%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);
t_train = categorical(T_train)';
t_test = categorical(T_test )';
%% 数据平铺
% 将数据平铺成1维数据只是一种处理方式
% 也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
% 但是应该始终和输入层数据结构保持一致
P_train = double(reshape(P_train, 12, 1, 1, M));
P_test = double(reshape(P_test , 12, 1, 1, N));
%% 数据格式转换
for i = 1 : M
p_train{i, 1} = P_train(:, :, 1, i);
end
for i = 1 : N
p_test{i, 1} = P_test( :, :, 1, i);
end
%% 创建网络
layers = [ ...
sequenceInputLayer(12) % 输入层
lstmLayer(6, 'OutputMode', 'last') % LSTM层
reluLayer % Relu激活层
fullyConnectedLayer(4) % 全连接层
softmaxLayer % 分类层
classificationLayer];
%% 参数设置
options = trainingOptions('adam', ... % Adam 梯度下降算法
'MiniBatchSize', 100, ... % 批大小
'MaxEpochs', 1000, ... % 最大迭代次数
'InitialLearnRate', 1e-2, ... % 初始学习率
'LearnRateSchedule', 'piecewise', ... % 学习率下降
'LearnRateDropFactor', 0.1, ... % 学习率下降因子
'LearnRateDropPeriod', 700, ... % 经过700次训练后 学习率为 0.01 * 0.1
'Shuffle', 'every-epoch', ... % 每次训练打乱数据集
'ValidationPatience', Inf, ... % 关闭验证
'Plots', 'training-progress', ... % 画出曲线
'Verbose', false);
%% 训练模型
net = trainNetwork(p_train, t_train, layers, options);
%% 仿真预测
t_sim1 = predict(net, p_train);
t_sim2 = predict(net, p_test );
%% 数据反归一化
T_sim1 = vec2ind(t_sim1');
T_sim2 = vec2ind(t_sim2');
%% 性能评价
error1 = sum((T_sim1 == T_train)) / M * 100 ;
error2 = sum((T_sim2 == T_test )) / N * 100 ;
%% 查看网络结构
analyzeNetwork(net)
%% 数据排序
[T_train, index_1] = sort(T_train);
[T_test , index_2] = sort(T_test );
T_sim1 = T_sim1(index_1);
T_sim2 = T_sim2(index_2);
%% 绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['准确率=' num2str(error1) '%']};
title(string)
xlim([1, M])
grid
figure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']};
title(string)
xlim([1, N])
grid
%% 混淆矩阵
figure
cm = confusionchart(T_train, T_sim1);
cm.Title = 'Confusion Matrix for Train Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';
figure
cm = confusionchart(T_test, T_sim2);
cm.Title = 'Confusion Matrix for Test Data';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
基于LSTM长短期记忆网络的数据分类预测(Matlab完整程序和数据) 基于LSTM长短期记忆网络的数据分类预测(Matlab完整程序和数据) 基于LSTM长短期记忆网络的数据分类预测(Matlab完整程序和数据) 运行环境Matlab2018b及以上。
资源推荐
资源详情
资源评论



























收起资源包目录














共 12 条
- 1
资源评论

- weixin_408675042023-09-13这个资源内容超赞,对我来说很有价值,很实用,感谢大佬分享~

前程算法屋
- 粉丝: 6504
- 资源: 834
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


最新资源
- 4.美工协作跟踪表.xls
- 简要分析IPPROTO-TCP参数
- ytree-2.07-1.el8.x64-86.rpm.tar.gz
- 使用python语言编程设计的自适应动态规划算法(ADP)
- 2【店铺数据】当日店铺大数据表.xls
- 3【店铺数据】店日常统计数表格.xls
- 1【单品分析】单品数据跟踪.xls
- 5【店铺数据】全年业绩数据总表.xlsx
- 8产品数据表.xlsx
- 11电商数据分析图表.et
- 12电商销售运营数据统计表.xlsx
- 10电商产品出入库及销售统计周报表.xls
- 9产品统计表.xls
- 7TOP10宝贝情况表.xls
- 14店铺访问来源构成分析.xlsx
- 15店铺经营明细.xls
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制
