Abstract
We propose a new smoothed particle hydrodynamics simulation method that utilizes ellipsoidal kernels instead of spherical kernels. In order to load fluid quantities between time-stepping into smoothed particles, kernel shapes are elongated according to the directions and magnitudes of velocities. The use of these deformable kernels allows us to efficiently simulate fast moving fluids without increasing computational cost. The experiments demonstrate that our method can reproduce the detailed movement of fast fluids by reducing numerical diffusion.
Graphical Abstract
Similar content being viewed by others
References
Adams B, Pauly M, Keiser R, Guibas LJ (2007) Adaptively sampled particle fluids. ACM Trans Graph 26(3):48
Bargteil AW, Goktekin TG, O’brien JF, Strain JA (2006) A semi-lagrangian contouring method for fluid simulation. ACM Trans Graph 25(1):19–38
Becker M, Teschner M (2007) Weakly compressible sph for free surface flows. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on computer animation, pp 209–217
Carlson M, Mucha RJ, Turk G (2004) Rigid fluid: animating the interplay between rigid bodies and fluid. ACM Trans Graph 23(3):377–384
Chen W, Ren L, Zwicker M, Pfister H (2004) Hardware-accelerated adaptive EWA volume splatting. In: Proceedings of IEEE visualization, pp 67–74
Clavet S, Beaudoin P, Poulin P (2005) Particle-based viscoelastic fluid simulation. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on computer animation, pp 219–228
Cummins SJ, Rudman M (1999) An sph projection method. J Comp Phys 152(2):584–607
Desbrun M, Cani MP (1994) Smoothed particles: a new paradigm for highly deformable bodies. In: 6th eurographics workshop on animation and simulation
Enright D, Marschner S, Fedkiw R (2002) Animation and rendering of complex water surfaces. ACM Trans Graph 21(3):736–744
Fey U, Konig M, Eckelmann H (1998) A new Strouhal Reynolds-number relationship for the circular cylinder in the range 47 < Re < 2 × 105. Phys Fluids 10(7):1547–1549
Foster N, Fedkiw R (2001) Practical animation of liquids. In: Proceedings of ACM SIGGRAPH 2001. Comput Graph 35:23–30
Foster N, Metaxas D (1996) Realistic animation of liquids. Graph models image process 58(5):471–483
Foster N, Metaxas D (1997) Controlling fluid animation. In: Computer graphics international 97, pp 178–188
Goktekin TG, Bargteil AW, O’Brien JF (2004) A method for animating viscoelastic fluids. ACM Trans Graph 23(3):463–468
Guendelman E, Selle A, Losasso F, Fedkiw R (2005) Coupling water and smoke to thin deformable and rigid shells. ACM Trans Graph 24(3):973–981
Heinzle S, Wolf J, Kanamori Y, Weyrich T, Nishita T, Gross M (2010) Motion blur for EWA surface splatting. Comput Graph Forum 29(2):733–742
Heo N, Ko HS (2010) Detail-preserving fully-Eulerian interface tracking framework. ACM Trans Graph 29(6):176
Hong JM, Kim CH (2005) Discontinuous fluids. ACM Trans Graph 24(3):915–920
Hong W, House DH, Keyser J (2008) Adaptive particles for incompressible fluid simulation. Vis Comput 24(7):535–543
Kim B, Liu Y, Llamas I, Rossignac J (2007) Advections with significantly reduced dissipation and diffusion. IEEE Trans Vis Comput Graph 13(1):135–144
Kim D, Song OY, Ko HS (2008) A semi-lagrangian cip fluid solver without dimensional splitting. Comput Graph Forum 27(2): 467–475
Kipfer P, Westermann R (2006) Realistic and interactive simulation of rivers. In: Graphics interface, pp 41–48
Lenaerts T, Adams B, Dutré P (2008) Porous flow in particle-based fluid simulations. ACM Trans Graph 27(3): 49
Lenaerts T, Dutré P (2008) Unified sph model for fluid-shell simulations. In: ACM SIGGRAPH 2008 posters, p 1
Losasso F, Gibou F, Fedkiw R (2004) Simulating water and smoke with an octree data structure. ACM Trans Graph 23(3):457–462
Losasso F, Shinar T, Selle A, Fedkiw R (2006) Multiple interacting liquids. ACM Trans Graph 25(3):812–819
Monaghan J (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68(8):1703–1759
Müller M, Charypar D, Gross M (2003) Particle-based fluid simulation for interactive applications. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on computer animation, pp 154–159
Müller M, Schirm S, Teschner M, Heidelberger B, Gross M (2004) Interaction of fluids with deformable solids. J Comput Animat Virtual Worlds (CAVW) 15(3–4):159–171
Müller M, Solenthaler B, Keiser R, Gross M (2005) Particle-based fluid-fluid interaction. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on computer animation, pp 237–244
Osher S, Fedkiw R (2002) The level set method and dynamic implicit surfaces. Springer, New York
Owen JM, Villumsen JV, Shapiro PR, Martel H (1998) Adaptive smoothed particle hydrodynamics: methodology. ii. ApJS 166:155–209
Heckbert P (1989) Fundamentals of texture mapping and image warping. UC Berkeley Master’s thesis
Solenthaler B, Pajarola R (2008) Density contrast sph interfaces. In: Proceedings of the 2008 ACM SIGGRAPH/Eurographics symposium on computer animation, pp 211–218
Solenthaler B, Pajarola R (2009) Predictive-corrective incompressible sph. ACM Trans Graph 28(3):1–6
Solenthaler B, Schläfli J, Pajarola R (2007) A unified particle model for fluid–solid interactions. Comput Animat Virtual Worlds 18(1):69–82
Song OY, Kim D, Ko HS (2007) Derivative particles for simulating detailed movements of fluids. IEEE Trans Vis Comput Graph 13(4):711–719
Song OY, Shin H, Ko HS (2005) Stable but non-dissipative water. ACM Trans Graph 24(1):81–97
Stam J (1999) Stable fluids. In: Proceedings of ACM SIGGRAPH 1999. Comput Graph 33:121–128
Stam J, Fiume E (1995) Depicting fire and other gaseous phenomena using diffusion processes. In: Proceedings of ACM SIGGRAPH 1995. Comput Graph 29:129–136
Thürey N, Keiser R, Rüde U, Pauly M (2006) Detail-preserving fluid control. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on computer animation, pp 7–15
Zhu Y, Bridson R (2005) Animating sand as a fluid. ACM Trans Graph 24(3):965–972
Zwicker M, Pfister H, Baar J, Gross M (2002) EWA splatting. IEEE Trans Vis Comput Graph 8(3):223–238
Acknowledgments
This research is supported by Ministry of Culture, Sports and Tourism (MCST) and Korea Creative Content Agency (KOCCA) in the Culture Technology (CT) Research & Developement Program 2011.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
PDF (90 KB)
Below is the link to the electronic supplementary material.
PDF (90 KB)
Below is the link to the electronic supplementary material.
PDF (90 KB)
Rights and permissions
About this article
Cite this article
Jo, E., Kim, D. & Song, Oy. A new SPH fluid simulation method using ellipsoidal kernels. J Vis 14, 371–379 (2011). https://doi.org/10.1007/s12650-011-0092-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12650-011-0092-z