设计出一套完整的系统,对信号进行频谱分析和滤波处理;
1.产生一个连续信号,包含低频,中频,高频分量,对其进行采样,进行频谱分析,分别设计三种高通,低通,带通滤波器对信号进行滤波处理,观察滤波后信号的频谱。
2.采集一段含有噪音的语音信号(可以录制含有噪音的信号,或者录制语音后再加进噪音信号),对其进行采样和频谱分析,根据分析结果设计出一合适的滤波器滤除噪音信号。
%写上标题
%设计低通滤波器:
[N,Wc]=buttord()
%估算得到Butterworth低通滤波器的最小阶数N和3dB截止频率Wc
[a,b]=butter(N,Wc); %设计Butterworth低通滤波器
[h,f]=freqz(); %求数字低通滤波器的频率响应
figure(2); % 打开窗口2
subplot(221); %图形显示分割窗口
plot(f,abs(h)); %绘制Butterworth低通滤波器的幅频响应图
title(巴氏低通滤波器'');
grid; %绘制带网格的图像
sf=filter(a,b,s); %叠加函数S经过低通滤波器以后的新函数
subplot(222);
plot(t,sf); %绘制叠加函数S经过低通滤波器以后的时域图形
xlabel('时间 (seconds)');
ylabel('时间按幅度');
SF=fft(sf,256); %对叠加函数S经过低通滤波器以后的新函数进行256点的基—2快速傅立叶变换
w= %新信号角频率
subplot(223);
plot()); %绘制叠加函数S经过低通滤波器以后的频谱图
title('低通滤波后的频谱图');
%设计高通滤波器
[N,Wc]=buttord()
%估算得到Butterworth高通滤波器的最小阶数N和3dB截止频率Wc
[a,b]=butter(N,Wc,'high'); %设计Butterworth高通滤波器
[h,f]=freqz(); %求数字高通滤波器的频率响应
figure(3);
subplot(221);
plot()); %绘制Butterworth高通滤波器的幅频响应图
title('巴氏高通滤波器');
grid; %绘制带网格的图像
sf=filter(); %叠加函数S经过高通滤波器以后的新函数
subplot(222);
plot(t,sf); ;%绘制叠加函数S经过高通滤波器以后的时域图形
xlabel('Time(seconds)');
ylabel('Time waveform');
w; %新信号角频率
subplot(223);
plot()); %绘制叠加函数S经过高通滤波器以后的频谱图
title('高通滤波后的频谱图');
%设计带通滤波器
[N,Wc]=buttord([)
%估算得到Butterworth带通滤波器的最小阶数N和3dB截止频率Wc
[a,b]=butter(N,Wc); %设计Butterworth带通滤波器
[h,f]=freqz(); %求数字带通滤波器的频率响应
figure(4);
subplot(221);
plot(f,abs(h)); %绘制Butterworth带通滤波器的幅频响应图
title('butter bandpass filter');
grid; %绘制带网格的图像
sf=filter(a,b,s); %叠加函数S经过带通滤波器以后的新函数
subplot(222);
plot(t,sf); %绘制叠加函数S经过带通滤波器以后的时域图形
xlabel('Time(seconds)');
ylabel('Time waveform');
SF=fft(); %对叠加函数S经过带通滤波器以后的新函数进行256点的基—2快速傅立叶变换
w=( %新信号角频率
subplot(223);
plot(')); %绘制叠加函数S经过带通滤波器以后的频谱图
title('带通滤波后的频谱图');
matlab如何做频谱分析
% ----------------------------------------------------------------------------------------------------------------
% 方案1:“x = a*cos(2*pi*w*t)”的形式:
% ----------------------------------------------------------------------------------------------------------------
% 注意:1.时域的持续时间范围应较大;
% 2.频率w与序列k的对应关系(N为序列总长度):w = 1/dt * k/N;
% 3.采样频率1/dt应大于 w 的2倍
% 4.结果曲线的峰值的横坐标对应的就是w和-w值
% ----------------------------------------------------------------------------------------------------------------
a = 0.75;
w = pi/3;
dt = 0.2;
t = [-30*pi:dt:30*pi];
N = size(t, 2);
x = a*cos(2*pi*w*t);
y = fft(x);
y = fftshift(y);
figure;
subplot(2,1,1);
plot(t,x);
subplot(2,1,2);
plot(1/dt*(-N/2+1:N/2)/N, abs(y));
% ----------------------------------------------------------------------------------------------------------------
% 方案2:“x = a*cos(w*t)”的形式:
% ----------------------------------------------------------------------------------------------------------------
% 注意:1.时域的持续时间范围应较大;
% 2.频率w与序列k的对应关系(N为序列总长度):w = 1/dt *2*pi* k/N;
% 3.采样频率1/dt应大于 w/(2*pi) 的2倍
% 4.结果曲线的峰值的横坐标对应的就是w和-w值
% ----------------------------------------------------------------------------------------------------------------
a = 0.75;
w = pi/3;
dt = 1;
t = [-20*pi:dt:20*pi];
N = size(t, 2);
x = a*cos(w*t);
y = fft(x);
y = fftshift(y);
figure;
subplot(2,1,1);
plot(t,x);
subplot(2,1,2);
plot(1/dt*2*pi*(-N/2:N/2-1)/N, abs(y));
备注:由于使用了fftshift,所以得到的频谱序列关于原点对称,如果不需要负半轴的话自行修改一下就ok了
function f=frequency(x,fs)
dtlen=length(x);
t=(0:dtlen-1)/fs;
subplot(211);
plot(t,x);
axis tight;
y=abs(fft(x))*2/dtlen;
ff=(0:dtlen/2-1)*fs/dtlen;
subplot(212);
f=y(1:floor(dtlen/2));
plot(ff,f);
axis tight;
return;
Matlab编程实现FFT实践及频谱分析
内容
1.用Matlab产生正弦波,矩形波,以及白噪声信号,并显示各自时域波形图
2.进行FFT变换,显示各自频谱图,其中采样率,频率、数据长度自选
3.做出上述三种信号的均方根图谱,功率图谱,以及对数均方根图谱
4.用IFFT傅立叶反变换恢复信号,并显示恢复的正弦信号时域波形图
源程序
%*************************************************************************%
% FFT实践及频谱分析 %
%*************************************************************************%
%*************************************************************************%
%***************1.正弦波****************%
fs=100;%设定采样频率
N=128;
n=0:N-1;
t=n/fs;
f0=10;%设定正弦信号频率
%生成正弦信号
x=sin(2*pi*f0*t);
figure(1);
subplot(231);
plot(t,x);%作正弦信号的时域波形
xlabel('t');
ylabel('y');
title('正弦信号y=2*pi*10t时域波形');
grid;
%进行FFT变换并做频谱图
y=fft(x,N);%进行fft变换
mag=abs(y);%求幅值
f=(0:length(y)-1)'*fs/length(y);%进行对应的频率转换
figure(1);
subplot(232);
plot(f,mag);%做频谱图
axis([0,100,0,80]);
xlabel('频率(Hz)');
ylabel('幅值');
title('正弦信号y=2*pi*10t幅频谱图N=128');
grid;
%求均方根谱
sq=abs(y);
figure(1);
subplot(233);
plot(f,sq);
xlabel('频率(Hz)');
ylabel('均方根谱');
title('正弦信号y=2*pi*10t均方根谱');
grid;
%求功率谱
power=sq.^2;
figure(1);
subplot(234);
plot(f,power);
xlabel('频率(Hz)');
ylabel('功率谱');
title('正弦信号y=2*pi*10t功率谱');
grid;
%求对数谱
ln=log(sq);
figure(1);
subplot(235);
plot(f,ln);
xlabel('频率(Hz)');
ylabel('对数谱');
title('正弦信号y=2*pi*10t对数谱');
grid;
%用IFFT恢复原始信号
xifft=ifft(y);
magx=real(xifft);
ti=[0:length(xifft)-1]/fs;
figure(1);
subplot(236);
plot(ti,magx);
xlabel('t');
ylabel('y');
title('通过IFFT转换的正弦信号波形');
grid;
%****************2.矩形波****************%
fs=10;%设定采样频率
t=-5:0.1:5;
x=rectpuls(t,2);
x=x(1:99);
figure(2);
subplot(231);
plot(t(1:99),x);%作矩形波的时域波形
xlabel('t');
ylabel('y');
title('矩形波时域波形');
grid;
%进行FFT变换并做频谱图
y=fft(x);%进行fft变换
mag=abs(y);%求幅值
f=(0:length(y)-1)'*fs/length(y);%进行对应的频率转换
figure(2);
subplot(232);
plot(f,mag);%做频谱图
xlabel('频率(Hz)');
ylabel('幅值');
title('矩形波幅频谱图');
阿里matlab建模师
- 粉丝: 4819
- 资源: 2886
最新资源
- m17n-lib-tools-1.6.4-14.el7.x64-86.rpm.tar.gz
- m2crypto-0.21.1-17.el7.x64-86.rpm.tar.gz
- m4-1.4.16-10.el7.x64-86.rpm.tar.gz
- mailcap-2.1.41-2.el7.x64-86.rpm.tar.gz
- malaga-7.12-16.el7.x64-86.rpm.tar.gz
- malaga-devel-7.12-16.el7.x64-86.rpm.tar.gz
- malaga-suomi-voikko-1.12-5.el7.x64-86.rpm.tar.gz
- mallard-rng-1.0.2-1.el7.x64-86.rpm.tar.gz
- man-pages-cs-0.18.20090209-17.el7.x64-86.rpm.tar.gz
- man-pages-es-1.55-21.el7.x64-86.rpm.tar.gz
- man-pages-es-extra-1.55-21.el7.x64-86.rpm.tar.gz
- man-pages-fr-3.52-3.el7.x64-86.rpm.tar.gz
- man-pages-it-3.15-2.el7.x64-86.rpm.tar.gz
- man-pages-ru-3.41-3.20120901.el7.x64-86.rpm.tar.gz
- man-pages-zh-CN-1.5.2-4.el7.x64-86.rpm.tar.gz
- marisa-0.2.4-4.el7.x64-86.rpm.tar.gz
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
- 1
- 2
- 3
前往页