# YOLOv5
TensorRTx inference code base for [ultralytics/yolov5](https://github.com/ultralytics/yolov5).
## Contributors
<a href="https://github.com/wang-xinyu"><img src="https://avatars.githubusercontent.com/u/15235574?s=48&v=4" width="40px;" alt=""/></a>
<a href="https://github.com/BaofengZan"><img src="https://avatars.githubusercontent.com/u/20653176?s=48&v=4" width="40px;" alt=""/></a>
<a href="https://github.com/upczww"><img src="https://avatars.githubusercontent.com/u/16224249?s=48&v=4" width="40px;" alt=""/></a>
<a href="https://github.com/cesarandreslopez"><img src="https://avatars.githubusercontent.com/u/14029177?s=48&v=4" width="40px;" alt=""/></a>
<a href="https://github.com/makaveli10"><img src="https://avatars.githubusercontent.com/u/39617050?s=48&v=4" width="40px;" alt=""/></a>
<a href="https://github.com/priteshgohil"><img src="https://avatars.githubusercontent.com/u/43172056?s=48&v=4" width="40px;" alt=""/></a>
<a href="https://github.com/rymzt"><img src="https://avatars.githubusercontent.com/u/3270954?s=48&v=4" width="40px;" alt=""/></a>
<a href="https://github.com/AsakusaRinne"><img src="https://avatars.githubusercontent.com/u/47343601?s=48&v=4" width="40px;" alt=""/></a>
<a href="https://github.com/freedenS"><img src="https://avatars.githubusercontent.com/u/26213470?s=48&v=4" width="40px;" alt=""/></a>
<a href="https://github.com/smarttowel"><img src="https://avatars.githubusercontent.com/u/1128528?s=48&v=4" width="40px;" alt=""/></a>
<a href="https://github.com/wwqgtxx"><img src="https://avatars.githubusercontent.com/u/582584?s=48&v=4" width="40px;" alt=""/></a>
<a href="https://github.com/adujardin"><img src="https://avatars.githubusercontent.com/u/12609780?s=48&v=4" width="40px;" alt=""/></a>
<a href="https://github.com/jow905"><img src="https://avatars.githubusercontent.com/u/19189198?s=48&v=4" width="40px;" alt=""/></a>
<a href="https://github.com/CristiFati"><img src="https://avatars.githubusercontent.com/u/29705787?s=48&v=4" width="40px;" alt=""/></a>
<a href="https://github.com/HaiyangPeng"><img src="https://avatars.githubusercontent.com/u/46739135?s=48&v=4" width="40px;" alt=""/></a>
<a href="https://github.com/Armassarion"><img src="https://avatars.githubusercontent.com/u/33727511?s=48&v=4" width="40px;" alt=""/></a>
<a href="https://github.com/xupengao"><img src="https://avatars.githubusercontent.com/u/51817015?s=48&v=4" width="40px;" alt=""/></a>
<a href="https://github.com/liuqi123123"><img src="https://avatars.githubusercontent.com/u/46275888?s=48&v=4" width="40px;" alt=""/></a>
<a href="https://github.com/ASONG0506"><img src="https://avatars.githubusercontent.com/u/26050577?s=48&v=4" width="40px;" alt=""/></a>
<a href="https://github.com/bobo0810"><img src="https://avatars.githubusercontent.com/u/26057879?s=48&v=4" width="40px;" alt=""/></a>
<a href="https://github.com/Silmeria112"><img src="https://avatars.githubusercontent.com/u/16464837?s=48&v=4" width="40px;" alt=""/></a>
<a href="https://github.com/LW-SCU"><img src="https://avatars.githubusercontent.com/u/28128257?s=48&v=4" width="40px;" alt=""/></a>
<a href="https://github.com/AdanWang"><img src="https://avatars.githubusercontent.com/u/32757980?s=48&v=4" width="40px;" alt=""/></a>
<a href="https://github.com/triple-Mu"><img src="https://avatars.githubusercontent.com/u/92794867?s=48&v=4" width="40px;" alt=""/></a>
<a href="https://github.com/xiang-wuu"><img src="https://avatars.githubusercontent.com/u/107029401?s=48&v=4" width="40px;" alt=""/></a>
<a href="https://github.com/uyolo1314"><img src="https://avatars.githubusercontent.com/u/101853326?s=48&v=4" width="40px;" alt=""/></a>
<a href="https://github.com/Rex-LK"><img src="https://avatars.githubusercontent.com/u/74702576?s=48&v=4" width="40px;" alt=""/></a>
<a href="https://github.com/PrinceP"><img src="https://avatars.githubusercontent.com/u/10251537?s=48&v=4" width="40px;" alt=""/></a>
## Different versions of yolov5
Currently, we support yolov5 v1.0, v2.0, v3.0, v3.1, v4.0, v5.0, v6.0, v6.2, v7.0
- For yolov5 v7.0, download .pt from [yolov5 release v7.0](https://github.com/ultralytics/yolov5/releases/tag/v7.0), `git clone -b v7.0 https://github.com/ultralytics/yolov5.git` and `git clone -b yolov5-v7.0 https://github.com/wang-xinyu/tensorrtx.git`, then follow how-to-run in [tensorrtx/yolov5-v7.0](https://github.com/wang-xinyu/tensorrtx/tree/yolov5-v7.0/yolov5)
- For yolov5 v6.2, download .pt from [yolov5 release v6.2](https://github.com/ultralytics/yolov5/releases/tag/v6.2), `git clone -b v6.2 https://github.com/ultralytics/yolov5.git` and `git clone -b yolov5-v6.2 https://github.com/wang-xinyu/tensorrtx.git`, then follow how-to-run in [tensorrtx/yolov5-v6.2](https://github.com/wang-xinyu/tensorrtx/tree/yolov5-v6.2/yolov5)
- For yolov5 v6.0, download .pt from [yolov5 release v6.0](https://github.com/ultralytics/yolov5/releases/tag/v6.0), `git clone -b v6.0 https://github.com/ultralytics/yolov5.git` and `git clone -b yolov5-v6.0 https://github.com/wang-xinyu/tensorrtx.git`, then follow how-to-run in [tensorrtx/yolov5-v6.0](https://github.com/wang-xinyu/tensorrtx/tree/yolov5-v6.0/yolov5).
- For yolov5 v5.0, download .pt from [yolov5 release v5.0](https://github.com/ultralytics/yolov5/releases/tag/v5.0), `git clone -b v5.0 https://github.com/ultralytics/yolov5.git` and `git clone -b yolov5-v5.0 https://github.com/wang-xinyu/tensorrtx.git`, then follow how-to-run in [tensorrtx/yolov5-v5.0](https://github.com/wang-xinyu/tensorrtx/tree/yolov5-v5.0/yolov5).
- For yolov5 v4.0, download .pt from [yolov5 release v4.0](https://github.com/ultralytics/yolov5/releases/tag/v4.0), `git clone -b v4.0 https://github.com/ultralytics/yolov5.git` and `git clone -b yolov5-v4.0 https://github.com/wang-xinyu/tensorrtx.git`, then follow how-to-run in [tensorrtx/yolov5-v4.0](https://github.com/wang-xinyu/tensorrtx/tree/yolov5-v4.0/yolov5).
- For yolov5 v3.1, download .pt from [yolov5 release v3.1](https://github.com/ultralytics/yolov5/releases/tag/v3.1), `git clone -b v3.1 https://github.com/ultralytics/yolov5.git` and `git clone -b yolov5-v3.1 https://github.com/wang-xinyu/tensorrtx.git`, then follow how-to-run in [tensorrtx/yolov5-v3.1](https://github.com/wang-xinyu/tensorrtx/tree/yolov5-v3.1/yolov5).
- For yolov5 v3.0, download .pt from [yolov5 release v3.0](https://github.com/ultralytics/yolov5/releases/tag/v3.0), `git clone -b v3.0 https://github.com/ultralytics/yolov5.git` and `git clone -b yolov5-v3.0 https://github.com/wang-xinyu/tensorrtx.git`, then follow how-to-run in [tensorrtx/yolov5-v3.0](https://github.com/wang-xinyu/tensorrtx/tree/yolov5-v3.0/yolov5).
- For yolov5 v2.0, download .pt from [yolov5 release v2.0](https://github.com/ultralytics/yolov5/releases/tag/v2.0), `git clone -b v2.0 https://github.com/ultralytics/yolov5.git` and `git clone -b yolov5-v2.0 https://github.com/wang-xinyu/tensorrtx.git`, then follow how-to-run in [tensorrtx/yolov5-v2.0](https://github.com/wang-xinyu/tensorrtx/tree/yolov5-v2.0/yolov5).
- For yolov5 v1.0, download .pt from [yolov5 release v1.0](https://github.com/ultralytics/yolov5/releases/tag/v1.0), `git clone -b v1.0 https://github.com/ultralytics/yolov5.git` and `git clone -b yolov5-v1.0 https://github.com/wang-xinyu/tensorrtx.git`, then follow how-to-run in [tensorrtx/yolov5-v1.0](https://github.com/wang-xinyu/tensorrtx/tree/yolov5-v1.0/yolov5).
## Config
- Choose the YOLOv5 sub-model n/s/m/l/x/n6/s6/m6/l6/x6 from command line arguments.
- Other configs please check [src/config.h](src/config.h)
## Build and Run
### Detection
1. generate .wts from pytorch with .pt, or download .wts from model zoo
```
git clone -b v7.0 https://github.com/ultralytics/yolov5.git
git clone -b yolov5-v7.0 https://github.com/wang-xinyu/tensorrtx.git
cd yolov5/
wget https://github.com/ultralytics/yolov5/releases/download/v7.0/yolov5s.pt
cp [PATH-TO-TENSORRTX]/yolov5/gen_wts.py .
python gen_wts.py -w yolov5s.pt -o yolov5s.wts
# A file 'yolov5s.wts' will be generated.
```
2. build tensorrtx/yolov5

J..
- 粉丝: 283
- 资源: 46
最新资源
- COMSOL数值模拟:金属合金凝固、连铸过程及多场耦合下的坯壳厚度计算.pdf
- COMSOL数字岩心:流固耦合模型与comsol与avizo联合仿真.pdf
- COMSOL损伤模型在模拟井筒周围应力分布中的应用.pdf
- COMSOL数值模拟咨询:涉及变压器磁通密度、力磁耦合位移、微波加热电场分布、瓦斯抽采孔隙率与甲烷含量、IGBT温度及应力的之前案例模型.pdf
- COMSOL损伤三维模型:自定义变量与多Study计算演化.pdf
- COMSOL损伤三维模型.pdf
- COMSOL拓扑光子晶体的单向传输特性.pdf
- COMSOL拓扑优化:流动传热、流固耦合与算法应用.pdf
- COMSOL拓扑优化:流动传热、流固耦合与标准方程模型下的材料插值及归一化研究.pdf
- COMSOL拓扑优化:流动传热、流固耦合与标准方程模型下的材料插值与归一化.pdf
- COMSOL弯曲波导计算仿真的范围.pdf
- COMSOL拓扑优化:普通插值与双目标函数在k、CP、ro插值中的运用 - 50x50x5mm结构尺寸,热源600W优化后达到351K(75℃)温升设计要求.pdf
- COMSOL拓扑优化:流动传热与压力双目标优化模型.pdf
- Comsol弯曲光纤与弯曲波导模式分析及其损耗计算.pdf
- COMSOL弯月型BIC线偏振斜入射设置.pdf
- Comsol弯曲波导模式分析:有效折射率与损耗计算.pdf
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



- 1
- 2
前往页