# USAGE
# python real_time_object_detection.py --prototxt MobileNetSSD_deploy.prototxt.txt --model MobileNetSSD_deploy.caffemodel
# import the necessary packages
from imutils.video import VideoStream
from imutils.video import FPS
import numpy as np
import argparse
import imutils
import time
import cv2
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--prototxt",default="MobileNetSSD_deploy_0.prototxt",
help="path to Caffe 'deploy' prototxt file")
ap.add_argument("-m", "--model",default="MobileNetSSD_deploy_0.caffemodel",
help="path to Caffe pre-trained model")
ap.add_argument("-c", "--confidence", type=float, default=0.2,
help="minimum probability to filter weak detections")
args = vars(ap.parse_args())
# initialize the list of class labels MobileNet SSD was trained to
# detect, then generate a set of bounding box colors for each class
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
"sofa", "train", "tvmonitor"]
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))
# load our serialized model from disk
print("[INFO] loading model...")
net2 = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
# net2=cv2.dnn.readNetFromCaffe("VGG_SSD_300.prototxt","VGG_SSD_300.caffemodel")
# net2=cv2.dnn.readNetFromTensorflow("face.pb")
# initialize the video stream, allow the cammera sensor to warmup,
# and initialize the FPS counter
print("[INFO] starting video stream...")
#vs = VideoStream(src=0).start()
# vs =cv2.VideoCapture('C:\\Users\\voidking\\Desktop\\real-time-object-detection\\test_video.flv')
# vs =cv2.VideoCapture('./test_video.flv')
# vs =cv2.VideoCapture("video1.mp4")
vs =cv2.VideoCapture('timg.jpg')
time.sleep(2.0)
fps = FPS().start()
# loop over the frames from the video stream
while True:
# grab the frame from the threaded video stream and resize it
# to have a maximum width of 400 pixels
#frame = vs.read()
#frame = imutils.resize(frame, width=400)
# grab the frame from the threaded video file stream
(grabbed,frame) = vs.read()
# if the frame was not grabbed, then we have reached the end
# of the stream
if not grabbed:
break
frame = imutils.resize(frame, width=800)
# grab the frame dimensions and convert it to a blob
(h, w) = frame.shape[:2]
blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)),
0.007843, (300, 300), 127.5)
# pass the blob through the network and obtain the detections and
# predictions
net2.setInput(blob)
detections = net2.forward()
# print(np.max(detections[0]))
# print(detections)
# loop over the detections
for i in np.arange(0, detections.shape[2]):
# extract the confidence (i.e., probability) associated with
# the prediction
confidence = detections[0, 0, i, 2]
# filter out weak detections by ensuring the `confidence` is
# greater than the minimum confidence
idx = int(detections[0, 0, i, 1])
label = "{}: {:.2f}%".format(CLASSES[idx],
confidence * 100)
if confidence > args["confidence"]:
if True:
#if CLASSES[idx]=="person":
# extract the index of the class label from the
# `detections`, then compute the (x, y)-coordinates of
# the bounding box for the object
# idx = int(detections[0, 0, i, 1])
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
# draw the prediction on the frame
cv2.rectangle(frame, (startX, startY), (endX, endY),
COLORS[idx], 2)
y = startY - 15 if startY - 15 > 15 else startY + 15
pix_person_height = endY - startY
print ('pix_person_height = ', pix_person_height)
print ('distance = ' , 174724 / pix_person_height)
cv2.putText(frame, label, (startX, y),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)
# # extract the index of the class label from the
# # `detections`, then compute the (x, y)-coordinates of
# # the bounding box for the object
# idx = int(detections[0, 0, i, 1])
# box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
# (startX, startY, endX, endY) = box.astype("int")
#
# # draw the prediction on the frame
#
# cv2.rectangle(frame, (startX, startY), (endX, endY),
# COLORS[idx], 2)
# y = startY - 15 if startY - 15 > 15 else startY + 15
# cv2.putText(frame, label, (startX, y),
# cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)
#
# show the output frame
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
# if the `q` key was pressed, break from the loop
if key == ord("q"):
break
# update the FPS counter
fps.update()
# stop the timer and display FPS information
fps.stop()
print("[INFO] elapsed time: {:.2f}".format(fps.elapsed()))
print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))
# do a bit of cleanup
#销毁窗口
#cv2.destroyAllWindows()