没有合适的资源?快使用搜索试试~ 我知道了~
蛋白质功能预测中的深度学习方法:结合序列与互作网络的深层分类模型(DeepGO)
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 21 浏览量
2025-01-15
18:31:12
上传
评论
收藏 480KB PDF 举报
温馨提示
内容概要:本文介绍了一种新型蛋白质功能预测方法——DeepGO。它利用深度学习从蛋白质序列和跨物种蛋白-蛋白交互网络中提取特征,并采用神经符号分类模型来构建分类器。此模型能够考虑到Gene Ontology(GO)内部类别之间的关联,优化多层次的多类、多标签预测任务,特别是在细胞定位方面超越了传统BLAST基线方法。 适合人群:生物信息学研究人员、计算生物学工作者及有志于蛋白质组学深入研究的学习者. 使用场景及目标:旨在解决实验手段难以跟上快速积累的蛋白质序列数据的问题,为新发现的蛋白质提供高效的自动化注释工具。特别适用于那些需要高精度多标签分类支持的大规模基因组工程,如全蛋白质组的功能注释项目。此外,在缺少足够高质量的三维结构时,可以作为功能推断的有效补充方法。 其他说明:该论文还提供了详细的实验评估,展示了相对于基准方法如BLAST的优势以及与其他顶尖预测系统的对比结果。并讨论了将这一框架应用于疾病相关基因关联和其他生物学现象分类的可能性。
资源推荐
资源详情
资源评论
Databases and ontologies
DeepGO: predicting protein functions from
sequence and interactions using a deep
ontology-aware classifier
Maxat Kulmanov, Mohammed Asif Khan and Robert Hoehndorf*
Computer, Electrical and Mathematical Sciences & Engineering Division, Computational Bioscience Research
Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
*To whom correspondence should be addressed.
Associate Editor: Jonathan Wren
Received on May 10, 2017; revised on September 23, 2017; editorial decision on September 25, 2017; accepted on September 27, 2017
Abstract
Motivation: A large number of protein sequences are becoming available through the application
of novel high-throughput sequencing technologies. Experimental functional characterization of
these proteins is time-consuming and expensive, and is often only done rigorously for few selected
model organisms. Computational function prediction approaches have been suggested to fill this
gap. The functions of proteins are classified using the Gene Ontology (GO), which contains over
40 000 classes. Additionally, proteins have multiple functions, making function prediction a large-
scale, multi-class, multi-label problem.
Results: We have developed a novel method to predict protein function from sequence. We use
deep learning to learn features from protein sequences as well as a cross-species protein–protein
interaction network. Our approach specifically outputs information in the structure of the GO and
utilizes the dependencies between GO classes as background information to construct a deep
learning model. We evaluate our method using the standards established by the Computational
Assessment of Function Annotation (CAFA) and demonstrate a significant improvement over base-
line methods such as BLAST, in particular for predicting cellular locations.
Availability and implementation: Web server: http://deepgo.bio2vec.net, Source code: https://
github.com/bio-ontology-research-group/deepgo
Contact: robert.hoehndorf@kaust.edu.sa
Supplementary information: Supplementary data are available at Bioinformatics online.
1 Introduction
Advances in sequencing technology have led to a large and rapidly
increasing amount of genetic and protein sequences, and the amount
is expected to increase further through sequencing of additional
organisms as well as metagenomics. Although knowledge of protein
sequences is useful for many applications, such as phylogenetics and
evolutionary biology, understanding the behavior of biological sys-
tems additionally requires knowledge of the proteins’ functions.
Identifying protein functions is challenging and commonly requires
in vitro or in vivo experiments (Costanzo et al., 2016), and it is
obvious that experimental functional annotation of proteins will not
scale with the amount of novel protein sequences becoming
available.
One approach to address the challenge of identifying proteins’
functions is the computational prediction of protein functions
(Radivojac et al., 2013). Function prediction can use several sources
of information, including protein–protein interactions (Hou, 2017;
Jiang and McQuay, 2012; Kirac and Ozsoyoglu, 2008; Nguyen
et al., 2011; Sharan et al., 2007), genetic interactions (Costanzo
et al., 2016), evolutionary relations (Gaudet et al., 2011), protein
structures and structure prediction methods (Konc et al., 2013), lit-
erature (Verspoor, 2014) or combinations of these (Sokolov and
V
C
The Author 2017. Published by Oxford University Press. 660
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits
unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Bioinformatics, 34(4), 2018, 660–668
doi: 10.1093/bioinformatics/btx624
Advance Access Publication Date: 3 October 2017
Original Paper
Downloaded from https://academic.oup.com/bioinformatics/article-abstract/34/4/660/4265461 by University of Michigan user on 15 January 2020
资源评论
pk_xz123456
- 粉丝: 3015
- 资源: 4322
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- libnma-devel-1.8.6-2.el7.x64-86.rpm.tar.gz
- libnotify-0.7.7-1.el7.x64-86.rpm.tar.gz
- TrieTree-字典树
- libnotify-devel-0.7.7-1.el7.x64-86.rpm.tar.gz
- libntlm-1.3-6.el7.x64-86.rpm.tar.gz
- image_2019-灵敏度分析
- CurriculumDesign-字典树
- libntlm-devel-1.3-6.el7.x64-86.rpm.tar.gz
- 三菱FX3U PLC与三台台达VFD-E变频器功能块通讯教程:实现正反转、频率设定与状态监控,三菱FX3U FB功能块方式通讯三台VFD-E变频器示例 所需硬件:三菱FX3U PLC,fx3u 485
- liboauth-0.9.7-4.el7.x64-86.rpm.tar.gz
- ollama-ollama
- liboauth-devel-0.9.7-4.el7.x64-86.rpm.tar.gz
- 基于遗传算法与粒子群优化的BP神经网络预测模型-利用MATLAB实现预测分析,遗传算法、粒子群算法优化BP神经网络 #预测#机器学习#MATLAB# 我这是关于预测的 ,核心关键词:遗传算法; 粒子
- Awesome-LLM-deepseek部署
- libobjc-4.8.5-44.el7.x64-86.rpm.tar.gz
- ollama-ollama
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功