馃摎 This guide explains how to use **Weights & Biases** (W&B) with YOLOv5 馃殌. UPDATED 29 September 2021.
- [About Weights & Biases](#about-weights-&-biases)
- [First-Time Setup](#first-time-setup)
- [Viewing runs](#viewing-runs)
- [Disabling wandb](#disabling-wandb)
- [Advanced Usage: Dataset Versioning and Evaluation](#advanced-usage)
- [Reports: Share your work with the world!](#reports)
## About Weights & Biases
Think of [W&B](https://wandb.ai/site?utm_campaign=repo_yolo_wandbtutorial) like GitHub for machine learning models. With a few lines of code, save everything you need to debug, compare and reproduce your models 鈥� architecture, hyperparameters, git commits, model weights, GPU usage, and even datasets and predictions.
Used by top researchers including teams at OpenAI, Lyft, Github, and MILA, W&B is part of the new standard of best practices for machine learning. How W&B can help you optimize your machine learning workflows:
- [Debug](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Free-2) model performance in real time
- [GPU usage](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#System-4) visualized automatically
- [Custom charts](https://wandb.ai/wandb/customizable-charts/reports/Powerful-Custom-Charts-To-Debug-Model-Peformance--VmlldzoyNzY4ODI) for powerful, extensible visualization
- [Share insights](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Share-8) interactively with collaborators
- [Optimize hyperparameters](https://docs.wandb.com/sweeps) efficiently
- [Track](https://docs.wandb.com/artifacts) datasets, pipelines, and production models
## First-Time Setup
<details open>
<summary> Toggle Details </summary>
When you first train, W&B will prompt you to create a new account and will generate an **API key** for you. If you are an existing user you can retrieve your key from https://wandb.ai/authorize. This key is used to tell W&B where to log your data. You only need to supply your key once, and then it is remembered on the same device.
W&B will create a cloud **project** (default is 'YOLOv5') for your training runs, and each new training run will be provided a unique run **name** within that project as project/name. You can also manually set your project and run name as:
```shell
$ python train.py --project ... --name ...
```
YOLOv5 notebook example: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<img width="960" alt="Screen Shot 2021-09-29 at 10 23 13 PM" src="https://user-images.githubusercontent.com/26833433/135392431-1ab7920a-c49d-450a-b0b0-0c86ec86100e.png">
</details>
## Viewing Runs
<details open>
<summary> Toggle Details </summary>
Run information streams from your environment to the W&B cloud console as you train. This allows you to monitor and even cancel runs in <b>realtime</b> . All important information is logged:
- Training & Validation losses
- Metrics: Precision, Recall, mAP@0.5, mAP@0.5:0.95
- Learning Rate over time
- A bounding box debugging panel, showing the training progress over time
- GPU: Type, **GPU Utilization**, power, temperature, **CUDA memory usage**
- System: Disk I/0, CPU utilization, RAM memory usage
- Your trained model as W&B Artifact
- Environment: OS and Python types, Git repository and state, **training command**
<p align="center"><img width="900" alt="Weights & Biases dashboard" src="https://user-images.githubusercontent.com/26833433/135390767-c28b050f-8455-4004-adb0-3b730386e2b2.png"></p>
</details>
## Disabling wandb
- training after running `wandb disabled` inside that directory creates no wandb run
![Screenshot (84)](https://user-images.githubusercontent.com/15766192/143441777-c780bdd7-7cb4-4404-9559-b4316030a985.png)
- To enable wandb again, run `wandb online`
![Screenshot (85)](https://user-images.githubusercontent.com/15766192/143441866-7191b2cb-22f0-4e0f-ae64-2dc47dc13078.png)
## Advanced Usage
You can leverage W&B artifacts and Tables integration to easily visualize and manage your datasets, models and training evaluations. Here are some quick examples to get you started.
<details open>
<h3> 1: Train and Log Evaluation simultaneousy </h3>
This is an extension of the previous section, but it'll also training after uploading the dataset. <b> This also evaluation Table</b>
Evaluation table compares your predictions and ground truths across the validation set for each epoch. It uses the references to the already uploaded datasets,
so no images will be uploaded from your system more than once.
<details open>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --upload_data val</code>
![Screenshot from 2021-11-21 17-40-06](https://user-images.githubusercontent.com/15766192/142761183-c1696d8c-3f38-45ab-991a-bb0dfd98ae7d.png)
</details>
<h3>2. Visualize and Version Datasets</h3>
Log, visualize, dynamically query, and understand your data with <a href='http://222.178.203.72:19005/whst/63/=cnbrzvZmcazZh//guides/data-vis/tables'>W&B Tables</a>. You can use the following command to log your dataset as a W&B Table. This will generate a <code>{dataset}_wandb.yaml</code> file which can be used to train from dataset artifact.
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python utils/logger/wandb/log_dataset.py --project ... --name ... --data .. </code>
![Screenshot (64)](https://user-images.githubusercontent.com/15766192/128486078-d8433890-98a3-4d12-8986-b6c0e3fc64b9.png)
</details>
<h3> 3: Train using dataset artifact </h3>
When you upload a dataset as described in the first section, you get a new config file with an added `_wandb` to its name. This file contains the information that
can be used to train a model directly from the dataset artifact. <b> This also logs evaluation </b>
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --data {data}_wandb.yaml </code>
![Screenshot (72)](https://user-images.githubusercontent.com/15766192/128979739-4cf63aeb-a76f-483f-8861-1c0100b938a5.png)
</details>
<h3> 4: Save model checkpoints as artifacts </h3>
To enable saving and versioning checkpoints of your experiment, pass `--save_period n` with the base cammand, where `n` represents checkpoint interval.
You can also log both the dataset and model checkpoints simultaneously. If not passed, only the final model will be logged
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --save_period 1 </code>
![Screenshot (68)](https://user-images.githubusercontent.com/15766192/128726138-ec6c1f60-639d-437d-b4ee-3acd9de47ef3.png)
</details>
</details>
<h3> 5: Resume runs from checkpoint artifacts. </h3>
Any run can be resumed using artifacts if the <code>--resume</code> argument starts with聽<code>wandb-artifact://</code>聽prefix followed by the run path, i.e,聽<code>wandb-artifact://username/project/runid </code>. This doesn't require the model checkpoint to be present on the local system.
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --resume wandb-artifact://{run_path} </code>
![Screenshot (70)](https://user-images.githubusercontent.com/15766192/128728988-4e84b355-6c87-41ae-a591-14aecf45343e.png)
</details>
<h3> 6: Resume runs from dataset artifact & checkpoint artifacts. </h3>
<b> Local dataset or model checkpoints are not required. This can be used to resume runs directly on a different device </b>
The syntax is same as the previous section, but you'll need to lof both the dataset and model checkpoints as artifacts, i.e, set bot <code>--upload_dataset</code> or
train fro
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
基于yolov5的跌到检测项目源码+数据集(95分以上期末大作业).zip 该项目是个人大作业项目源码,评审分达到95分以上,都经过严格调试,确保可以运行!放心下载使用。 基于yolov5的跌到检测项目源码+数据集(95分以上期末大作业).zip 该项目是个人大作业项目源码,评审分达到95分以上,都经过严格调试,确保可以运行!放心下载使用。 基于yolov5的跌到检测项目源码+数据集(95分以上期末大作业).zip 该项目是个人大作业项目源码,评审分达到95分以上,都经过严格调试,确保可以运行!放心下载使用。 基于yolov5的跌到检测项目源码+数据集(95分以上期末大作业).zip 该项目是个人大作业项目源码,评审分达到95分以上,都经过严格调试,确保可以运行!放心下载使用。 基于yolov5的跌到检测项目源码+数据集(95分以上期末大作业).zip 该项目是个人大作业项目源码,评审分达到95分以上,都经过严格调试,确保可以运行!放心下载使用。 基于yolov5的跌到检测项目源码+数据集(95分以上期末大作业).zip 该项目是个人大作业项目源码,评审
资源推荐
资源详情
资源评论
收起资源包目录
基于yolov5的跌到检测项目源码+数据集(95分以上期末大作业).zip (187个子文件)
setup.cfg 2KB
Dockerfile 2KB
Dockerfile 821B
Dockerfile-arm64 2KB
Dockerfile-cpu 2KB
.dockerignore 4KB
tutorial.ipynb 56KB
.keep 0B
README.md 11KB
CONTRIBUTING.md 5KB
README.md 2KB
README.md 1KB
fall(191).png 142KB
fall(190).png 142KB
fall(189).png 142KB
fall(192).png 142KB
fall(194).png 142KB
fall(195).png 142KB
fall(193).png 142KB
fall(188).png 142KB
fall(198).png 142KB
stand(204).png 140KB
stand(201).png 140KB
stand(200).png 140KB
sit(55).png 140KB
sit(46).png 140KB
sit(47).png 140KB
stand(315).png 132KB
stand(314).png 132KB
stand(313).png 131KB
stand(252).png 130KB
stand(251).png 130KB
stand(250).png 129KB
sit(83).png 129KB
sit(81).png 129KB
sit(79).png 129KB
sit(82).png 129KB
sit(80).png 129KB
yolov5m.pt 27.5MB
dataloaders.py 46KB
datasets.py 46KB
general.py 41KB
common.py 35KB
train.py 34KB
export.py 29KB
wandb_utils.py 27KB
tf.py 25KB
plots.py 21KB
val.py 19KB
yolo.py 15KB
metrics.py 14KB
detect.py 14KB
torch_utils.py 13KB
augmentations.py 12KB
loss.py 10KB
__init__.py 8KB
autoanchor.py 7KB
downloads.py 7KB
hubconf.py 6KB
benchmarks.py 6KB
experimental.py 4KB
activations.py 3KB
text_to_yolo.py 2KB
text_to_yolo.py 2KB
callbacks.py 2KB
autobatch.py 2KB
split_train_val.py 1KB
split_train_val.py 1KB
restapi.py 1KB
sweep.py 1KB
resume.py 1KB
__init__.py 1KB
log_dataset.py 1KB
xg.py 648B
xg.py 648B
example_request.py 368B
__init__.py 0B
__init__.py 0B
__init__.py 0B
dataloaders.cpython-310.pyc 36KB
dataloaders.cpython-39.pyc 36KB
datasets.cpython-37.pyc 35KB
general.cpython-310.pyc 34KB
general.cpython-39.pyc 34KB
general.cpython-37.pyc 33KB
common.cpython-39.pyc 31KB
common.cpython-310.pyc 31KB
common.cpython-37.pyc 30KB
export.cpython-39.pyc 22KB
wandb_utils.cpython-310.pyc 19KB
wandb_utils.cpython-39.pyc 19KB
wandb_utils.cpython-37.pyc 19KB
plots.cpython-310.pyc 18KB
plots.cpython-39.pyc 18KB
plots.cpython-37.pyc 18KB
val.cpython-37.pyc 14KB
val.cpython-310.pyc 13KB
val.cpython-39.pyc 13KB
yolo.cpython-310.pyc 13KB
yolo.cpython-39.pyc 13KB
共 187 条
- 1
- 2
资源评论
- m0_738763822024-11-09非常有用的资源,可以直接使用,对我很有用,果断支持!
- Felixixxxx2023-11-28资源内容详细,总结地很全面,与描述的内容一致,对我启发很大,学习了。
盈梓的博客
- 粉丝: 9782
- 资源: 2630
下载权益
C知道特权
VIP文章
课程特权
开通VIP
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 博途S7-1200主站与S7-200从站实现RS485通讯程序 S7-200可以当作一个仪表
- C#、C++分别开发的OPC DA CLIENT软件. 1、枚举服务器名称; 2、连接服务器以后枚举出TAG; 3、根据TAG名称自动读取服务器数据; 4、图片内有OPC SERVER和CLIENT实
- python-workspace.zip.005
- 龙门上下料样本程序,四轴 用台达AS228T和台达触摸屏编写 注意软件是用台达新款软件ISPSOFT ,借鉴价值高,程序有注释
- 一款window下的串口监视抓包工具
- 欧姆龙CP1H与3台力士乐VFC-x610变频器通讯程序 功能:原创程序,可直接用于现场程序 欧姆龙CP1H的CIF11通讯板,实现对3台力士乐VFC-x610变频器 设定频率,控制正反转,读取实际
- dp111113333
- CV-密集人群图像数据集(5800张图片).rar
- 福特汽车主观评价规范,性能开发参考,英文原版直译,评价条目、规则描述非常细致 包含平顺舒适性,转向,操稳,NVH,制动,加速感,驾驶性等等性能,并详细描述了评价的准备工作 评价条目细分至第四级,共
- 三菱FX3S两轴标准程序,XZ两轴,包含轴点动,回零,相对与绝对定位,只要弄明白这个程序,就可以非常了解整个项目的程序如何去编写,从哪里开始下手,可提供程序问题解答,程序流程清晰明了,注释完整
- MATLAB代码:考虑P2G与碳捕集机组的多能微网低碳经济调度 关键词:碳交易 阶梯碳交易 碳捕集 多能微网 低碳调度 仿真平台:MATLAB+yalmip+cplex 主要内容:代码主要做的是一个
- 本程序采用matlab编写,主要是实现电流注入型牛拉法 除此之外,本人还编写了很多种关于潮流计算的程序,主要有牛拉法,前推回代法,以还有相和三相潮流计算程序
- 智能门锁架构图,供大家参考
- 三菱FX3U六轴标准程序,程序包含本体3轴控制,扩展3个1PG定位模块,一共六轴 程序有轴点动控制,回零控制,相对定位,绝对定位 另有气缸数个,一个大是DD马达控制的转盘,整个是转盘多工位流水作业
- 批量登录到远程Linux服务器检查服务器时间差的shell
- MATLAB电动车七自由度整车模型 MATLAB Simulink电动车转弯制动abs模型asr转弯制动防抱死abs模型+模糊控制算法+七自由度整车模型+纵向运动+侧向运动+横摆运动+四轮魔术公式+四
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功