# Video Classification Using 3D ResNet
This is a pytorch code for video (action) classification using 3D ResNet trained by [this code](https://github.com/kenshohara/3D-ResNets-PyTorch).
The 3D ResNet is trained on the Kinetics dataset, which includes 400 action classes.
This code uses videos as inputs and outputs class names and predicted class scores for each 16 frames in the score mode.
In the feature mode, this code outputs features of 512 dims (after global average pooling) for each 16 frames.
**Torch (Lua) version of this code is available [here](https://github.com/kenshohara/video-classification-3d-cnn).**
## Requirements
* [PyTorch](http://pytorch.org/)
```
conda install pytorch torchvision cuda80 -c soumith
```
* FFmpeg, FFprobe
```
wget http://johnvansickle.com/ffmpeg/releases/ffmpeg-release-64bit-static.tar.xz
tar xvf ffmpeg-release-64bit-static.tar.xz
cd ./ffmpeg-3.3.3-64bit-static/; sudo cp ffmpeg ffprobe /usr/local/bin;
```
* Python 3
## Preparation
* Download this code.
* Download the [pretrained model](https://drive.google.com/drive/folders/1zvl89AgFAApbH0At-gMuZSeQB_LpNP-M?usp=sharing).
* ResNeXt-101 achieved the best performance in our experiments. (See [paper](https://arxiv.org/abs/1711.09577) in details.)
## Usage
Assume input video files are located in ```./videos```.
To calculate class scores for each 16 frames, use ```--mode score```.
```
python main.py --input ./input --video_root ./videos --output ./output.json --model ./resnet-34-kinetics.pth --mode score
```
To visualize the classification results, use ```generate_result_video/generate_result_video.py```.
To calculate video features for each 16 frames, use ```--mode feature```.
```
python main.py --input ./input --video_root ./videos --output ./output.json --model ./resnet-34-kinetics.pth --mode feature
```
## Citation
If you use this code, please cite the following:
```
@article{hara3dcnns,
author={Kensho Hara and Hirokatsu Kataoka and Yutaka Satoh},
title={Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet?},
journal={arXiv preprint},
volume={arXiv:1711.09577},
year={2017},
}
```
没有合适的资源?快使用搜索试试~ 我知道了~
资源详情
资源评论
资源推荐
收起资源包目录




























共 24 条
- 1

























YS_Lu
- 粉丝: 0
- 资源: 1
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


最新资源
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制

评论0