# realsense-D455-YOLOV5
## 1.利用realsense深度相机实现yolov5目标检测的同时测出距离
## 2.你可以将其他版本的yolo v5 的版本应用到这个上面,因为我只更改了detect.py为realsensedetect.py
## 3.运行的代码为:python realsensedetect.py
![image](https://github.com/wenyishengkingkong/realsense-D455-YOLOV5/blob/master/0210901110009.jpg)
<a href="https://apps.apple.com/app/id1452689527" target="_blank">
<img src="https://user-images.githubusercontent.com/26833433/82944393-f7644d80-9f4f-11ea-8b87-1a5b04f555f1.jpg" width="1000"></a>
 
![CI CPU testing](https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg)
This repository represents Ultralytics open-source research into future object detection methods, and incorporates our lessons learned and best practices evolved over training thousands of models on custom client datasets with our previous YOLO repository https://github.com/ultralytics/yolov3. **All code and models are under active development, and are subject to modification or deletion without notice.** Use at your own risk.
<img src="https://user-images.githubusercontent.com/26833433/90187293-6773ba00-dd6e-11ea-8f90-cd94afc0427f.png" width="1000">** GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 32, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS. EfficientDet data from [google/automl](https://github.com/google/automl) at batch size 8.
- **August 13, 2020**: [v3.0 release](https://github.com/ultralytics/yolov5/releases/tag/v3.0): nn.Hardswish() activations, data autodownload, native AMP.
- **July 23, 2020**: [v2.0 release](https://github.com/ultralytics/yolov5/releases/tag/v2.0): improved model definition, training and mAP.
- **June 22, 2020**: [PANet](https://arxiv.org/abs/1803.01534) updates: new heads, reduced parameters, improved speed and mAP [364fcfd](https://github.com/ultralytics/yolov5/commit/364fcfd7dba53f46edd4f04c037a039c0a287972).
- **June 19, 2020**: [FP16](https://pytorch.org/docs/stable/nn.html#torch.nn.Module.half) as new default for smaller checkpoints and faster inference [d4c6674](https://github.com/ultralytics/yolov5/commit/d4c6674c98e19df4c40e33a777610a18d1961145).
- **June 9, 2020**: [CSP](https://github.com/WongKinYiu/CrossStagePartialNetworks) updates: improved speed, size, and accuracy (credit to @WongKinYiu for CSP).
- **May 27, 2020**: Public release. YOLOv5 models are SOTA among all known YOLO implementations.
- **April 1, 2020**: Start development of future compound-scaled [YOLOv3](https://github.com/ultralytics/yolov3)/[YOLOv4](https://github.com/AlexeyAB/darknet)-based PyTorch models.
## Pretrained Checkpoints
| Model | AP<sup>val</sup> | AP<sup>test</sup> | AP<sub>50</sub> | Speed<sub>GPU</sub> | FPS<sub>GPU</sub> || params | FLOPS |
|---------- |------ |------ |------ | -------- | ------| ------ |------ | :------: |
| [YOLOv5s](https://github.com/ultralytics/yolov5/releases/tag/v3.0) | 37.0 | 37.0 | 56.2 | **2.4ms** | **416** || 7.5M | 13.2B
| [YOLOv5m](https://github.com/ultralytics/yolov5/releases/tag/v3.0) | 44.3 | 44.3 | 63.2 | 3.4ms | 294 || 21.8M | 39.4B
| [YOLOv5l](https://github.com/ultralytics/yolov5/releases/tag/v3.0) | 47.7 | 47.7 | 66.5 | 4.4ms | 227 || 47.8M | 88.1B
| [YOLOv5x](https://github.com/ultralytics/yolov5/releases/tag/v3.0) | **49.2** | **49.2** | **67.7** | 6.9ms | 145 || 89.0M | 166.4B
| | | | | | || |
| [YOLOv5x](https://github.com/ultralytics/yolov5/releases/tag/v3.0) + TTA|**50.8**| **50.8** | **68.9** | 25.5ms | 39 || 89.0M | 354.3B
| | | | | | || |
| [YOLOv3-SPP](https://github.com/ultralytics/yolov5/releases/tag/v3.0) | 45.6 | 45.5 | 65.2 | 4.5ms | 222 || 63.0M | 118.0B
** AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results in the table denote val2017 accuracy.
** All AP numbers are for single-model single-scale without ensemble or test-time augmentation. **Reproduce** by `python test.py --data coco.yaml --img 640 --conf 0.001`
** Speed<sub>GPU</sub> measures end-to-end time per image averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) instance with one V100 GPU, and includes image preprocessing, PyTorch FP16 image inference at --batch-size 32 --img-size 640, postprocessing and NMS. Average NMS time included in this chart is 1-2ms/img. **Reproduce** by `python test.py --data coco.yaml --img 640 --conf 0.1`
** All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
** Test Time Augmentation ([TTA](https://github.com/ultralytics/yolov5/issues/303)) runs at 3 image sizes. **Reproduce** by `python test.py --data coco.yaml --img 832 --augment`
## Requirements
Python 3.8 or later with all [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) dependencies installed, including `torch>=1.6`. To install run:
```bash
$ pip install -r requirements.txt
```
## Tutorials
* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data)
* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36)
* [ONNX and TorchScript Export](https://github.com/ultralytics/yolov5/issues/251)
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
* [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)
## Environments
YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
- **Google Colab Notebook** with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
- **Kaggle Notebook** with free GPU: [https://www.kaggle.com/ultralytics/yolov5](https://www.kaggle.com/ultralytics/yolov5)
- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart)
- **Docker Image** https://hub.docker.com/r/ultralytics/yolov5. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov5/wiki/Docker-Quickstart) ![Docker Pulls](https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker)
## Inference
detect.py runs inference on a variety of sources, downloading models automatically from the [latest YOLOv5 release](https://github.com/ultralytics/yolov5/releases) and saving results to `inference/output`.
```bash
$ python detect.py --source 0 # webcam
file.jpg # image
file.mp4 # video
path/ # directory
path/*.jpg # glob
rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa # rtsp stream
rtmp://192.168.1.105/live/test # rtmp stream
http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8 # http stream
```
To run inference on example images in `inference/images`:
```bash
$ python detect.py --source inference/images --weights yolov5s.pt --conf 0.25
Namespace(agnostic_nms=False, augment=False, classes=None, conf_thre
赵闪闪168.
- 粉丝: 6059
- 资源: 9291
最新资源
- ssm基于Vue框架的订餐系统+vue.zip
- ssm基于Vue.js的在线购物系统的设计与实现+vue.zip
- ssm基于Tomcat技术的车库智能管理平台+jsp.zip
- ssm基于SSM框架云趣科技客户管理系统+jsp.zip
- ssm基于SSM框架的微博系统+vue.zip
- ssm基于SSM框架的校园代购服务订单管理系统的设计与实现+vue.zip
- ssm基于SSM框架的网上拍卖系统的设计与实现+vue.zip
- ssm基于SSM框架的企业博客网站的设计与实现+vue.zip
- 昆仑通态MCGS与力士乐VFC-x610变频器通讯 实现昆仑通态触摸屏与力士乐VFC-x610变频器通讯,程序稳定可靠 器件:昆仑通态TPC7062KD触摸屏,力士乐VFC-x610变频器,附送接线说
- MATLAB simulink MIL SIL单元测试,模型在环测试,软件在环测试,测试步骤文档,包含期望输出和实际输出的比较,输出测试报告pass或fail状态
- 台达DVP PLC与力士乐VFC-x610变频器通讯程序程序带注释,并附送昆仑通态程序,有接线方式,设置 器件:台达DVP ES系列的PLC,力士乐VFC-x610系列变频器,昆仑通态 功能:实现频
- 知识付费管理系统源码,移动端uniApp开发,app h5 小程序一套代码多端运行,后端php(tp6)+layui+MySQL,功能齐全,直播,点播,管理,礼物等等功能应有尽有
- Step7-Mricro win S7-200 485轮询 西门子485 modbus RTU 200 ModbusRTU通信S7-200与最大32个从站RS 485主站程序,程序块自动轮询,无需编写
- 2024年度项目总结1.0
- Java 正则表达式的应用及其实现 - 基于Pattern与Matcher类的邮件和电话匹配
- fpga数据手册杂七杂八1.0
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈