<a href="https://apps.apple.com/app/id1452689527" target="_blank">
<img src="https://user-images.githubusercontent.com/26833433/99805965-8f2ca800-2b3d-11eb-8fad-13a96b222a23.jpg" width="1000"></a>
 
<a href="https://github.com/ultralytics/yolov3/actions"><img src="https://github.com/ultralytics/yolov3/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
BRANCH NOTICE: The [ultralytics/yolov3](https://github.com/ultralytics/yolov3) repository is now divided into two branches:
* [Master branch](https://github.com/ultralytics/yolov3/tree/master): Forward-compatible with all [YOLOv5](https://github.com/ultralytics/yolov5) models and methods (**recommended**).
```bash
$ git clone https://github.com/ultralytics/yolov3 # master branch (default)
```
* [Archive branch](https://github.com/ultralytics/yolov3/tree/archive): Backwards-compatible with original [darknet](https://pjreddie.com/darknet/) *.cfg models (â ï¸ no longer maintained).
```bash
$ git clone -b archive https://github.com/ultralytics/yolov3 # archive branch
```
<img src="https://user-images.githubusercontent.com/26833433/100382066-c8bc5200-301a-11eb-907b-799a0301595e.png" width="1000">** GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 32, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS. EfficientDet data from [google/automl](https://github.com/google/automl) at batch size 8.
## Pretrained Checkpoints
| Model | AP<sup>val</sup> | AP<sup>test</sup> | AP<sub>50</sub> | Speed<sub>GPU</sub> | FPS<sub>GPU</sub> || params | FLOPS |
|---------- |------ |------ |------ | -------- | ------| ------ |------ | :------: |
| [YOLOv3](https://github.com/ultralytics/yolov3/releases) | 43.3 | 43.3 | 63.0 | 4.8ms | 208 || 61.9M | 156.4B
| [YOLOv3-SPP](https://github.com/ultralytics/yolov3/releases) | **44.3** | **44.3** | **64.6** | 4.9ms | 204 || 63.0M | 157.0B
| [YOLOv3-tiny](https://github.com/ultralytics/yolov3/releases) | 17.6 | 34.9 | 34.9 | **1.7ms** | **588** || 8.9M | 13.3B
** AP<sup>test</sup> denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results denote val2017 accuracy.
** All AP numbers are for single-model single-scale without ensemble or TTA. **Reproduce mAP** by `python test.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65`
** Speed<sub>GPU</sub> averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) V100 instance, and includes image preprocessing, FP16 inference, postprocessing and NMS. NMS is 1-2ms/img. **Reproduce speed** by `python test.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45`
** All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation).
** Test Time Augmentation ([TTA](https://github.com/ultralytics/yolov5/issues/303)) runs at 3 image sizes. **Reproduce TTA** by `python test.py --data coco.yaml --img 832 --iou 0.65 --augment`
## Requirements
Python 3.8 or later with all [requirements.txt](https://github.com/ultralytics/yolov3/blob/master/requirements.txt) dependencies installed, including `torch>=1.7`. To install run:
```bash
$ pip install -r requirements.txt
```
## Tutorials
* [Train Custom Data](https://github.com/ultralytics/yolov3/wiki/Train-Custom-Data) ð RECOMMENDED
* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289) ð NEW
* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) â NEW
* [ONNX and TorchScript Export](https://github.com/ultralytics/yolov5/issues/251)
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
* [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314) â NEW
* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)
## Environments
YOLOv3 may be run in any of the following up-to-date verified environments (with all dependencies including [CUDA](https://developer.nvidia.com/cuda)/[CUDNN](https://developer.nvidia.com/cudnn), [Python](https://www.python.org/) and [PyTorch](https://pytorch.org/) preinstalled):
- **Google Colab Notebook** with free GPU: <a href="https://colab.research.google.com/github/ultralytics/yolov3/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
- **Kaggle Notebook** with free GPU: [https://www.kaggle.com/ultralytics/yolov3](https://www.kaggle.com/ultralytics/yolov3)
- **Google Cloud** Deep Learning VM. See [GCP Quickstart Guide](https://github.com/ultralytics/yolov3/wiki/GCP-Quickstart)
- **Docker Image** https://hub.docker.com/r/ultralytics/yolov3. See [Docker Quickstart Guide](https://github.com/ultralytics/yolov3/wiki/Docker-Quickstart) ![Docker Pulls](https://img.shields.io/docker/pulls/ultralytics/yolov3?logo=docker)
## Inference
detect.py runs inference on a variety of sources, downloading models automatically from the [latest YOLOv3 release](https://github.com/ultralytics/yolov3/releases) and saving results to `runs/detect`.
```bash
$ python detect.py --source 0 # webcam
file.jpg # image
file.mp4 # video
path/ # directory
path/*.jpg # glob
rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa # rtsp stream
rtmp://192.168.1.105/live/test # rtmp stream
http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8 # http stream
```
To run inference on example images in `data/images`:
```bash
$ python detect.py --source data/images --weights yolov3.pt --conf 0.25
Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.25, device='', exist_ok=False, img_size=640, iou_thres=0.45, name='exp', project='runs/detect', save_conf=False, save_txt=False, source='data/images/', update=False, view_img=False, weights=['yolov3.pt'])
Using torch 1.7.0+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16130MB)
Downloading https://github.com/ultralytics/yolov3/releases/download/v1.0/yolov3.pt to yolov3.pt... 100% 118M/118M [00:05<00:00, 24.2MB/s]
Fusing layers...
Model Summary: 261 layers, 61922845 parameters, 0 gradients
image 1/2 /content/yolov3/data/images/bus.jpg: 640x480 4 persons, 1 buss, Done. (0.014s)
image 2/2 /content/yolov3/data/images/zidane.jpg: 384x640 2 persons, 3 ties, Done. (0.014s)
Results saved to runs/detect/exp
Done. (0.133s)
```
<img src="https://user-images.githubusercontent.com/26833433/100375993-06b37900-300f-11eb-8d2d-5fc7b22fbfbd.jpg" width="500">
### PyTorch Hub
To run **batched inference** with YOLO3 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36):
```python
import torch
from PIL import Image
# Model
model = torch.hub.load('ultralytics/yolov3', 'yolov3', pretrained=True).autoshape() # for PIL/cv2/np inputs and NMS
# Images
img1 = Image.open('zidane.jpg')
img2 = Image.open('bus.jpg')
imgs = [img1, img2] # batched list of images
# Inference
prediction = model(imgs, size=640) # includes NMS
```
## Training
Download [COCO](https://github.com/ultralytics/yolov3/blob/master/data/scripts/get_coco.sh) and run command below. Training times for YOLOv3/YOLOv3-SPP/YOLOv3-tiny are 6/6/2 days on a single V100 (multi-GPU times faster). Use the largest `--batch-size` your GPU allows (batch sizes shown for 16 GB devices).
```bash
$ python train.py --data coco.yaml --cfg yolov3.yaml --weights
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
yolov3python源码(pytorch版本)+项目说明.zipyolov3python源码(pytorch版本)+项目说明.zipyolov3python源码(pytorch版本)+项目说明.zipyolov3python源码(pytorch版本)+项目说明.zipyolov3python源码(pytorch版本)+项目说明.zipyolov3python源码(pytorch版本)+项目说明.zipyolov3python源码(pytorch版本)+项目说明.zipyolov3python源码(pytorch版本)+项目说明.zipyolov3python源码(pytorch版本)+项目说明.zipyolov3python源码(pytorch版本)+项目说明.zipyolov3python源码(pytorch版本)+项目说明.zipyolov3python源码(pytorch版本)+项目说明.zipyolov3python源码(pytorch版本)+项目说明.zipyolov3python源码(pytorch版本)+项目说明.zipyolov3python源码(pytorch版本
资源推荐
资源详情
资源评论
收起资源包目录
yolov3python源码(pytorch版本)+项目说明.zip (79个子文件)
.github
dependabot.yml 201B
ISSUE_TEMPLATE
question.md 140B
feature-request.md 737B
bug-report.md 2KB
workflows
rebase.yml 542B
greetings.yml 4KB
codeql-analysis.yml 2KB
ci-testing.yml 3KB
stale.yml 852B
weights
download_weights.sh 290B
data
coco128.yaml 1KB
hyp.finetune.yaml 846B
coco.yaml 2KB
Car_bike_trafficlight.yaml 746B
images
JPEG_4.jpg 78KB
JPEG_1.png 913KB
JPEG_3.png 271KB
JPEG_2.png 685KB
voc.yaml 735B
hyp.scratch.yaml 2KB
scripts
get_voc.sh 4KB
get_coco.sh 935B
hubconf.py 4KB
runs
train
exp
opt.yaml 571B
weights
hyp.yaml 383B
events.out.tfevents.1616077164.DESKTOP-K090EJF.23204.0 40B
detect
exp
utils
__init__.py 0B
google_utils.py 5KB
loss.py 8KB
metrics.py 8KB
autoanchor.py 7KB
general.py 21KB
activations.py 2KB
google_app_engine
Dockerfile 821B
app.yaml 173B
additional_requirements.txt 105B
plots.py 17KB
datasets.py 41KB
__pycache__
metrics.cpython-38.pyc 7KB
torch_utils.cpython-38.pyc 11KB
datasets.cpython-38.pyc 31KB
plots.cpython-36.pyc 15KB
general.cpython-36.pyc 16KB
datasets.cpython-36.pyc 31KB
torch_utils.cpython-36.pyc 11KB
google_utils.cpython-38.pyc 3KB
loss.cpython-38.pyc 5KB
google_utils.cpython-36.pyc 3KB
general.cpython-38.pyc 16KB
__init__.cpython-36.pyc 134B
autoanchor.cpython-38.pyc 6KB
metrics.cpython-36.pyc 7KB
__init__.cpython-38.pyc 142B
plots.cpython-38.pyc 15KB
torch_utils.py 12KB
Dockerfile 2KB
yolov3.pt 118.48MB
requirements.txt 602B
models
__init__.py 0B
yolov3.yaml 1KB
export.py 4KB
common.py 12KB
yolov3-spp.yaml 1KB
experimental.py 5KB
yolov3-tiny.yaml 1KB
__pycache__
experimental.cpython-38.pyc 5KB
experimental.cpython-36.pyc 6KB
common.cpython-36.pyc 14KB
__init__.cpython-36.pyc 135B
common.cpython-38.pyc 14KB
yolo.cpython-38.pyc 10KB
__init__.cpython-38.pyc 143B
yolo.py 12KB
detect.py 8KB
train.py 31KB
__pycache__
test.cpython-38.pyc 11KB
test.py 16KB
README.md 9KB
tutorial.ipynb 382KB
共 79 条
- 1
资源评论
manylinux
- 粉丝: 4631
- 资源: 2491
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- TRIZ矛盾矩阵表.pdf
- ssm基于SSM框架的购物商城系统+jsp.zip
- ssm基于SSM框架的个人博客网站的设计与实现+vue.zip
- ssm基于SSM框架的金鱼销售平台的开发和实现+jsp.zip
- ssm基于SSM框架的德云社票务系统的设计与实现+vue.zip
- ssm基于SSM框架的安全教育平台+vue.zip
- ssm基于ssm框架的大学生就业信息平台+jsp.zip
- ssm基于SSM的养老院老人健康监护平台设计与实现+vue.zip
- ssm基于ssm的疫情物质管理系统+jsp.zip
- ssm基于SSM的药房药品采购集中管理系统的设计与实现+vue.zip
- ssm基于SSM的乡镇篮球队管理系统+jsp.zip
- ssm基于ssm的新能源汽车在线租赁管理系统+vue.zip
- ssm基于SSM的校园二手物品交易平台+vue.zip
- ssm基于ssm的人才招聘网站+jsp.zip
- ssm基于SSM的高校疫情管理系统设计与实现+vue.zip
- ssm基于ssm的线上课程管理系统+jsp.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功