%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(103);
P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);
P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%% 节点个数
inputnum = size(p_train, 1); % 输入层节点数
hiddennum = 5; % 隐藏层节点数
outputnum = size(t_train, 1); % 输出层节点数
%% 建立网络
net = newff(p_train, t_train, hiddennum);
%% 设置训练参数
net.trainParam.epochs = 1000; % 训练次数
net.trainParam.goal = 1e-6; % 目标误差
net.trainParam.lr = 0.01; % 学习率
net.trainParam.showWindow = 0; % 关闭窗口
%% 参数初始化
c1 = 4.494; % 学习因子
c2 = 4.494; % 学习因子
maxgen = 30; % 种群更新次数
sizepop = 5; % 种群规模
Vmax = 1.0; % 最大速度
Vmin = -1.0; % 最小速度
popmax = 1.0; % 最大边界
popmin = -1.0; % 最小边界
%% 节点总数
numsum = inputnum * hiddennum + hiddennum + hiddennum * outputnum + outputnum;
for i = 1 : sizepop
pop(i, :) = rands(1, numsum); % 初始化种群
V(i, :) = rands(1, numsum); % 初始化速度
fitness(i) = fun(pop(i, :), hiddennum, net, p_train, t_train);
end
%% 个体极值和群体极值
[fitnesszbest, bestindex] = min(fitness);
zbest = pop(bestindex, :); % 全局最佳
gbest = pop; % 个体最佳
fitnessgbest = fitness; % 个体最佳适应度值
BestFit = fitnesszbest; % 全局最佳适应度值
%% 迭代寻优
for i = 1: maxgen
for j = 1: sizepop
% 速度更新
V(j, :) = V(j, :) + c1 * rand * (gbest(j, :) - pop(j, :)) + c2 * rand * (zbest - pop(j, :));
V(j, (V(j, :) > Vmax)) = Vmax;
V(j, (V(j, :) < Vmin)) = Vmin;
% 种群更新
pop(j, :) = pop(j, :) + 0.2 * V(j, :);
pop(j, (pop(j, :) > popmax)) = popmax;
pop(j, (pop(j, :) < popmin)) = popmin;
% 自适应变异
pos = unidrnd(numsum);
if rand > 0.85
pop(j, pos) = rands(1, 1);
end
% 适应度值
fitness(j) = fun(pop(j, :), hiddennum, net, p_train, t_train);
end
for j = 1 : sizepop
% 个体最优更新
if fitness(j) < fitnessgbest(j)
gbest(j, :) = pop(j, :);
fitnessgbest(j) = fitness(j);
end
% 群体最优更新
if fitness(j) < fitnesszbest
zbest = pop(j, :);
fitnesszbest = fitness(j);
end
end
BestFit = [BestFit, fitnesszbest];
end
%% 提取最优初始权值和阈值
w1 = zbest(1 : inputnum * hiddennum);
B1 = zbest(inputnum * hiddennum + 1 : inputnum * hiddennum + hiddennum);
w2 = zbest(inputnum * hiddennum + hiddennum + 1 : inputnum * hiddennum ...
+ hiddennum + hiddennum * outputnum);
B2 = zbest(inputnum * hiddennum + hiddennum + hiddennum * outputnum + 1 : ...
inputnum * hiddennum + hiddennum + hiddennum * outputnum + outputnum);
%% 最优值赋值
net.Iw{1, 1} = reshape(w1, hiddennum, inputnum);
net.Lw{2, 1} = reshape(w2, outputnum, hiddennum);
net.b{1} = reshape(B1, hiddennum, 1);
net.b{2} = B2';
%% 打开训练窗口
net.trainParam.showWindow = 1; % 打开窗口
%% 网络训练
net = train(net, p_train, t_train);
%% 仿真预测
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test );
%% 数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
%% 均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2, 2)' ./ M);
error2 = sqrt(sum((T_sim2 - T_test) .^2, 2)' ./ N);
%% 绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['RMSE=' num2str(error1)]};
title(string)
xlim([1, M])
grid
figure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['RMSE=' num2str(error2)]};
title(string)
xlim([1, N])
grid
%% 误差曲线迭代图
figure;
plot(1 : length(BestFit), BestFit, 'LineWidth', 1.5);
xlabel('粒子群迭代次数');
ylabel('适应度值');
xlim([1, length(BestFit)])
string = {'模型迭代误差变化'};
title(string)
grid on
%% 相关指标计算
% R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test - T_sim2)^2 / norm(T_test - mean(T_test ))^2;
disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])
% MAE
mae1 = sum(abs(T_sim1 - T_train), 2)' ./ M ;
mae2 = sum(abs(T_sim2 - T_test ), 2)' ./ N ;
disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])
% MBE
mbe1 = sum(T_sim1 - T_train, 2)' ./ M ;
mbe2 = sum(T_sim2 - T_test , 2)' ./ N ;
disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])
机器学习之心
- 粉丝: 2w+
- 资源: 1103
最新资源
- 基于java+springboot+vue+mysql的房屋租赁管理系统 源码+数据库+论文(高分毕设项目)).zip
- 基于智能软开关的配电网优化调度分析(含故障恢复能力与分布式电源影响),基于智能软开关的配电网优化调度matlab 采用matlab编程,分析得到了含智能软开关下的配电网故障恢复能力,包括恢复负荷、失电
- 基于java+springboot+vue+mysql的个人财务管理系统 源码+数据库+论文(高分毕设项目)).zip
- 轮式移动机器人基于运动学和动力学模型的双闭环控制结合自抗扰与非线性ESO的轨迹跟踪仿真程序,轮式移动机器人轨迹跟踪的MATHLAB程序,运用运动学和动力学模型的双闭环控制,借鉴自抗扰控制技术结合了非线
- 基于java+springboot+vue+mysql的高校院系学生信息管理系统 源码+数据库+论文(高分毕设项目)).zip
- 基于java+springboot+vue+mysql的果树生长系统 源码+数据库+论文(高分毕设项目)).zip
- ,基于SSM框架的校园外卖系统(JAVA WEB源码) 开发技术:SSM+BootStrap + maven + Layui + MySQL5.5 实现功能:包括用户端和管理员端; 前台主要功能有用户
- 成熟的非标套管机程序:伺服联动,模块化编程,高效定位,界面友好,可靠性高,适合电气工程师入门与进阶之选,一台成熟的非标套管机程序,设备已投产,包含详细注释程序+触摸屏组态,伺服联动,多路伺服绝对定位
- 基于java+springboot+vue+mysql的机场乘客服务系统 源码+数据库+论文(高分毕设项目)).zip
- "永磁同步模型电流预测控制与滑模控制:双矢量算法及新型趋近律的应用", 永磁同步模型电流预测控制+滑模控制 滑膜控制器采用新型趋近律与扰动观测器结合,提高系统鲁棒性和稳态特性 电流环采用预测控制
- 三菱PLC与LabVIEW通过MX通讯实现实时读写控制,三菱PLC和labview通过MX通讯,可以实时读写 ,核心关键词:三菱PLC;LabVIEW;MX通讯;实时读写;通信协议 ,"三菱PLC
- 基于java+springboot+vue+mysql的海鲜市场系统 源码+数据库+论文(高分毕设项目)).zip
- C# ASP.NET学生信息管理系统源代码分享:基于SQL Server实现基本增删改查功能,涵盖学生管理、课程管理、成绩管理等核心模块 ,C#-asp.net学生信息管理系统源代码 基于ASP.N
- 基于java+springboot+vue+mysql的兼职发布平台 源码+数据库+论文(高分毕设项目)).zip
- 安装包技术详解:涵盖Windows、macOS及Linux下不同类型及其制作与管理
- 基于java+springboot+vue+mysql的健身俱乐部网站 源码+数据库+论文(高分毕设项目)).zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
- 1
- 2
- 3
- 4
前往页