## Models
Welcome to the Ultralytics Models directory! Here you will find a wide variety of pre-configured model configuration
files (`*.yaml`s) that can be used to create custom YOLO models. The models in this directory have been expertly crafted
and fine-tuned by the Ultralytics team to provide the best performance for a wide range of object detection and image
segmentation tasks.
These model configurations cover a wide range of scenarios, from simple object detection to more complex tasks like
instance segmentation and object tracking. They are also designed to run efficiently on a variety of hardware platforms,
from CPUs to GPUs. Whether you are a seasoned machine learning practitioner or just getting started with YOLO, this
directory provides a great starting point for your custom model development needs.
To get started, simply browse through the models in this directory and find one that best suits your needs. Once you've
selected a model, you can use the provided `*.yaml` file to train and deploy your custom YOLO model with ease. See full
details at the Ultralytics [Docs](https://docs.ultralytics.com), and if you need help or have any questions, feel free
to reach out to the Ultralytics team for support. So, don't wait, start creating your custom YOLO model now!
### Usage
Model `*.yaml` files may be used directly in the Command Line Interface (CLI) with a `yolo` command:
```bash
yolo task=detect mode=train model=yolov8n.yaml data=coco128.yaml epochs=100
```
They may also be used directly in a Python environment, and accepts the same
[arguments](https://docs.ultralytics.com/usage/cfg/) as in the CLI example above:
```python
from ultralytics import YOLO
model = YOLO("model.yaml") # build a YOLOv8n model from scratch
# YOLO("model.pt") use pre-trained model if available
model.info() # display model information
model.train(data="coco128.yaml", epochs=100) # train the model
```
## Pre-trained Model Architectures
Ultralytics supports many model architectures. Visit [models](#) page to view detailed information and usage.
Any of these models can be used by loading their configs or pretrained checkpoints if available.
<b>What to add your model architecture?</b> [Here's](#) how you can contribute
### 1. YOLOv8
**About** - Cutting edge Detection, Segmentation and Classification models developed by Ultralytics. </br>
**Citation** -
Available Models:
- Detection - `yolov8n`, `yolov8s`, `yolov8m`, `yolov8l`, `yolov8x`
- Instance Segmentation - `yolov8n-seg`, `yolov8s-seg`, `yolov8m-seg`, `yolov8l-seg`, `yolov8x-seg`
- Classification - `yolov8n-cls`, `yolov8s-cls`, `yolov8m-cls`, `yolov8l-cls`, `yolov8x-cls`
<details><summary>Performance</summary>
### Detection
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
| [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt) | 640 | 37.3 | 80.4 | 0.99 | 3.2 | 8.7 |
| [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s.pt) | 640 | 44.9 | 128.4 | 1.20 | 11.2 | 28.6 |
| [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m.pt) | 640 | 50.2 | 234.7 | 1.83 | 25.9 | 78.9 |
| [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l.pt) | 640 | 52.9 | 375.2 | 2.39 | 43.7 | 165.2 |
| [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x.pt) | 640 | 53.9 | 479.1 | 3.53 | 68.2 | 257.8 |
### Segmentation
| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
| -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
| [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-seg.pt) | 640 | 36.7 | 30.5 | 96.1 | 1.21 | 3.4 | 12.6 |
| [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-seg.pt) | 640 | 44.6 | 36.8 | 155.7 | 1.47 | 11.8 | 42.6 |
| [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-seg.pt) | 640 | 49.9 | 40.8 | 317.0 | 2.18 | 27.3 | 110.2 |
| [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-seg.pt) | 640 | 52.3 | 42.6 | 572.4 | 2.79 | 46.0 | 220.5 |
| [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-seg.pt) | 640 | 53.4 | 43.4 | 712.1 | 4.02 | 71.8 | 344.1 |
### Classification
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
| -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
| [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n-cls.pt) | 224 | 66.6 | 87.0 | 12.9 | 0.31 | 2.7 | 4.3 |
| [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8s-cls.pt) | 224 | 72.3 | 91.1 | 23.4 | 0.35 | 6.4 | 13.5 |
| [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8m-cls.pt) | 224 | 76.4 | 93.2 | 85.4 | 0.62 | 17.0 | 42.7 |
| [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-cls.pt) | 224 | 78.0 | 94.1
Matlab仿真实验室
- 粉丝: 4w+
- 资源: 2454
最新资源
- opendrive数据格式解析思维导图 , opendrive高精地图是自动驾驶领域使用最为广泛的开源高精地图标准级地图格式 本思维导图将详细剖开高精路网地图内部的数据格式,涵盖:道路、车道、车道段
- codesys直线插补PLC直线插补
- 基于粒子群算法的混合储能容量配置matlab 以风光互补发电储能系统为背景,以年运行成本最低为目标,根据负荷和发电量的缺额等制定超级电容和蓄电池配置方案,采用粒子群算法得到蓄电池和超级电容的个数,有详
- 水泵设计,CFturbo水力设计~ICEM网格划分~Fluent仿真
- 四旋翼数模仿真LQR机器人研究方案,LQR控制器,动态系统建模采用S-Function,动态显示用的机器人系统工具箱中的UAV box PID常见而LQR方案不多见,帮助你节省时间,自
- 三菱PLC程序 三菱F5U系列PLC程序,ST语言编写的螺丝机程序(含触摸屏程序),标准模版;对刚接触ST语言的电气工程师有较大的帮助,维纶通的触摸屏,有一部分宏指令
- C# CSharp Modbus TCP协议上位机源码,包括存储,数据到SQL SERVER数据库,趋势曲线图,数据报表,实时和历史报警界面,有详细注释
- 基于matlab的纯电nedc整车仿真
- 西门子200smart圆弧差补和直线差补算法,写的带参数子程序,可以重复调用,方便带注释,有基础的一看就会,想学习的来
- SSA-KELM 麻雀算法优化核极限学习机回归预测算法以及分类预测算法 麻雀算法 优化 哈里斯鹰优化 粒子群优化 海鸥优化,黏菌优化,狼群优化,阿基米德算法优化,秃鹰搜索优化 核极限学习机 回归算法
- STM32变频器全套方案 方案介绍: 1、源程序是经批量验证过的原始代码,仅支持VF控制,C语言实现,完全开源,Keil uVision4编译无错误 2、控制板单片机为STM32F103VET6
- 三菱 mcgs 三菱变频器与西门子PLC的通讯及三菱变频器
- matlab代码:分布鲁棒联合机会约束下的能量和备用调度 摘要:开发了一个两阶段随机程序,该程序确保了高可再生能源渗透率与电力系统的安全运行 具有Wasserstein模糊集的分布稳健的联合机会约束
- 基于Stanley算法轨迹跟随,横向控制,车道保持的CarSim与Simulink联合仿真模型 提供全套模型文件: (1)Carsim参数配置文件cpar,导入即可运行 (2)simulink模型文件
- S7-200 mcgs基于plc的自动智能粮仓系统 带解释的梯形图程序,接线图原理图图纸,io分配,组态画面
- 照片批处理软件,照片批量处理,批量加水印,批量裁剪,功能强大
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
- 1
- 2
前往页