiple labels, representing different performance

levels. Set servicelevel aspect to the appropriate performance level and add other required aspects under

each labels. Now create different Kubernetes Storage Classes that would map to different virtual Storage

Pools. Using the parameters.selector field, each StorageClass calls out which virtual pool(s) may be

used to host a volume.

Design Virtual Pools for assigning specific set of aspects

Multiple Virtual Storage pools with a specific set of aspects can be designed from a single storage backend.

For doing so, configure the backend with multiple labels and set the required aspects under each label. Now

create different Kubernetes Storage Classes using the parameters.selector field that would map to

different Virtual Storage Pools. The volumes that get provisioned on the backend will have the aspects defined

in the chosen Virtual Storage Pool.

PVC characteristics which affect storage provisioning

Some parameters beyond the requested storage class may affect Astra Trident’s provisioning decision process

when creating a PVC.

Access mode

When requesting storage via a PVC, one of the mandatory fields is the access mode. The mode desired may

affect the backend selected to host the storage request.

Astra Trident will attempt to match the storage protocol used with the access method specified according to the

233

following matrix. This is independent of the underlying storage platform.

ReadWriteOnce ReadOnlyMany ReadWriteMany

iSCSI Yes Yes Yes (Raw block)

NFS Yes Yes Yes

A request for a ReadWriteMany PVC submitted to a Trident deployment without an NFS backend configured

will result in no volume being provisioned. For this reason, the requestor should use the access mode which is

appropriate for their application.

Volume operations

Modify persistent volumes

Persistent volumes are, with two exceptions, immutable objects in Kubernetes. Once created, the reclaim

policy and the size can be modified. However, this doesn’t prevent some aspects of the volume from being

modified outside of Kubernetes. This may be desirable in order to customize the volume for specific

applications, to ensure that capacity is not accidentally consumed, or simply to move the volume to a different

storage controller for any reason.

Kubernetes in-tree provisioners do not support volume resize operations for NFS or iSCSI PVs

at this time. Astra Trident supports expanding both NFS and iSCSI volumes.

The connection details of the PV cannot be modified after creation.

Create on-demand volume snapshots

Astra Trident supports on-demand volume snapshot creation and the creation of PVCs from snapshots using

the CSI framework. Snapshots provide a convenient method of maintaining point-in-time copies of the data and

have a lifecycle independent of the source PV in Kubernetes. These snapshots can be used to clone PVCs.

Create volumes from snapshots

Astra Trident also supports the creation of PersistentVolumes from volume snapshots. To accomplish this, just

create a PersistentVolumeClaim and mention the datasource as the required snapshot from which the

volume needs to be created. Astra Trident will handle this PVC by creating a volume with the data present on

the snapshot. With this feature, it is possible to duplicate data across regions, create test environments,

replace a damaged or corrupted production volume in its entirety, or retrieve specific files and directories and

transfer them to another attached volume.

Move volumes in the cluster

Storage administrators have the ability to move volumes between aggregates and controllers in the ONTAP

cluster non-disruptively to the storage consumer. This operation does not affect Astra Trident or the

Kubernetes cluster, as long as the destination aggregate is one which the SVM that Astra Trident is using has

access to. Importantly, if the aggregate has been newly added to the SVM, the backend will need to be

refreshed by re-adding it to Astra Trident. This will trigger Astra Trident to reinventory the SVM so that the new

aggregate is recognized.

However, moving volumes across backends is not supported automatically by Astra Trident. This includes

between SVMs in the same cluster, between clusters, or onto a different storage platform (even if that storage

system is one which is connected to Astra Trident).

234

If a volume is copied to another location, the volume import feature may be used to import current volumes into

Astra Trident.

Expand volumes

Astra Trident supports resizing NFS and iSCSI PVs. This enables users to resize their volumes directly through

the Kubernetes layer. Volume expansion is possible for all major NetApp storage platforms, including ONTAP,

SolidFire/NetApp HCI and Cloud Volumes Service backends. To allow possible expansion later, set

allowVolumeExpansion to true in your StorageClass associated with the volume. Whenever the

Persistent Volume needs to be resized, edit the spec.resources.requests.storage annotation in the

Persistent Volume Claim to the required volume size. Trident will utomatically take care of resizing the volume

on the storage cluster.

Import an existing volume into Kubernetes

Volume import provides the ability to import an existing storage volume into a Kubernetes environment. This is

currently supported by the ontap-nas, ontap-nas-flexgroup, solidfire-san, azure-netapp-

files, and gcp-cvs drivers. This feature is useful when porting an existing application into Kubernetes or

during disaster recovery scenarios.

When using the ONTAP and solidfire-san drivers, use the command tridentctl import volume

<backend-name> <volume-name> -f /path/pvc.yaml to import an existing volume into Kubernetes to

be managed by Astra Trident. The PVC YAML or JSON file used in the import volume command points to a

storage class which identifies Astra Trident as the provisioner. When using a NetApp HCI/SolidFire backend,

ensure the volume names are unique. If the volume names are duplicated, clone the volume to a unique name

so the volume import feature can distinguish between them.

If the azure-netapp-files or gcp-cvs driver is used, use the command tridentctl import volume

<backend-name> <volume path> -f /path/pvc.yaml to import the volume into Kubernetes to be

managed by Astra Trident. This ensures a unique volume reference.

When the above command is executed, Astra Trident will find the volume on the backend and read its size. It

will automatically add (and overwrite if necessary) the configured PVC’s volume size. Astra Trident then

creates the new PV and Kubernetes binds the PVC to the PV.

If a container was deployed such that it required the specific imported PVC, it would remain in a pending state

until the PVC/PV pair are bound via the volume import process. After the PVC/PV pair are bound, the container

should come up, provided there are no other issues.

Deploy OpenShift services

The OpenShift value-add cluster services provide important functionality to cluster administrators and the

applications being hosted. The storage which these services use can be provisioned using the node-local

resources, however, this often limits the capacity, performance, recoverability, and sustainability of the service.

Leveraging an enterprise storage array to provide the capacity to these services can enable dramatically

improved service, however, as with all applications, the OpenShift and storage administrators should work

closely together to determine the best options for each. The Red Hat documentation should be leveraged

heavily to determine the requirements and ensure that sizing and performance needs are met.

Registry service

Deploying and managing storage for the registry has been documented on netapp.io in the blog.

235

https://netapp.io/
https://netapp.io/2017/08/24/deploying-the-openshift-registry-using-netapp-storage/

Logging service

Like other OpenShift services, the logging service is deployed using Ansible with configuration parameters

supplied by the inventory file, a.k.a. hosts, provided to the playbook. There are two installation methods which

will be covered: deploying logging during initial OpenShift install and deploying logging after OpenShift has

been

installed.

As of Red Hat OpenShift version 3.9, the official documentation recommends against NFS for

the logging service due to concerns around data corruption. This is based on Red Hat testing of

their products. ONTAP’s NFS server does not have these issues, and can easily back a logging

deployment. Ultimately, the choice of protocol for the logging service is up to you, just know that

both will work great when using NetApp platforms and there is no reason to avoid NFS if that is

your preference.

If you choose to use NFS with the logging service, you will need to set the Ansible variable

openshift_enable_unsupported_configurations to true to prevent the installer from failing.

Get started

The logging service can, optionally, be deployed for both applications as well as for the core operations of the

OpenShift cluster itself. If you choose to deploy operations logging, by specifying the variable

openshift_logging_use_ops as true, two instances of the service will be created. The variables which

control the logging instance for operations contain "ops" in them, whereas the instance for applications does

not.

Configuring the Ansible variables according to the deployment method is important in order to ensure that the

correct storage is utilized by the underlying services. Let’s look at the options for each of the deployment

methods.

The tables below only contain the variables which are relevant for storage configuration as it

relates to the logging service. You can find other options in RedHat OpenShift logging

documentation which should be reviewed, configured, and used according to your deployment.

The variables in the below table will result in the Ansible playbook creating a PV and PVC for the logging

service using the details provided. This method is significantly less flexible than using the component

installation playbook after OpenShift installation, however, if you have existing volumes available, it is an

option.

Variable Details

openshift_logging_storage_kind Set to nfs to have the installer create an NFS PV for

the logging service.

openshift_logging_storage_host The hostname or IP address of the NFS host. This

should be set to the data LIF for your virtual machine.

openshift_logging_storage_nfs_directory The mount path for the NFS export. For example, if

the volume is junctioned as /openshift_logging,

you would use that path for this variable.

openshift_logging_storage_volume_name The name, e.g. pv_ose_logs, of the PV to create.

openshift_logging_storage_volume_size The size of the NFS export, for example 100Gi.

236

https://docs.openshift.com/container-platform/3.11/install_config/aggregate_logging.html
https://docs.openshift.com/container-platform/3.11/install_config/aggregate_logging.html

If your OpenShift cluster is already running, and therefore Trident has been deployed and configured, the

installer can use dynamic provisioning to create the volumes. The following variables will need to be

configured.

Variable Details

openshift_logging_es_pvc_dynamic Set to true to use dynamically provisioned volumes.

openshift_logging_es_pvc_storage_class_n

ame

The name of the storage class which will be used in

the PVC.

openshift_logging_es_pvc_size The size of the volume requested in the PVC.

openshift_logging_es_pvc_prefix A prefix for the PVCs used by the logging service.

openshift_logging_es_ops_pvc_dynamic Set to true to use dynamically provisioned volumes

for the ops logging instance.

openshift_logging_es_ops_pvc_storage_cla

ss_name

The name of the storage class for the ops logging

instance.

openshift_logging_es_ops_pvc_size The size of the volume request for the ops instance.

openshift_logging_es_ops_pvc_prefix A prefix for the ops instance PVCs.

Deploy the logging stack

If you are deploying logging as a part of the initial OpenShift install process, then you only need to follow the

standard deployment process. Ansible will configure and deploy the needed services and OpenShift objects so

that the service is available as soon as Ansible completes.

However, if you are deploying after the initial installation, the component playbook will need to be used by

Ansible. This process may change slightly with different versions of OpenShift, so be sure to read and follow

RedHat OpenShift Container Platform 3.11 documentation for your version.

Metrics service

The metrics service provides valuable information to the administrator regarding the status, resource utilization,

and availability of the OpenShift cluster. It is also necessary for pod autoscale functionality and many

organizations use data from the metrics service for their charge back and/or show back applications.

Like with the logging service, and OpenShift as a whole, Ansible is used to deploy the metrics service. Also,

like the logging service, the metrics service can be deployed during an initial setup of the cluster or after it’s

operational using the component installation method. The following tables contain the variables which are

important when configuring persistent storage for the metrics service.

The tables below only contain the variables which are relevant for storage configuration as it

relates to the metrics service. There are many other options found in the documentation which

should be reviewed, configured, and used according to your deployment.

Variable Details

openshift_metrics_storage_kind Set to nfs to have the installer create an NFS PV for

the logging service.

openshift_metrics_storage_host The hostname or IP address of the NFS host. This

should be set to the data LIF for your SVM.

237

https://docs.openshift.com/container-platform/3.11/welcome/index.html

Variable Details

openshift_metrics_storage_nfs_directory The mount path for the NFS export. For example, if

the volume is junctioned as /openshift_metrics,

you would use that path for this variable.

openshift_metrics_storage_volume_name The name,

e.g. pv_ose_metrics, of the PV to create.

openshift_metrics_storage_volume_size The size of the NFS export, for example 100Gi.

If your OpenShift cluster is already running, and therefore Trident has been deployed and configured, the

installer can use dynamic provisioning to create the volumes. The following variables will need to be

configured.

Variable Details

openshift_metrics_cassandra_pvc_prefix A prefix to use for the metrics PVCs.

openshift_metrics_cassandra_pvc_size The size of the volumes to request.

openshift_metrics_cassandra_storage_type The type of storage to use for metrics, this must be

set to dynamic for Ansible to create PVCs with the

appropriate storage class.

openshift_metrics_cassanda_pvc_storage_c

lass_name

The name of the storage class to use.

Deploy the metrics service

With the appropriate Ansible variables defined in your hosts/inventory file, deploy the service using Ansible. If

you are deploying at OpenShift install time, then the PV will be created and used automatically. If you’re

deploying using the component playbooks, after OpenShift install, then Ansible will create any PVCs which are

needed and, after Astra Trident has provisioned storage for them, deploy the service.

The variables above, and the process for deploying, may change with each version of OpenShift. Ensure you

review and follow RedHat’s OpenShift deployment guide for your version so that it is configured for your

environment.

Data protection

Learn about data protection and recoverability options that NetApp’s storage platforms provide. Astra Trident

can provision volumes that can take advantage of some of these features. You should have a data protection

and recovery strategy for each application with a persistence requirement.

Back up the etcd cluster data

Astra Trident stores its metadata in the Kubernetes cluster’s etcd database. Periodically backing up the etcd

cluster data is important to recover Kubernetes clusters under disaster scenarios.

Steps

1. The etcdctl snapshot save command enables you to take a point-in-time snapshot of the etcd

cluster:

238

https://docs.openshift.com/container-platform/3.11/install_config/cluster_metrics.html

sudo docker run --rm -v /backup:/backup \

 --network host \

 -v /etc/kubernetes/pki/etcd:/etc/kubernetes/pki/etcd \

 --env ETCDCTL_API=3 \

 k8s.gcr.io/etcd-amd64:3.2.18 \

 etcdctl --endpoints=https://127.0.0.1:2379 \

 --cacert=/etc/kubernetes/pki/etcd/ca.crt \

 --cert=/etc/kubernetes/pki/etcd/healthcheck-client.crt \

 --key=/etc/kubernetes/pki/etcd/healthcheck-client.key \

 snapshot save /backup/etcd-snapshot.db

This command creates an etcd snapshot by spinning up an etcd container and saves it in the /backup

directory.

2. In the event of a disaster, you can spin up a Kubernetes cluster by using the etcd snapshots.

Use the etcdctl snapshot restore command to restore a specific snapshot taken to the

/var/lib/etcd folder. After restoring, confirm if the /var/lib/etcd folder has been populated with the

member folder. The following is an example of etcdctl snapshot restore command:

etcdctl snapshot restore '/backup/etcd-snapshot-latest.db' ; mv

/default.etcd/member/ /var/lib/etcd/

3. Before you initialize the Kubernetes cluster, copy all the necessary certificates.

4. Create the cluster with the --ignore-preflight-errors=DirAvailable—var-lib-etcd flag.

5. After the cluster comes up ensure that the kube-system pods have started.

6. Use the kubectl get crd command to verify if the custom resources created by Trident are present and

retrieve Trident objects to make sure that all the data is available.

Recover date by using ONTAP snapshots

Snapshots play an important role by providing point-in-time recovery options for application data. However,

snapshots are not backups by themselves, they do not protect against storage system failure or other

catastrophes. But, they are a convenient, quick, and easy way to recover data in most scenarios. Learn about

how you can use ONTAP snapshot technology to take backups of the volume and how to restore them.

• If the snapshot policy has not been defined in the backend, it defaults to using the none policy. This results

in ONTAP taking no automatic snapshots. However, the storage administrator can take manual snapshots

or change the snapshot policy via the ONTAP management interface. This does not affect Trident

operation.

• The snapshot directory is hidden by default. This helps facilitate maximum compatibility of volumes

provisioned using the ontap-nas and ontap-nas-economy drivers. Enable the .snapshot directory

when using the ontap-nas and ontap-nas-economy drivers to allow applications to recover data from

snapshots directly.

• Restore a volume to a state recorded in a prior snapshot by using the volume snapshot restore

ONTAP CLI command. When you restore a snapshot copy, the restore operation overwrites the existing

volume configuration. Any changes made to the data in the volume after the Snapshot copy was created

239

are lost.

cluster1::*> volume snapshot restore -vserver vs0 -volume vol3 -snapshot

vol3_snap_archive

Replicate data by using ONTAP

Replicating data can play an important role in protecting against data loss due to storage array failure.

To learn more about ONTAP replication technologies, see the ONTAP documentation.

SnapMirror Storage Virtual Machines (SVM) replication

You can use SnapMirror to replicate a complete SVM, which includes its configuration settings and its volumes.

In the event of a disaster, you can activate the SnapMirror destination SVM to start serving data. You can

switch back to the primary when the systems are restored.

Astra Trident cannot configure replication relationships itself, so the storage administrator can use ONTAP’s

SnapMirror SVM Replication feature to automatically replicate volumes to a Disaster Recovery (DR)

destination.

Consider the following if you are planning to use the SnapMirror SVM Replication feature or are currently using

the feature:

• You should create a distinct backend for each SVM, which has SVM-DR enabled.

• You should configure the storage classes so as to not select the replicated backends except when desired.

This is important to avoid having volumes which do not need the protection of a replication relationship to

be provisioned onto the backend(s) that support SVM-DR.

• Application administrators should understand the additional cost and complexity associated with replicating

the data and a plan for recovery should be determined before they leverage data replication.

• Before activating the SnapMirror destination SVM, stop all the scheduled SnapMirror transfers, abort all

ongoing SnapMirror transfers, break the replication relationship, stop the source SVM, and then start the

SnapMirror destination SVM.

• Astra Trident does not automatically detect SVM failures. Therefore, upon a failure, the administrator

should run the tridentctl backend update command to trigger Trident’s failover to the new backend.

Here is an overview of the SVM setup steps:

• Set up peering between the source and destination cluster and SVM.

• Create the destination SVM by using the -subtype dp-destination option.

• Create a replication job schedule to ensure that replication happens at the required intervals.

• Create a SnapMirror replication from the destination SVM to the source SVM by using the -identity

-preserve true option to ensure that the source SVM configurations and source SVM interfaces are

copied to the destination. From the destination SVM, initialize the SnapMirror SVM replication relationship.

240

https://docs.netapp.com/ontap-9/topic/com.netapp.doc.dot-cm-concepts/GUID-A9A2F347-3E05-4F80-9E9C-CEF8F0A2F8E1.html
https://docs.netapp.com/ontap-9/topic/com.netapp.doc.dot-cm-concepts/GUID-8B187484-883D-4BB4-A1BC-35AC278BF4DC.html

Disaster recovery workflow for Trident

Astra Trident 19.07 and later use Kubernetes CRDs to store and manage its own state. It uses the Kubernetes

cluster’s etcd to store its metadata. Here we assume that the Kubernetes etcd data files and the certificates

are stored on NetApp FlexVolume. This FlexVolume resides in a SVM, which has a SnapMirror SVM-DR

relationship with a destination SVM at the secondary site.

The following steps describe how to recover a single master Kubernetes cluster with Astra Trident in the event

of a disaster:

1. If the source SVM fails, activate the SnapMirror destination SVM. To do this, you should stop scheduled

SnapMirror transfers, abort ongoing SnapMirror transfers, break the replication relationship, stop the

source SVM, and start the destination SVM.

2. From the destination SVM, mount the volume which contains the Kubernetes etcd data files and

certificates on to the host which will be setup as a master node.

3. Copy all the required certificates pertaining to the Kubernetes cluster under /etc/kubernetes/pki and

the etcd member files under /var/lib/etcd.

4. Create a Kubernetes cluster by using the kubeadm init command with the --ignore-preflight

-errors=DirAvailable—var-lib-etcd flag. The hostnames used for the Kubernetes nodes should

be the same as the source Kubernetes cluster.

5. Run the kubectl get crd command to verify if all the Trident custom resources have come up and

retrieve the Trident objects to verify that all the data is available.

6. Update all the required backends to reflect the new destination SVM name by running the ./tridentctl

update backend <backend-name> -f <backend-json-file> -n <namespace> command.

For application persistent volumes, when the destination SVM is activated, all the volumes

provisioned by Trident start serving data. After the Kubernetes cluster is set up on the

destination side by using the steps outlined above, all the deployments and pods are started and

the containerized applications should run without any issues.

241

SnapMirror volume replication

ONTAP SnapMirror volume replication is a disaster recovery feature, which enables failover to destination

storage from primary storage on a volume level. SnapMirror creates a volume replica or mirror of the primary

storage on the secondary storage by syncing snapshots.

Here is an overview of the ONTAP SnapMirror volume replication setup steps:

• Set up peering between the clusters in which the volumes reside and the SVMs that serve data from the

volumes.

• Create a SnapMirror policy, which controls the behavior of the relationship and specifies the configuration

attributes for that relationship.

• Create a SnapMirror relationship between the destination volume and the source volume by using the

snapmirror create command and assign the appropriate SnapMirror policy.

• After the SnapMirror relationship is created, initialize the relationship so that a baseline transfer from the

source volume to the destination volume is completed.

SnapMirror volume disaster recovery workflow for Trident

The following steps describe how to recover a single master Kubernetes cluster with Astra Trident.

1. In the event of a disaster, stop all the scheduled SnapMirror transfers and abort all ongoing SnapMirror

transfers. Break the replication relationship between the destination and source volumes so that the

destination volume becomes read/write.

2. From the destination SVM, mount the volume that contains the Kubernetes etcd data files and certificates

on to the host, which will be set up as a master node.

3. Copy all the required certificates pertaining to the Kubernetes cluster under /etc/kubernetes/pki and

the etcd member files under /var/lib/etcd.

4. Create a Kubernetes cluster by running the kubeadm init command with the --ignore-preflight

-errors=DirAvailable—var-lib-etcd flag. The hostnames should be the same as the source

Kubernetes cluster.

5. Run the kubectl get crd command to verify if all the Trident custom resources have come up and

242

https://docs.netapp.com/ontap-9/topic/com.netapp.doc.dot-cm-cmpr-970/snapmirror__create.html
https://docs.netapp.com/ontap-9/topic/com.netapp.doc.dot-cm-cmpr-970/snapmirror__create.html

retrieve Trident objects to make sure that all the data is available.

6. Clean up the previous backends and create new backends on Trident. Specify the new management and

data LIF, new SVM name, and password of the destination SVM.

Disaster recovery workflow for application persistent volumes

The following steps describe how SnapMirror destination volumes can be made available for containerized

workloads in the event of a disaster:

1. Stop all the scheduled SnapMirror transfers and abort all ongoing SnapMirror transfers. Break the

replication relationship between the destination and source volume so that the destination volume

becomes read/write. Clean up the deployments which were consuming PVC bound to volumes on the

source SVM.

2. After the Kubernetes cluster is set up on the destination side by using the steps outlined above, clean up

the deployments, PVCs and PV, from the Kubernetes cluster.

3. Create new backends on Trident by specifying the new management and data LIF, new SVM name and

password of the destination SVM.

4. Import the required volumes as a PV bound to a new PVC by using the Trident import feature.

5. Redeploy the application deployments with the newly created PVCs.

Recover data by using Element snapshots

Back up data on an Element volume by setting a snapshot schedule for the volume and ensuring that the

snapshots are taken at the required intervals. You should set the snapshot schedule by using the Element UI

or APIs. Currently, it is not possible to set a snapshot schedule to a volume through the solidfire-san

driver.

In the event of data corruption, you can choose a particular snapshot and roll back the volume to the snapshot

manually by using the Element UI or APIs. This reverts any changes made to the volume since the snapshot

was created.

Security

Use the recommendations listed here to ensure that your Astra Trident installation is secure.

Run Astra Trident in its own namespace

It is important to prevent applications, application administrators, users, and management applications from

accessing Astra Trident object definitions or the pods to ensure reliable storage and block potential malicious

activity.

To separate the other applications and users from Astra Trident, always install Astra Trident in its own

Kubernetes namespace (trident). Putting Astra Trident in its own namespace assures that only the

Kubernetes administrative personnel have access to the Astra Trident pod and the artifacts (such as backend

and CHAP secrets if applicable) stored in the namespaced CRD objects.

You should ensure that you allow only administrators access to the Astra Trident namespace and thus access

to the tridentctl application.

Use CHAP authentication with ONTAP SAN backends

Astra Trident supports CHAP-based authentication for ONTAP SAN workloads (using the ontap-san and

243

ontap-san-economy drivers). NetApp recommends using bidirectional CHAP with Astra Trident for

authentication between a host and the storage backend.

For ONTAP backends that use the SAN storage drivers, Astra Trident can set up bidirectional CHAP and

manage CHAP usernames and secrets through tridentctl.

See here to understand how Astra Trident configures CHAP on ONTAP backends.

CHAP support for ONTAP backends is available with Trident 20.04 and later.

Use CHAP authentication with NetApp HCI and SolidFire backends

NetApp recommends deploying bidirectional CHAP to ensure authentication between a host and the NetApp

HCI and SolidFire backends. Astra Trident uses a secret object that includes two CHAP passwords per tenant.

When Trident is installed as a CSI provisioner, it manages the CHAP secrets and stores them in a

tridentvolume CR object for the respective PV. When you create a PV, CSI Astra Trident uses the CHAP

secrets to initiate an iSCSI session and communicate with the NetApp HCI and SolidFire system over CHAP.

The volumes that are created by CSI Trident are not associated with any Volume Access Group.

In the non-CSI frontend, the attachment of volumes as devices on the worker nodes is handled by Kubernetes.

After volume creation, Astra Trident makes an API call to the NetApp HCI/SolidFire system to retrieve the

secrets if the secret for that tenant does not already exist. Astra Trident then passes the secrets on to

Kubernetes. The kubelet located on each node accesses the secrets via the Kubernetes API and uses them to

run/enable CHAP between each node accessing the volume and the NetApp HCI/SolidFire system where the

volumes are located.

244

Reference

Astra Trident ports

Learn more about the ports that Astra Trident communicates over.

Astra Trident communicates over the following ports:

Port Purpose

8443 Backchannel HTTPS

8001 Prometheus metrics endpoint

8000 Trident REST server

17546 Liveness/readiness probe port used by Trident daemonset pods

The liveness/readiness probe port can be changed during installation time using the --probe

-port flag. It is important to make sure this port isn’t being used by another process on the

worker nodes.

Astra Trident REST API

While tridentctl commands and options is the easiest way to interact with Astra Trident’s

REST API, you can use the REST endpoint directly if you prefer.

This is useful for advanced installations that use Astra Trident as a standalone binary in non-Kubernetes

deployments.

For better security, Astra Trident’s REST API is restricted to localhost by default when running inside a pod. To

change this behavior, you need to set Astra Trident’s -address argument in its pod configuration.

The API works as follows:

GET

• GET <trident-address>/trident/v1/<object-type>: Lists all objects of that type.

• GET <trident-address>/trident/v1/<object-type>/<object-name>: Gets the details of the

named object.

POST

POST <trident-address>/trident/v1/<object-type>: Creates an object of the specified type.

• Requires a JSON configuration for the object to be created. For the specification of each object type, see

tridentctl commands and options.

• If the object already exists, behavior varies: backends update the existing object, while all other object

types will fail the operation.

245

DELETE

DELETE <trident-address>/trident/v1/<object-type>/<object-name>: Deletes the named

resource.

Volumes associated with backends or storage classes will continue to exist; these must be

deleted separately. For more information, see tridentctl commands and options.

For examples of how these APIs are called, pass the debug (-d) flag. For more information, see tridentctl

commands and options.

Command-line options

Astra Trident exposes several command-line options for the Trident orchestrator. You can

use these options to modify your deployment.

Logging

• -debug: Enables debugging output.

• -loglevel <level>: Sets the logging level (debug, info, warn, error, fatal). Defaults to info.

Kubernetes

• -k8s_pod: Use this option or -k8s_api_server to enable Kubernetes support. Setting this causes

Trident to use its containing pod’s Kubernetes service account credentials to contact the API server. This

only works when Trident runs as a pod in a Kubernetes cluster with service accounts enabled.

• -k8s_api_server <insecure-address:insecure-port>: Use this option or -k8s_pod to enable

Kubernetes support. When specified, Trident connects to the Kubernetes API server using the provided

insecure address and port. This allows Trident to be deployed outside of a pod; however, it only supports

insecure connections to the API server. To connect securely, deploy Trident in a pod with the -k8s_pod

option.

• -k8s_config_path <file>: Required; you must specify this path to a KubeConfig file.

Docker

• -volume_driver <name>: Driver name used when registering the Docker plugin. Defaults to netapp.

• -driver_port <port-number>: Listen on this port rather than a UNIX domain socket.

• -config <file>: Required; you must specify this path to a backend configuration file.

REST

• -address <ip-or-host>: Specifies the address on which Trident’s REST server should listen. Defaults

to localhost. When listening on localhost and running inside a Kubernetes pod, the REST interface isn’t

directly accessible from outside the pod. Use -address "" to make the REST interface accessible from

the pod IP address.

246

Trident REST interface can be configured to listen and serve at 127.0.0.1 (for IPv4) or [::1] (for

IPv6) only.

• -port <port-number>: Specifies the port on which Trident’s REST server should listen. Defaults to

8000.

• -rest: Enables the REST interface. Defaults to true.

NetApp products integrated with Kubernetes

The NetApp portfolio of storage products integrates with many different aspects of a Kubernetes cluster,

providing advanced data management capabilities, which enhance the functionality, capability, performance,

and availability of the Kubernetes deployment.

Astra

Astra makes it easier for enterprises to manage, protect, and move their data-rich containerized workloads

running on Kubernetes within and across public clouds and on-premises. Astra provisions and provides

persistent container storage using Trident from NetApp’s proven and expansive storage portfolio in the public

cloud and on-premises. It also offers a rich set of advanced application-aware data management functionality,

such as snapshot, backup and restore, activity logs, and active cloning for data protection, disaster/data

recovery, data audit, and migration use cases for Kubernetes workloads.

ONTAP

ONTAP is NetApp’s multiprotocol, unified storage operating system that provides advanced data management

capabilities for any application. ONTAP systems have all-flash, hybrid, or all-HDD configurations and offer

many different deployment models, including engineered hardware (FAS and AFF), white-box (ONTAP Select),

and cloud-only (Cloud Volumes ONTAP).

Trident supports all the above mentioned ONTAP deployment models.

Cloud Volumes ONTAP

Cloud Volumes ONTAP is a software-only storage appliance that runs the ONTAP data management software

in the cloud. You can use Cloud Volumes ONTAP for production workloads, disaster recovery, DevOps, file

shares, and database management. It extends enterprise storage to the cloud by offering storage efficiencies,

high availability, data replication, data tiering and application consistency.

Amazon FSx for NetApp ONTAP

Amazon FSx for NetApp ONTAP is a fully managed AWS service that enables customers to launch and run file

systems powered by NetApp’s ONTAP storage operating system. FSx for ONTAP enables customers to

leverage NetApp features, performance, and administrative capabilities they’re familiar with, while taking

advantage of the simplicity, agility, security, and scalability of storing data on AWS. FSx for ONTAP supports

many of ONTAP’s file system features and administration APIs.

Element software

Element enables the storage administrator to consolidate workloads by guaranteeing performance and

enabling a simplified and streamlined storage footprint. Coupled with an API to enable automation of all

aspects of storage management, Element enables storage administrators to do more with less effort.

247

https://docs.netapp.com/us-en/astra/
http://cloud.netapp.com/ontap-cloud?utm_source=GitHub&utm_campaign=Trident
https://docs.aws.amazon.com/fsx/latest/ONTAPGuide/what-is-fsx-ontap.html
https://www.netapp.com/data-management/element-software/

NetApp HCI

NetApp HCI simplifies the management and scale of the datacenter by automating routine tasks and enabling

infrastructure administrators to focus on more important functions.

NetApp HCI is fully supported by Trident. Trident can provision and manage storage devices for containerized

applications directly against the underlying NetApp HCI storage platform.

Azure NetApp Files

Azure NetApp Files is an enterprise-grade Azure file share service, powered by NetApp. You can run your

most demanding file-based workloads in Azure natively, with the performance and rich data management you

expect from NetApp.

Cloud Volumes Service for Google Cloud

NetApp Cloud Volumes Service for Google Cloud is a cloud native file service that provides NAS volumes over

NFS and SMB with all-flash performance. This service enables any workload, including legacy applications, to

run in the GCP cloud. It provides a fully managed service which offers consistent high performance, instant

cloning, data protection and secure access to Google Compute Engine (GCE) instances.

Kubernetes and Trident objects

You can interact with Kubernetes and Trident using REST APIs by reading and writing resource objects. There

are several resource objects that dictate the relationship between Kubernetes and Trident, Trident and storage,

and Kubernetes and storage. Some of these objects are managed through Kubernetes and the others are

managed through Trident.

How do the objects interact with one another?

Perhaps the easiest way to understand the objects, what they are for, and how they interact, is to follow a

single request for storage from a Kubernetes user:

1. A user creates a PersistentVolumeClaim requesting a new PersistentVolume of a particular size

from a Kubernetes StorageClass that was previously configured by the administrator.

2. The Kubernetes StorageClass identifies Trident as its provisioner and includes parameters that tell

Trident how to provision a volume for the requested class.

3. Trident looks at its own StorageClass with the same name that identifies the matching Backends and

StoragePools that it can use to provision volumes for the class.

4. Trident provisions storage on a matching backend and creates two objects: a PersistentVolume in

Kubernetes that tells Kubernetes how to find, mount, and treat the volume, and a volume in Trident that

retains the relationship between the PersistentVolume and the actual storage.

5. Kubernetes binds the PersistentVolumeClaim to the new PersistentVolume. Pods that include the

PersistentVolumeClaim mount that PersistentVolume on any host that it runs on.

6. A user creates a VolumeSnapshot of an existing PVC, using a VolumeSnapshotClass that points to

Trident.

7. Trident identifies the volume that is associated with the PVC and creates a snapshot of the volume on its

backend. It also creates a VolumeSnapshotContent that instructs Kubernetes on how to identify the

snapshot.

248

https://www.netapp.com/virtual-desktop-infrastructure/netapp-hci/
https://azure.microsoft.com/en-us/services/netapp/
https://cloud.netapp.com/cloud-volumes-service-for-gcp?utm_source=GitHub&utm_campaign=Trident

8. A user can create a PersistentVolumeClaim using VolumeSnapshot as the source.

9. Trident identifies the required snapshot and performs the same set of steps involved in creating a

PersistentVolume and a Volume.

For further reading about Kubernetes objects, we highly recommend that you read the

Persistent Volumes section of the Kubernetes documentation.

Kubernetes PersistentVolumeClaim objects

A Kubernetes PersistentVolumeClaim object is a request for storage made by a Kubernetes cluster user.

In addition to the standard specification, Trident allows users to specify the following volume-specific

annotations if they want to override the defaults that you set in the backend configuration:

Annotation Volume Option Supported Drivers

trident.netapp.io/fileSystem fileSystem ontap-san, solidfire-san,

eseries-iscsi, ontap-san-economy

trident.netapp.io/cloneFromPVC cloneSourceVolume ontap-nas,

ontap-san, solidfire-san, azure-

netapp-files, gcp-cvs,

ontap-san-economy

trident.netapp.io/splitOnClone splitOnClone ontap-nas, ontap-san

trident.netapp.io/protocol protocol any

trident.netapp.io/exportPolicy exportPolicy ontap-nas,

ontap-nas-economy, ontap-nas-

flexgroup

trident.netapp.io/snapshotPolicy snapshotPolicy ontap-nas,

ontap-nas-economy, ontap-nas-

flexgroup, ontap-san

trident.netapp.io/snapshotReserve snapshotReserve ontap-nas,

ontap-nas-flexgroup, ontap-san,

gcp-cvs

trident.netapp.io/snapshotDirectory snapshotDirectory ontap-nas,

ontap-nas-economy, ontap-nas-

flexgroup

trident.netapp.io/unixPermissions unixPermissions ontap-nas,

ontap-nas-economy, ontap-nas-

flexgroup

trident.netapp.io/blockSize blockSize solidfire-san

If the created PV has the Delete reclaim policy, Trident deletes both the PV and the backing volume when the

PV becomes released (that is, when the user deletes the PVC). Should the delete action fail, Trident marks the

PV as such and periodically retries the operation until it succeeds or the PV is manually deleted. If the PV uses

the Retain policy, Trident ignores it and assumes the administrator will clean it up from Kubernetes and the

backend, allowing the volume to be backed up or inspected before its removal. Note that deleting the PV does

249

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

not cause Trident to delete the backing volume. You should remove it using the REST API (tridentctl).

Trident supports the creation of Volume Snapshots using the CSI specification: you can create a Volume

Snapshot and use it as a Data Source to clone existing PVCs. This way, point-in-time copies of PVs can be

exposed to Kubernetes in the form of snapshots. The snapshots can then be used to create new PVs. Take a

look at On-Demand Volume Snapshots to see how this would work.

Trident also provides the cloneFromPVC and splitOnClone annotations for creating clones. You can use

these annotations to clone a PVC without having to use the CSI implementation (on Kubernetes 1.13 and

earlier) or if your Kubernetes release does not support beta Volume Snapshots (Kubernetes 1.16 and earlier).

Keep in mind that Trident 19.10 supports the CSI workflow for cloning from a PVC.

You can use the cloneFromPVC and splitOnClone annotations with CSI Trident as well as

the traditional non-CSI frontend.

Here is an example: If a user already has a PVC called mysql, the user can create a new PVC called

mysqlclone by using the annotation, such as trident.netapp.io/cloneFromPVC: mysql. With this

annotation set, Trident clones the volume corresponding to the mysql PVC, instead of provisioning a volume

from scratch.

Consider the following points:

• We recommend cloning an idle volume.

• A PVC and its clone should be in the same Kubernetes namespace and have the same storage class.

• With the ontap-nas and ontap-san drivers, it might be desirable to set the PVC annotation

trident.netapp.io/splitOnClone in conjunction with trident.netapp.io/cloneFromPVC. With

trident.netapp.io/splitOnClone set to true, Trident splits the cloned volume from the parent

volume and thus, completely decoupling the life cycle of the cloned volume from its parent at the expense

of losing some storage efficiency. Not setting trident.netapp.io/splitOnClone or setting it to

false results in reduced space consumption on the backend at the expense of creating dependencies

between the parent and clone volumes such that the parent volume cannot be deleted unless the clone is

deleted first. A scenario where splitting the clone makes sense is cloning an empty database volume where

it’s expected for the volume and its clone to greatly diverge and not benefit from storage efficiencies offered

by ONTAP.

The sample-input directory contains examples of PVC definitions for use with Trident. See Trident Volume

objects for a full description of the parameters and settings associated with Trident volumes.

Kubernetes PersistentVolume objects

A Kubernetes PersistentVolume object represents a piece of storage that is made available to the

Kubernetes cluster. It has a lifecycle that is independent of the pod that uses it.

Trident creates PersistentVolume objects and registers them with the Kubernetes cluster

automatically based on the volumes that it provisions. You are not expected to manage them

yourself.

When you create a PVC that refers to a Trident-based StorageClass, Trident provisions a new volume using

the corresponding storage class and registers a new PV for that volume. In configuring the provisioned volume

and corresponding PV, Trident follows the following rules:

250

• Trident generates a PV name for Kubernetes and an internal name that it uses to provision the storage. In

both cases, it is assuring that the names are unique in their scope.

• The size of the volume matches the requested size in the PVC as closely as possible, though it might be

rounded up to the nearest allocatable quantity, depending on the platform.

Kubernetes StorageClass objects

Kubernetes StorageClass objects are specified by name in PersistentVolumeClaims to provision

storage with a set of properties. The storage class itself identifies the provisioner to be used and defines that

set of properties in terms the provisioner understands.

It is one of two basic objects that need to be created and managed by the administrator. The other is the

Trident backend object.

A Kubernetes StorageClass object that uses Trident looks like this:

apiVersion: storage.k8s.io/v1beta1

kind: StorageClass

metadata:

 name: <Name>

provisioner: csi.trident.netapp.io

mountOptions: <Mount Options>

parameters:

 <Trident Parameters>

allowVolumeExpansion: true

volumeBindingMode: Immediate

These parameters are Trident-specific and tell Trident how to provision volumes for the class.

The storage class parameters are:

Attribute Type Required Description

attributes map[string]string no See the attributes section

below

storagePools map[string]StringList no Map of backend names to

lists

of storage pools within

additionalStoragePools map[string]StringList no Map of backend names

to lists of storage pools

within

excludeStoragePools map[string]StringList no Map of backend names to

lists of storage pools

within

Storage attributes and their possible values can be classified into storage pool selection attributes and

Kubernetes attributes.

251

Storage pool selection attributes

These parameters determine which Trident-managed storage pools should be utilized to provision volumes of

a given type.

Attribute Type Values Offer Request Supported by

media1 string hdd, hybrid, ssd Pool contains

media of this

type; hybrid

means both

Media type

specified

ontap-nas,

ontap-nas-

economy, ontap-

nas-flexgroup,

ontap-san,

solidfire-san

provisioningType string thin, thick Pool supports

this provisioning

method

Provisioning

method specified

thick: all ontap &

eseries-iscsi;

thin: all ontap &

solidfire-san

backendType string ontap-nas,

ontap-nas-

economy, ontap-

nas-flexgroup,

ontap-san,

solidfire-san,

eseries-iscsi,

gcp-cvs, azure-

netapp-files,

ontap-san-

economy

Pool belongs to

this type of

backend

Backend

specified

All drivers

snapshots bool true, false Pool supports

volumes with

snapshots

Volume with

snapshots

enabled

ontap-nas,

ontap-san,

solidfire-san,

gcp-cvs

clones bool true, false Pool supports

cloning volumes

Volume with

clones enabled

ontap-nas,

ontap-san,

solidfire-san,

gcp-cvs

encryption bool true, false Pool supports

encrypted

volumes

Volume with

encryption

enabled

ontap-nas,

ontap-nas-

economy, ontap-

nas-flexgroups,

ontap-san

IOPS int positive integer Pool is capable

of guaranteeing

IOPS in this

range

Volume

guaranteed

these IOPS

solidfire-san

1: Not supported by ONTAP Select systems

In most cases, the values requested directly influence provisioning; for instance, requesting thick provisioning

results in a thickly provisioned volume. However, an Element storage pool uses its offered IOPS minimum and

252

maximum to set QoS values, rather than the requested value. In this case, the requested value is used only to

select the storage pool.

Ideally, you can use attributes alone to model the qualities of the storage you need to satisfy the needs of a

particular class. Trident automatically discovers and selects storage pools that match all of the attributes

that you specify.

If you find yourself unable to use attributes to automatically select the right pools for a class, you can use

the storagePools and additionalStoragePools parameters to further refine the pools or even to select

a specific set of pools.

You can use the storagePools parameter to further restrict the set of pools that match any specified

attributes. In other words, Trident uses the intersection of pools identified by the attributes and

storagePools parameters for provisioning. You can use either parameter alone or both together.

You can use the additionalStoragePools parameter to extend the set of pools that Trident uses for

provisioning, regardless of any pools selected by the attributes and storagePools parameters.

You can use the excludeStoragePools parameter to filter the set of pools that Trident uses for provisioning.

Using this parameter removes any pools that match.

In the storagePools and additionalStoragePools parameters, each entry takes the form

<backend>:<storagePoolList>, where <storagePoolList> is a comma-separated list of storage pools

for the specified backend. For example, a value for additionalStoragePools might look like

ontapnas_192.168.1.100:aggr1,aggr2;solidfire_192.168.1.101:bronze.

These lists accept regex values for both the backend and list values. You can use tridentctl get

backend to get the list of backends and their pools.

Kubernetes attributes

These attributes have no impact on the selection of storage pools/backends by Trident during dynamic

provisioning. Instead, these attributes simply supply parameters supported by Kubernetes Persistent Volumes.

Worker nodes are responsible for filesystem create operations and might require filesystem utilities, such as

xfsprogs.

Attribute Type Values Description Relevant

Drivers
Kubernetes

Version

fsType string ext4, ext3, xfs,

etc.

The file system

type for block

volumes

solidfire-san,

ontap-nas,

ontap-nas-

economy, ontap-

nas-flexgroup,

ontap-san,

ontap-san-

economy,

eseries-iscsi

All

253

Attribute Type Values Description Relevant

Drivers
Kubernetes

Version

allowVolumeExp

ansion

boolean true, false Enable or

disable support

for growing the

PVC size

ontap-nas,

ontap-nas-

economy, ontap-

nas-flexgroup,

ontap-san,

ontap-san-

economy,

solidfire-san,

gcp-cvs, azure-

netapp-files

1.11+

volumeBindingM

ode

string Immediate,

WaitForFirstCon

sumer

Choose when

volume binding

and dynamic

provisioning

occurs

All 1.18 - 1.24

• The fsType parameter is used to control the desired file system type for SAN LUNs. In

addition, Kubernetes also uses the presence of fsType in a storage class to indicate a

filesystem exists. Volume ownership can be controlled using the fsGroup security context

of a pod only if fsType is set. See Kubernetes: Configure a Security Context for a Pod or

Container for an overview on setting volume ownership using the fsGroup context.

Kubernetes will apply the fsGroup value only if:

◦ fsType is set in the storage class.

◦ The PVC access mode is RWO.

For NFS storage drivers, a filesystem already exists as part of the NFS export. In order to

use fsGroup the storage class still needs to specify a fsType. You can set it to nfs or any

non-null value.

• See Expand volumes for further details on volume expansion.

• The Trident installer bundle provides several example storage class definitions for use with

Trident in sample-input/storage-class-*.yaml. Deleting a Kubernetes storage class

causes the corresponding Trident storage class to be deleted as well.

Kubernetes VolumeSnapshotClass objects

Kubernetes VolumeSnapshotClass objects are analogous to StorageClasses. They help define multiple

classes of storage and are referenced by volume snapshots to associate the snapshot with the required

snapshot class. Each volume snapshot is associated with a single volume snapshot class.

A VolumeSnapshotClass should be defined by an administrator in order to create snapshots. A volume

snapshot class is created with the following definition:

254

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
https://docs.netapp.com/us-en/trident/trident-use/vol-expansion.html

apiVersion: snapshot.storage.k8s.io/v1beta1

kind: VolumeSnapshotClass

metadata:

 name: csi-snapclass

driver: csi.trident.netapp.io

deletionPolicy: Delete

The driver specifies to Kubernetes that requests for volume snapshots of the csi-snapclass class are

handled by Trident. The deletionPolicy specifies the action to be taken when a snapshot must be deleted.

When deletionPolicy is set to Delete, the volume snapshot objects as well as the underlying snapshot on

the storage cluster are removed when a snapshot is deleted. Alternatively, setting it to Retain means that

VolumeSnapshotContent and the physical snapshot are retained.

Kubernetes VolumeSnapshot objects

A Kubernetes VolumeSnapshot object is a request to create a snapshot of a volume. Just as a PVC

represents a request made by a user for a volume, a volume snapshot is a request made by a user to create a

snapshot of an existing PVC.

When a volume snapshot request comes in, Trident automatically manages the creation of the snapshot for the

volume on the backend and exposes the snapshot by creating a unique

VolumeSnapshotContent object. You can create snapshots from existing PVCs and use the snapshots as a

DataSource when creating new PVCs.

The lifecyle of a VolumeSnapshot is independent of the source PVC: a snapshot persists even

after the source PVC is deleted. When deleting a PVC which has associated snapshots, Trident

marks the backing volume for this PVC in a Deleting state, but does not remove it completely.

The volume is removed when all the associated snapshots are deleted.

Kubernetes VolumeSnapshotContent objects

A Kubernetes VolumeSnapshotContent object represents a snapshot taken from an already provisioned

volume. It is analogous to a PersistentVolume and signifies a provisioned snapshot on the storage cluster.

Similar to PersistentVolumeClaim and PersistentVolume objects, when a snapshot is created, the

VolumeSnapshotContent object maintains a one-to-one mapping to the VolumeSnapshot object, which

had requested the snapshot creation.

Trident creates VolumeSnapshotContent objects and registers them with the Kubernetes

cluster automatically based on the volumes that it provisions. You are not expected to manage

them yourself.

The VolumeSnapshotContent object contains details that uniquely identify the snapshot, such as the

snapshotHandle. This snapshotHandle is a unique combination of the name of the PV and the name of

the VolumeSnapshotContent object.

When a snapshot request comes in, Trident creates the snapshot on the backend. After the snapshot is

created, Trident configures a VolumeSnapshotContent object and thus exposes the snapshot to the

Kubernetes API.

255

Kubernetes CustomResourceDefinition objects

Kubernetes Custom Resources are endpoints in the Kubernetes API that are defined by the administrator and

are used to group similar objects. Kubernetes supports the creation of custom resources for storing a collection

of objects. You can obtain these resource definitions by running kubectl get crds.

Custom Resource Definitions (CRDs) and their associated object metadata are stored by Kubernetes in its

metadata store. This eliminates the need for a separate store for Trident.

Beginning with the 19.07 release, Trident uses a number of CustomResourceDefinition objects to

preserve the identity of Trident objects, such as Trident backends, Trident storage classes, and Trident

volumes. These objects are managed by Trident. In addition, the CSI volume snapshot framework introduces

some CRDs that are required to define volume snapshots.

CRDs are a Kubernetes construct. Objects of the resources defined above are created by Trident. As a simple

example, when a backend is created using tridentctl, a corresponding tridentbackends CRD object is

created for consumption by Kubernetes.

Here are a few points to keep in mind about Trident’s CRDs:

• When Trident is installed, a set of CRDs are created and can be used like any other resource type.

• When upgrading from a previous version of Trident (one that used etcd to maintain state), the Trident

installer migrates data from the etcd key-value data store and creates corresponding CRD objects.

• When uninstalling Trident by using the tridentctl uninstall command, Trident pods are deleted but

the created CRDs are not cleaned up. See Uninstall Trident to understand how Trident can be completely

removed and reconfigured from scratch.

Trident StorageClass objects

Trident creates matching storage classes for Kubernetes StorageClass objects that specify

csi.trident.netapp.io/netapp.io/trident in their provisioner field. The storage class name matches

that of the Kubernetes StorageClass object it represents.

With Kubernetes, these objects are created automatically when a Kubernetes StorageClass

that uses Trident as a provisioner is registered.

Storage classes comprise a set of requirements for volumes. Trident matches these requirements with the

attributes present in each storage pool; if they match, that storage pool is a valid target for provisioning

volumes using that storage class.

You can create storage class configurations to directly define storage classes by using the REST API.

However, for Kubernetes deployments, we expect them to be created when registering new Kubernetes

StorageClass objects.

Trident backend objects

Backends represent the storage providers on top of which Trident provisions volumes; a single Trident instance

can manage any number of backends.

This is one of the two object types that you create and manage yourself. The other is the

Kubernetes StorageClass object.

256

For more information about how to construct these objects, see Backend configuration.

Trident StoragePool objects

Storage pools represent the distinct locations available for provisioning on each backend. For ONTAP, these

correspond to aggregates in SVMs. For NetApp HCI/SolidFire, these correspond to administrator-specified

QoS bands. For Cloud Volumes Service, these correspond to cloud provider regions. Each storage pool has a

set of distinct storage attributes, which define its performance characteristics and data protection

characteristics.

Unlike the other objects here, storage pool candidates are always discovered and managed automatically.

Trident Volume objects

Volumes are the basic unit of provisioning, comprising backend endpoints, such as NFS shares and iSCSI

LUNs. In Kubernetes, these correspond directly to PersistentVolumes. When you create a volume, ensure

that it has a storage class, which determines where that volume can be provisioned, along with a size.

In Kubernetes, these objects are managed automatically. You can view them to see what Trident

provisioned.

When deleting a PV with associated snapshots, the corresponding Trident volume is updated to

a Deleting state. For the Trident volume to be deleted, you should remove the snapshots of the

volume.

A volume configuration defines the properties that a provisioned volume should have.

Attribute Type Required Description

version string no Version of the Trident API

("1")

name string yes Name of volume to create

storageClass string yes Storage class to use when

provisioning the volume

size string yes Size of the volume to

provision in bytes

protocol string no Protocol type to use; "file"

or "block"

internalName string no Name of the object on the

storage system;

generated by Trident

cloneSourceVolume string no ontap (nas, san) &

solidfire-*: Name of the

volume to clone from

splitOnClone string no ontap (nas, san): Split the

clone from its parent

snapshotPolicy string no ontap-*: Snapshot policy

to use

257

Attribute Type Required Description

snapshotReserve string no ontap-*: Percentage of

volume reserved for

snapshots

exportPolicy string no ontap-nas*: Export policy

to use

snapshotDirectory bool no ontap-nas*: Whether the

snapshot directory is

visible

unixPermissions string no ontap-nas*: Initial UNIX

permissions

blockSize string no solidfire-*: Block/sector

size

fileSystem string no File system type

Trident generates internalName when creating the volume. This consists of two steps. First, it prepends the

storage prefix (either the default trident or the prefix in the backend configuration) to the volume name,

resulting in a name of the form <prefix>-<volume-name>. It then proceeds to sanitize the name, replacing

characters not permitted in the backend. For ONTAP backends, it replaces hyphens with underscores (thus,

the internal name becomes <prefix>_<volume-name>). For Element backends, it replaces underscores

with hyphens.

You can use volume configurations to directly provision volumes using the REST API, but in Kubernetes

deployments we expect most users to use the standard Kubernetes PersistentVolumeClaim method.

Trident creates this volume object automatically as part of the provisioning

process.

Trident Snapshot objects

Snapshots are a point-in-time copy of volumes, which can be used to provision new volumes or restore state.

In Kubernetes, these correspond directly to VolumeSnapshotContent objects. Each snapshot is associated

with a volume, which is the source of the data for the snapshot.

Each Snapshot object includes the properties listed below:

Attribute Type Required Description

version String Yes Version of the Trident API

("1")

name String Yes Name of the Trident

snapshot object

internalName String Yes Name of the Trident

snapshot object on the

storage system

volumeName String Yes Name of the Persistent

Volume for which the

snapshot is created

258

Attribute Type Required Description

volumeInternalName String Yes Name of the associated

Trident volume object on

the storage system

In Kubernetes, these objects are managed automatically. You can view them to see what Trident

provisioned.

When a Kubernetes VolumeSnapshot object request is created, Trident works by creating a snapshot object

on the backing storage system. The internalName of this snapshot object is generated by combining the

prefix snapshot- with the UID of the VolumeSnapshot object (for example, snapshot-e8d8a0ca-9826-

11e9-9807-525400f3f660). volumeName and volumeInternalName are populated by getting the details

of the backing

volume.

tridentctl commands and options

The Trident installer bundle includes a command-line utility, tridentctl, that provides

simple access to Astra Trident. Kubernetes users with sufficient privileges can use it to

install Astra Trident as well as to interact with it directly to manage the namespace that

contains the Astra Trident pod.

For usage information, run tridentctl --help.

The available commands and global options are:

Usage:

 tridentctl [command]

Available commands:

• create: Add a resource to Astra Trident.

• delete: Remove one or more resources from Astra Trident.

• get: Get one or more resources from Astra Trident.

• help: Help about any command.

• images: Print a table of the container images Astra Trident needs.

• import: Import an existing resource to Astra Trident.

• install: Install Astra Trident.

• logs: Print the logs from Astra Trident.

• send: Send a resource from Astra Trident.

• uninstall: Uninstall Astra Trident.

• update: Modify a resource in Astra Trident.

259

https://github.com/NetApp/trident/releases

• upgrade: Upgrade a resource in Astra Trident.

• version: Print the version of Astra Trident.

Flags:

• `-d, --debug: Debug output.

• `-h, --help: Help for tridentctl.

• `-n, --namespace string: Namespace of Astra Trident deployment.

• `-o, --output string: Output format. One of json|yaml|name|wide|ps (default).

• `-s, --server string: Address/port of Astra Trident REST interface.

Trident REST interface can be configured to listen and serve at 127.0.0.1 (for IPv4) or [::1]

(for IPv6) only.

Trident REST interface can be configured to listen and serve at 127.0.0.1 (for IPv4) or [::1] (for

IPv6) only.

create

You can use run the create command to add a resource to Astra Trident.

Usage:

 tridentctl create [option]

Available option:

backend: Add a backend to Astra Trident.

delete

You can run the delete command to remove one or more resources from Astra Trident.

Usage:

 tridentctl delete [option]

Available options:

• backend: Delete one or more storage backends from Astra Trident.

• node: Delete one or more CSI nodes from Astra Trident.

• snapshot: Delete one or more volume snapshots from Astra Trident.

• storageclass: Delete one or more storage classes from Astra Trident.

• volume: Delete one or more storage volumes from Astra Trident.

260

get

You can run the get command to get one or more resources from Astra Trident.

Usage:

 tridentctl get [option]

Available options:

• backend: Get one or more storage backends from Astra Trident.

• snapshot: Get one or more snapshots from Astra Trident.

• storageclass: Get one or more storage classes from Astra Trident.

• volume: Get one or more volumes from Astra Trident.

images

You can run the images flag to print a table of the container images Astra Trident needs.

Usage:

 tridentctl images [flags]

Flags:

* -h, --help`: Help for images.

* -v, --k8s-version string`: Semantic version of Kubernetes cluster.

import volume

You can run the import volume command to import an existing volume to Astra Trident.

Usage:

 tridentctl import volume <backendName> <volumeName> [flags]

Aliases:

volume, v

Flags:

• `-f, --filename string: Path to YAML or JSON PVC file.

• `-h, --help: Help for volume.

• `--no-manage: Create PV/PVC only. Don’t assume volume lifecycle management.

261

install

You can run the install flags to install Astra Trident.

Usage:

 tridentctl install [flags]

Flags:

• `--autosupport-image string: The container image for Autosupport Telemetry (default

"netapp/trident autosupport:20.07.0").

• `--autosupport-proxy string: The address/port of a proxy for sending Autosupport Telemetry.

• `--csi: Install CSI Trident (override for Kubernetes 1.13 only, requires feature gates).

• `--enable-node-prep: Attempt to install required packages on nodes.

• `--generate-custom-yaml: Generate YAML files without installing anything.

• `-h, --help: Help for install.

• `--http-request-timeout: Override the HTTP request timeout for Trident controller’s REST API

(default 1m30s).

• `--image-registry string: The address/port of an internal image registry.

• `--k8s-timeout duration: The timeout for all Kubernetes operations (default 3m0s).

• `--kubelet-dir string: The host location of kubelet’s internal state (default "/var/lib/kubelet").

• `--log-format string: The Astra Trident logging format (text, json) (default "text").

• `--pv string: The name of the legacy PV used by Astra Trident, makes sure this doesn’t exist (default

"trident").

• `--pvc string: The name of the legacy PVC used by Astra Trident, makes sure this doesn’t exist

(default "trident").

• `--silence-autosupport: Don’t send autosupport bundles to NetApp automatically (default true).

• `--silent: Disable most output during installation.

• `--trident-image string: The Astra Trident image to install.

• `--use-custom-yaml: Use any existing YAML files that exist in setup directory.

• `--use-ipv6: Use IPv6 for Astra Trident’s communication.

logs

You can run the logs flags to print the logs from Astra Trident.

Usage:

 tridentctl logs [flags]

262

Flags:

• `-a, --archive: Create a support archive with all logs unless otherwise specified.

• `-h, --help: Help for logs.

• `-l, --log string: Astra Trident log to display. One of trident|auto|trident-operator|all (default "auto").

• `--node string: The Kubernetes node name from which to gather node pod logs.

• `-p, --previous: Get the logs for the previous container instance if it exists.

• `--sidecars: Get the logs for the sidecar containers.

send

You can run the send command to send a resource from Astra Trident.

Usage:

 tridentctl send [option]

Available option:

autosupport: Send an Autosupport archive to NetApp.

uninstall

You can run the uninstall flags to uninstall Astra Trident.

Usage:

 tridentctl uninstall [flags]

Flags:

* -h, --help: Help for uninstall.

* --silent: Disable most output during uninstallation.

update

You can run the update commands to modify a resource in Astra Trident.

Usage:

 tridentctl update [option]

Available options:

backend: Update a backend in Astra Trident.

263

upgrade

You can run the upgrade commands to upgrade a resource in Astra Trident.

Usage:

tridentctl upgrade [option]

Available option:

volume: Upgrade one or more persistent volumes from NFS/iSCSI to CSI.

version

You can run the version flags to print the version of tridentctl and the running Trident service.

Usage:

 tridentctl version [flags]

Flags:

* --client: Client version only (no server required).

* -h, --help: Help for version.

264

Earlier versions of documentation

If you aren’t running Astra Trident 22.04, the documentation for previous releases is

available.

• Astra Trident 22.01

265

https://docs.netapp.com/us-en/trident-2201/index.html

Legal notices

Legal notices provide access to copyright statements, trademarks, patents, and more.

Copyright

https://www.netapp.com/company/legal/copyright/

Trademarks

NETAPP, the NETAPP logo, and the marks listed on the NetApp Trademarks page are trademarks of NetApp,

Inc. Other company and product names may be trademarks of their respective owners.

https://www.netapp.com/company/legal/trademarks/

Patents

A current list of NetApp owned patents can be found at:

https://www.netapp.com/pdf.html?item=/media/11887-patentspage.pdf

Privacy policy

https://www.netapp.com/company/legal/privacy-policy/

Open source

You can review third-party copyright and licenses used in NetApp software for Astra Trident in the notices file

for each release at https://github.com/NetApp/trident/.

266

https://www.netapp.com/company/legal/copyright/
https://www.netapp.com/company/legal/trademarks/
https://www.netapp.com/pdf.html?item=/media/11887-patentspage.pdf
https://www.netapp.com/company/legal/privacy-policy/
https://github.com/NetApp/trident/

Copyright information

Copyright © 2024 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by

copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including

photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission

of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL

NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp

assumes no responsibility or liability arising from the use of products described herein, except as expressly

agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any

patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or

pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set

forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013

(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)

and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this

Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-

exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in

connection with and in support of the U.S. Government contract under which the Data was delivered. Except

as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed

without the prior written approval of NetApp, Inc. United States Government license rights for the Department

of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.

Other company and product names may be trademarks of their respective owners.

267

http://www.netapp.com/TM

	Astra Trident 22.04 documentation : Astra Trident
	Table of Contents
	Astra Trident 22.04 documentation
	Release Notes
	What’s new in 22.04
	Changes in 22.01.1
	Changes in 22.01.0
	Changes in 21.10.1
	Changes in 21.10.0
	Known issues
	Find more information

	Concepts
	Intro to Astra Trident
	ONTAP drivers
	Provisioning
	Volume snapshots
	Virtual storage pools
	Volume access groups

	Get started
	Try it out
	Requirements
	Deployment overview
	Deploy with Trident operator
	Deploy with tridentctl
	What’s next?

	Manage Astra Trident
	Upgrade Astra Trident
	Upgrade with the operator
	Upgrade with tridentctl
	Uninstall Astra Trident
	Downgrade Astra Trident

	Use Astra Trident
	Configure backends
	Create backends with kubectl
	Perform backend management with kubectl
	Perform backend management with tridentctl
	Move between backend management options
	Manage storage classes
	Perform volume operations
	Prepare the worker node
	Automatic worker node preparation
	Monitor Astra Trident

	Astra Trident for Docker
	Prerequisites for deployment
	Deploy Astra Trident
	Upgrade or uninstall Astra Trident
	Work with volumes
	Collect logs
	Manage multiple Astra Trident instances
	Storage configuration options
	Known issues and limitations

	Frequently asked questions
	General questions
	Install and use Astra Trident on a Kubernetes cluster
	Troubleshooting and support
	Upgrade Astra Trident
	Manage backends and volumes

	Support
	Troubleshooting
	General troubleshooting
	Troubleshooting an unsuccessful Trident deployment using the operator
	Troubleshooting an unsuccessful Trident deployment using tridentctl

	Best practices and recommendations
	Deployment
	Storage configuration
	Integrate Astra Trident
	Data protection
	Security

	Reference
	Astra Trident ports
	Astra Trident REST API
	Command-line options
	NetApp products integrated with Kubernetes
	Kubernetes and Trident objects
	tridentctl commands and options

	Earlier versions of documentation
	Legal notices
	Copyright
	Trademarks
	Patents
	Privacy policy
	Open source

