馃摎 This guide explains how to use **Weights & Biases** (W&B) with YOLOv5 馃殌. UPDATED 29 September 2021.
* [About Weights & Biases](#about-weights-&-biases)
* [First-Time Setup](#first-time-setup)
* [Viewing runs](#viewing-runs)
* [Disabling wandb](#disabling-wandb)
* [Advanced Usage: Dataset Versioning and Evaluation](#advanced-usage)
* [Reports: Share your work with the world!](#reports)
## About Weights & Biases
Think of [W&B](https://wandb.ai/site?utm_campaign=repo_yolo_wandbtutorial) like GitHub for machine learning models. With a few lines of code, save everything you need to debug, compare and reproduce your models 鈥� architecture, hyperparameters, git commits, model weights, GPU usage, and even datasets and predictions.
Used by top researchers including teams at OpenAI, Lyft, Github, and MILA, W&B is part of the new standard of best practices for machine learning. How W&B can help you optimize your machine learning workflows:
* [Debug](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Free-2) model performance in real time
* [GPU usage](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#System-4) visualized automatically
* [Custom charts](https://wandb.ai/wandb/customizable-charts/reports/Powerful-Custom-Charts-To-Debug-Model-Peformance--VmlldzoyNzY4ODI) for powerful, extensible visualization
* [Share insights](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Share-8) interactively with collaborators
* [Optimize hyperparameters](https://docs.wandb.com/sweeps) efficiently
* [Track](https://docs.wandb.com/artifacts) datasets, pipelines, and production models
## First-Time Setup
<details open>
<summary> Toggle Details </summary>
When you first train, W&B will prompt you to create a new account and will generate an **API key** for you. If you are an existing user you can retrieve your key from https://wandb.ai/authorize. This key is used to tell W&B where to log your data. You only need to supply your key once, and then it is remembered on the same device.
W&B will create a cloud **project** (default is 'YOLOv5') for your training runs, and each new training run will be provided a unique run **name** within that project as project/name. You can also manually set your project and run name as:
```shell
$ python train.py --project ... --name ...
```
YOLOv5 notebook example: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<img width="960" alt="Screen Shot 2021-09-29 at 10 23 13 PM" src="https://user-images.githubusercontent.com/26833433/135392431-1ab7920a-c49d-450a-b0b0-0c86ec86100e.png">
</details>
## Viewing Runs
<details open>
<summary> Toggle Details </summary>
Run information streams from your environment to the W&B cloud console as you train. This allows you to monitor and even cancel runs in <b>realtime</b> . All important information is logged:
* Training & Validation losses
* Metrics: Precision, Recall, mAP@0.5, mAP@0.5:0.95
* Learning Rate over time
* A bounding box debugging panel, showing the training progress over time
* GPU: Type, **GPU Utilization**, power, temperature, **CUDA memory usage**
* System: Disk I/0, CPU utilization, RAM memory usage
* Your trained model as W&B Artifact
* Environment: OS and Python types, Git repository and state, **training command**
<p align="center"><img width="900" alt="Weights & Biases dashboard" src="https://user-images.githubusercontent.com/26833433/135390767-c28b050f-8455-4004-adb0-3b730386e2b2.png"></p>
</details>
## Disabling wandb
* training after running `wandb disabled` inside that directory creates no wandb run
![Screenshot (84)](https://user-images.githubusercontent.com/15766192/143441777-c780bdd7-7cb4-4404-9559-b4316030a985.png)
* To enable wandb again, run `wandb online`
![Screenshot (85)](https://user-images.githubusercontent.com/15766192/143441866-7191b2cb-22f0-4e0f-ae64-2dc47dc13078.png)
## Advanced Usage
You can leverage W&B artifacts and Tables integration to easily visualize and manage your datasets, models and training evaluations. Here are some quick examples to get you started.
<details open>
<h3> 1: Train and Log Evaluation simultaneousy </h3>
This is an extension of the previous section, but it'll also training after uploading the dataset. <b> This also evaluation Table</b>
Evaluation table compares your predictions and ground truths across the validation set for each epoch. It uses the references to the already uploaded datasets,
so no images will be uploaded from your system more than once.
<details open>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --upload_data val</code>
![Screenshot from 2021-11-21 17-40-06](https://user-images.githubusercontent.com/15766192/142761183-c1696d8c-3f38-45ab-991a-bb0dfd98ae7d.png)
</details>
<h3>2. Visualize and Version Datasets</h3>
Log, visualize, dynamically query, and understand your data with <a href='http://222.178.203.72:19005/whst/63/=cnbrzvZmcazZh//guides/data-vis/tables'>W&B Tables</a>. You can use the following command to log your dataset as a W&B Table. This will generate a <code>{dataset}_wandb.yaml</code> file which can be used to train from dataset artifact.
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python utils/logger/wandb/log_dataset.py --project ... --name ... --data .. </code>
![Screenshot (64)](https://user-images.githubusercontent.com/15766192/128486078-d8433890-98a3-4d12-8986-b6c0e3fc64b9.png)
</details>
<h3> 3: Train using dataset artifact </h3>
When you upload a dataset as described in the first section, you get a new config file with an added `_wandb` to its name. This file contains the information that
can be used to train a model directly from the dataset artifact. <b> This also logs evaluation </b>
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --data {data}_wandb.yaml </code>
![Screenshot (72)](https://user-images.githubusercontent.com/15766192/128979739-4cf63aeb-a76f-483f-8861-1c0100b938a5.png)
</details>
<h3> 4: Save model checkpoints as artifacts </h3>
To enable saving and versioning checkpoints of your experiment, pass `--save_period n` with the base cammand, where `n` represents checkpoint interval.
You can also log both the dataset and model checkpoints simultaneously. If not passed, only the final model will be logged
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --save_period 1 </code>
![Screenshot (68)](https://user-images.githubusercontent.com/15766192/128726138-ec6c1f60-639d-437d-b4ee-3acd9de47ef3.png)
</details>
</details>
<h3> 5: Resume runs from checkpoint artifacts. </h3>
Any run can be resumed using artifacts if the <code>--resume</code> argument starts with聽<code>wandb-artifact://</code>聽prefix followed by the run path, i.e,聽<code>wandb-artifact://username/project/runid </code>. This doesn't require the model checkpoint to be present on the local system.
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --resume wandb-artifact://{run_path} </code>
![Screenshot (70)](https://user-images.githubusercontent.com/15766192/128728988-4e84b355-6c87-41ae-a591-14aecf45343e.png)
</details>
<h3> 6: Resume runs from dataset artifact & checkpoint artifacts. </h3>
<b> Local dataset or model checkpoints are not required. This can be used to resume runs directly on a different device </b>
The syntax is same as the previous section, but you'll need to lof both the dataset and model checkpoints as artifacts, i.e, set bot <code>--upload_dataset<
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
【资源说明】 1、该资源包括项目的全部源码,下载可以直接使用! 2、本项目适合作为计算机、数学、电子信息等专业的课程设计、期末大作业和毕设项目,作为参考资料学习借鉴。 3、本资源作为“参考资料”如果需要实现其他功能,需要能看懂代码,并且热爱钻研,自行调试。 基于yolov5的旋转目标检测算法(python源码+项目说明).zip
资源推荐
资源详情
资源评论
收起资源包目录
基于yolov5的旋转目标检测算法(python源码+项目说明).zip (146个子文件)
setup.cfg 923B
poly_nms.cpp 344KB
poly_overlaps.cpp 328KB
polyiou.cpp 4KB
nms_rotated_cpu.cpp 2KB
nms_rotated_ext.cpp 2KB
poly_nms_cpu.cpp 140B
poly_overlaps_kernel.cu 13KB
poly_nms_kernel.cu 11KB
poly_nms_cuda.cu 8KB
nms_rotated_cuda.cu 5KB
polyiou_wrap.cxx 264KB
Dockerfile 2KB
Dockerfile 821B
box_iou_rotated_utils.h 10KB
polyiou.h 202B
poly_nms.hpp 298B
poly_overlaps.hpp 106B
polyiou.i 258B
tutorial.ipynb 56KB
train_batch6.jpg 88KB
Makefile 56B
YOLOv5_README.md 14KB
README.md 11KB
GetStart.md 7KB
CONTRIBUTING.md 5KB
README.md 5KB
README.md 2KB
install.md 2KB
ChangeLog.md 1KB
P0032.png 5.3MB
detection.png 296KB
results.png 111KB
datasets.py 48KB
general.py 40KB
train.py 33KB
common.py 30KB
wandb_utils.py 26KB
plots.py 24KB
export.py 21KB
tf.py 20KB
val.py 20KB
yolo.py 16KB
metrics.py 14KB
dota_evaluation_task1.py 13KB
torch_utils.py 13KB
loss.py 13KB
detect.py 13KB
augmentations.py 12KB
ImgSplit_multi_process.py 12KB
hrsc2016_evaluation.py 11KB
ucasaod_evaluation.py 11KB
dota_utils.py 10KB
ImgSplit.py 10KB
ResultEnsembleNMS_multi_process.py 10KB
dota_evaluation_task2.py 10KB
ResultMerge_multi_process.py 10KB
autoanchor.py 9KB
mAOE_evaluation.py 8KB
__init__.py 8KB
dota_poly2rbox.py 8KB
polyiou.py 8KB
rboxs_utils.py 7KB
hubconf.py 6KB
downloads.py 6KB
setup.py 6KB
ResultMerge.py 6KB
DOTA2COCO.py 6KB
experimental.py 4KB
DOTA.py 4KB
SplitOnlyImage_multi_process.py 4KB
activations.py 4KB
DOTA2JSON.py 4KB
prepare_dota1_ms.py 3KB
nms_rotated_wrapper.py 3KB
Xml2Txt.py 3KB
results_ensemble.py 2KB
callbacks.py 2KB
SplitOnlyImage.py 2KB
TestJson2VocClassTxt.py 2KB
results_obb2hbb.py 2KB
autobatch.py 2KB
setup.py 2KB
resume.py 1KB
sweep.py 1KB
__init__.py 1KB
restapi.py 1KB
log_dataset.py 1KB
prepare_hrsc2016.py 714B
nms_wrapper.py 560B
setup.py 445B
example_request.py 299B
__init__.py 86B
__init__.py 82B
__init__.py 0B
__init__.py 0B
__init__.py 0B
poly_nms_test.py 0B
__init__.py 0B
wandb_utils.cpython-39.pyc 19KB
共 146 条
- 1
- 2
资源评论
土豆片片
- 粉丝: 1859
- 资源: 5869
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 2025阿里云客服专项客服条件检测认证考试试题及答案.docx
- 2025阿里云与淘宝云客服认证考试劳务报酬及税收知识考试题及答案.docx
- 2025保密知识竞赛题库及答案.docx
- 2025安全生产月知识试题题库(附答案).docx
- 2025安全生产法知识考试题及答案.docx
- 2025病案编码员资格证试题库(附含答案).docx
- 2025财政知识竞赛题库及答案(通用版).docx
- 2025产科和成人门诊免疫规划年度培训试题及答案.docx
- 2025初级保安员考试题库与答案.docx
- 2025初级保育员理论知识考试题库(含答案).docx
- ISP 算法源码:Bayer、坏像素矫正、颜色插值、噪声去除、边缘增强、白平衡、 色彩矫正、gamma 校正、色彩空间转等
- STM32 bootloader使用can进行通讯,将hex文件数据通过can下载flash里面,附源代码以及通讯协议(STM32cubeIDE工程) 也是适合初学者参考can通讯
- 1 公司薪酬数据分析表.xlsx
- 2 公司年度薪酬分析图表.xlsx
- 3 各部门薪酬成本变动分析(以月度同比分析为例).xlsx
- 6 员工薪酬分析表带统计图表带蓝绿两种风格.xlsx
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功