馃摎 This guide explains how to use **Weights & Biases** (W&B) with YOLOv5 馃殌. UPDATED 29 September 2021.
- [About Weights & Biases](#about-weights-&-biases)
- [First-Time Setup](#first-time-setup)
- [Viewing runs](#viewing-runs)
- [Disabling wandb](#disabling-wandb)
- [Advanced Usage: Dataset Versioning and Evaluation](#advanced-usage)
- [Reports: Share your work with the world!](#reports)
## About Weights & Biases
Think of [W&B](https://wandb.ai/site?utm_campaign=repo_yolo_wandbtutorial) like GitHub for machine learning models. With a few lines of code, save everything you need to debug, compare and reproduce your models 鈥� architecture, hyperparameters, git commits, model weights, GPU usage, and even datasets and predictions.
Used by top researchers including teams at OpenAI, Lyft, Github, and MILA, W&B is part of the new standard of best practices for machine learning. How W&B can help you optimize your machine learning workflows:
- [Debug](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Free-2) model performance in real time
- [GPU usage](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#System-4) visualized automatically
- [Custom charts](https://wandb.ai/wandb/customizable-charts/reports/Powerful-Custom-Charts-To-Debug-Model-Peformance--VmlldzoyNzY4ODI) for powerful, extensible visualization
- [Share insights](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Share-8) interactively with collaborators
- [Optimize hyperparameters](https://docs.wandb.com/sweeps) efficiently
- [Track](https://docs.wandb.com/artifacts) datasets, pipelines, and production models
## First-Time Setup
<details open>
<summary> Toggle Details </summary>
When you first train, W&B will prompt you to create a new account and will generate an **API key** for you. If you are an existing user you can retrieve your key from https://wandb.ai/authorize. This key is used to tell W&B where to log your data. You only need to supply your key once, and then it is remembered on the same device.
W&B will create a cloud **project** (default is 'YOLOv5') for your training runs, and each new training run will be provided a unique run **name** within that project as project/name. You can also manually set your project and run name as:
```shell
$ python train.py --project ... --name ...
```
YOLOv5 notebook example: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<img width="960" alt="Screen Shot 2021-09-29 at 10 23 13 PM" src="https://user-images.githubusercontent.com/26833433/135392431-1ab7920a-c49d-450a-b0b0-0c86ec86100e.png">
</details>
## Viewing Runs
<details open>
<summary> Toggle Details </summary>
Run information streams from your environment to the W&B cloud console as you train. This allows you to monitor and even cancel runs in <b>realtime</b> . All important information is logged:
- Training & Validation losses
- Metrics: Precision, Recall, mAP@0.5, mAP@0.5:0.95
- Learning Rate over time
- A bounding box debugging panel, showing the training progress over time
- GPU: Type, **GPU Utilization**, power, temperature, **CUDA memory usage**
- System: Disk I/0, CPU utilization, RAM memory usage
- Your trained model as W&B Artifact
- Environment: OS and Python types, Git repository and state, **training command**
<p align="center"><img width="900" alt="Weights & Biases dashboard" src="https://user-images.githubusercontent.com/26833433/135390767-c28b050f-8455-4004-adb0-3b730386e2b2.png"></p>
</details>
## Disabling wandb
- training after running `wandb disabled` inside that directory creates no wandb run

- To enable wandb again, run `wandb online`

## Advanced Usage
You can leverage W&B artifacts and Tables integration to easily visualize and manage your datasets, models and training evaluations. Here are some quick examples to get you started.
<details open>
<h3> 1: Train and Log Evaluation simultaneousy </h3>
This is an extension of the previous section, but it'll also training after uploading the dataset. <b> This also evaluation Table</b>
Evaluation table compares your predictions and ground truths across the validation set for each epoch. It uses the references to the already uploaded datasets,
so no images will be uploaded from your system more than once.
<details open>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --upload_data val</code>

</details>
<h3>2. Visualize and Version Datasets</h3>
Log, visualize, dynamically query, and understand your data with <a href='http://222.178.203.72:19005/whst/63/=cnbrzvZmcazZh//guides/data-vis/tables'>W&B Tables</a>. You can use the following command to log your dataset as a W&B Table. This will generate a <code>{dataset}_wandb.yaml</code> file which can be used to train from dataset artifact.
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python utils/logger/wandb/log_dataset.py --project ... --name ... --data .. </code>

</details>
<h3> 3: Train using dataset artifact </h3>
When you upload a dataset as described in the first section, you get a new config file with an added `_wandb` to its name. This file contains the information that
can be used to train a model directly from the dataset artifact. <b> This also logs evaluation </b>
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --data {data}_wandb.yaml </code>

</details>
<h3> 4: Save model checkpoints as artifacts </h3>
To enable saving and versioning checkpoints of your experiment, pass `--save_period n` with the base cammand, where `n` represents checkpoint interval.
You can also log both the dataset and model checkpoints simultaneously. If not passed, only the final model will be logged
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --save_period 1 </code>

</details>
</details>
<h3> 5: Resume runs from checkpoint artifacts. </h3>
Any run can be resumed using artifacts if the <code>--resume</code> argument starts with聽<code>wandb-artifact://</code>聽prefix followed by the run path, i.e,聽<code>wandb-artifact://username/project/runid </code>. This doesn't require the model checkpoint to be present on the local system.
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --resume wandb-artifact://{run_path} </code>

</details>
<h3> 6: Resume runs from dataset artifact & checkpoint artifacts. </h3>
<b> Local dataset or model checkpoints are not required. This can be used to resume runs directly on a different device </b>
The syntax is same as the previous section, but you'll need to lof both the dataset and model checkpoints as artifacts, i.e, set bot <code>--upload_dataset</code> or
train fro
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
智慧交通-基于深度学习YOLOv5实现道路车辆行人检测及行驶速度识别系统python源码(含模型+使用说明+报告文档).zip 【资源介绍】 该项目包含完整源码+模型+算法文档+报告文档+使用说明, 使用时,请先看项目使用说明和doc文档资料。 按照要求一步步搭建环境,搭建好后,即可运行程序, 可在runs/detect文件夹下查看识别检测后的视频效果。 支持本地视频、网络摄像头、rtsp、rtmp网络视频流实时检测识别(电脑要有显卡,正确安装cuda和cudnn) 请放心下载使用!可用于毕设和实际项目开发,可部署到服务器。 【备注】主要针对正在做毕设的同学和需要项目实战的深度学习、matlab、cv图像识别模式识别方向学习者。 也可作为课程设计、期末大作业。包含:项目源码和项目操作说明等,该项目可直接作为毕设使用。 也可以用来学习、参考、借鉴。
资源推荐
资源详情
资源评论

























收起资源包目录





































































































共 260 条
- 1
- 2
- 3

onnx
- 粉丝: 1w+
- 资源: 5803
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


最新资源
- 10bit SAR ADC电路:200页设计与仿真文档+gpdk045工艺,附带Testbench,可导入Virtuoso仿真.pdf
- 10G 40G以太网FPGA源码:UDP协议与TCP协议,K7与Z7全测试.pdf
- 10bit高速SAR ADC电路(基于0.18um工艺,可直接仿真性能,ENOB 9.6bit,SFDR 63.7dB,基于Virtuoso的逐次逼近型模数转换器).pdf
- 10kV线路微机继电保护装置源代码及配套PCB图纸与BOM.pdf
- 10kV线路微机继电保护装置源码、配套PCB图纸与BOM表——适用于学习和基础工程开发.pdf
- 10kV线路微机继电保护装置源码+配套PCB图纸及BOM清单:适合学习与基础工程开发的素材.pdf
- 10kV线路微机继电保护装置源码+配套PCB图纸及BOM清单.pdf
- 10kV线路微机继电保护装置源码及配套PCB图纸与BOM单,学习与工程基础版.pdf
- 10kw光伏并网系统:传统电压电流双闭环控制.pdf
- 10kw三相光伏并网系统模型:LCL滤波器与扰动观察法MPPT的仿真研究.pdf
- 10kW虚拟同步发电机VSG预同步并网控制的Matlab仿真:基于预同步启动程序与双闭环控制的离散仿真研究.pdf
- 10kW虚拟同步发电机(VSG)小信号稳定控制的Matlab仿真:985双一流电气工程博士自用,参数可改,包含功率计算+坐标变换+VSG外环+机端电压补偿+电压电流双闭环控制策略.pdf
- 10kW双级式光伏并网逆变器:前级Boost升压与后级DC_AC逆变Matlab仿真.pdf
- 10位100M SAR ADC完整电路:仿真测试代码、建模代码、电路文件及奈奎斯特频有效位数9.8.pdf
- 10种混沌映射改进的灰狼优化算法(带迭代对比曲线与注释版).pdf
- 10车位三层四列立体车库组态王6.53仿真程序新:带西门子200PLC、IO分配表及设计过程说明.pdf
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制

- 1
- 2
- 3
前往页