# Experimental Modal Analysis (Impact Testing)
* <table><tr><td>(编辑公式时,如果公式中存在下划线前有空格,那么必须统一都包含空格,否则会出现无法显示的情况。)</td></tr></table>
* <table><tr><td>(想显示 $ \lbrace \rbrace $,得用 \lbrace \rbrace 命令)</td></tr></table>
Measured from the tool tip in axial $(z)$ direction, the approximate impact locations of the $5$ points are $0$, $55$, $90$, $130$ and $165$ mm. The vibration is measured at the tool tip (Point $1$) by an accelerometer.
<div align = "center">
<img src = "Tool.png" width = "250" height = "200" alt = "Points on the Tool" title = "Points on the Tool">
</div>
<p align = "center"><b>Points on the Tool</b></p>
In the five .txt files, the first column of each file is the frequency $\text{[Hz]}$, second column is the real part of the computed $FRF$ $\text{[m/N]}$, and the third column is the imaginary part of the computed $FRF$ $\text{[m/N]}$.
For multi-degree freedom systems, the equation of motion in local coordinate system is given as:
$$m\ddot x + c\dot x + kx = F $$
or in matrix from:
$${[{M_x}]{\lbrace \ddot x \rbrace } + {[{C_x}] \lbrace \dot x \rbrace} + [ {{K_x}} ]\lbrace x \rbrace = \lbrace F \rbrace}$$
These equations are coupled and are cumbersome to solve for more than two degree of freedom systems, thus they are converted to modal coordinates as:
$$[ {{M_q}} ]\lbrace {\ddot q} \rbrace + [ {{C_q}} ]\lbrace {\dot q} \rbrace + [ {{K_q}} ]\lbrace q \rbrace = \lbrace R \rbrace$$
Where the modal mass, modal damping and model stiffness are separately:
$${[ M _q] _k} = \lbrace P \rbrace _k^T[ {{M_x}} ]{\lbrace P \rbrace _k}$$
$${[ C _q] _k} = \lbrace P \rbrace _k^T[ {{C_x}} ]{\lbrace P \rbrace _k}$$
$${[ K _q] _k} = \lbrace P \rbrace _k^T[ {{K_x}} ]{\lbrace P \rbrace _k}$$
And $\lbrace P \rbrace _k $ is the Eigenvector (mode shapes) of $k^{th}$ order with a structure like:
$$ \lbrace P \rbrace _k = \begin{pmatrix}
{p _{1}}\\\\
{p _{2}}\\\\
{p _{3}}\\\\
{\vdots }\\\\
{P _{n}}
\end{pmatrix} _k
$$
The Frequency Response Function ($FRF$) of the system can be write as:
$$ [ {H(s)} ] = \frac{{\lbrace {X(s)} \rbrace}}{{\lbrace {F(s)} \rbrace}} $$
The element in row $i$ and column $l$ of $\left[ {H\left( s \right)} \right]$ matrix may be given as residues form:
$$ {h_{il}} = \sum\limits_{k = 1}^n {\left( {\frac{{{\alpha _{il,k}} + {\beta _{il,k}}s}}{{{s^2} + 2{\xi _k}{\omega _{n,k}}s + \omega _{n,k}^2}}} \right)} $$
Where $n$ – number of modes; $\omega _{n,k}$ and $\zeta _k$ are the undamped natural frequencies and the modal damping ratio for mode $k$ of the system.
The mode shapes are found from the estimated residues. Displacement vector can be expressed by its mode shapes $\lbrace P \rbrace_k $ and modal transfer functions $ \Phi _{q,k} $.
$$\lbrace X \rbrace = \left( {\sum\limits_{k = 1}^n {{{\lbrace P \rbrace}_k}\lbrace P \rbrace_k^T {\Phi _{qk}}} } \right)\lbrace F \rbrace$$
Thus,
$$ {[H(s)]} = {\sum\limits _{k = 1}^n {{\frac{{\lbrace P \rbrace _k} {\lbrace P \rbrace _k^T}}{m _{q,k}}}{\frac{1}{{{s^2}+ {2{\zeta _k}{\omega _{n,k}}s} + {\omega _{n,k} ^2}}}}}} = {\sum\limits _{k = 1}^n {\frac{[R] _k}{s^2 + 2{\zeta _k}{\omega _{n,k}}s + \omega _{n,k}^2 }}} $$
Note that the modal mass for mode $k$ using the unscaled modal matrix is:
$$ {m _{q,k}} = \lbrace P \rbrace _k^T[ {{M _x}} ]{\lbrace P \rbrace _k} $$
Thus $ ({\lbrace P \rbrace _k^T{\lbrace P \rbrace _k}})/{m _{q,k}} $ represents the normalization of each eigenvector with the square root of the modal mass.
$$ {\frac{\lbrace P \rbrace _k^T}{\sqrt {m _{q,k}}}}{[M _x]}{\frac{\lbrace P _k \rbrace}{\sqrt {m _{q,k}}}} = 1 $$
$$ \lbrace u \rbrace _k^T[ {{M _x}} ]{\lbrace u \rbrace _k} = 1 $$
This is a convenient way to identify the modal parameters, i.e. mode shapes, modal stiffness and modal damping of the structure. Where ${\lbrace u \rbrace _k}$ corresponds to the normalized mode shape giving a unity modal mass, whit a structure like:
$$ \lbrace u \rbrace _k = \begin{pmatrix}
{u _{1}}\\\\
{u _{2}}\\\\
{u _{3}}\\\\
{\vdots }\\\\
{u _{n}}
\end{pmatrix} _k
$$
$$ \frac{\lbrace P \rbrace _k \lbrace P \rbrace _k^T }{m _{ q,k}} = \lbrace u \rbrace _k \lbrace u \rbrace _k^T = [R] _k $$
Where, the residue matrix for a particular mode $k$ can be expressed in the following general form:
$$[ R ]_k = \begin{bmatrix}{u_1}{u_1} & {u_1}{u_2} & \cdots & {u_1}{u_l} & \cdots & {u_1}{u_n}\\\\
{{u_2}{u_1}} & {{u_2}{u_2}} & \cdots & {u_2}{u_l} & \cdots & {{u_2}{u_n}}\\\\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots\\\\
{{u_l}{u_1}} & {{u_l}{u_2}} & \cdots & {u_l}{u_l} & \cdots & {{u_l}{u_n}}\\\\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots\\\\
{{u_n}{u_1}} & {{u_n}{u_2}} & \cdots & {u_n}{u_l} & \cdots & {{u_n}{u_n}}\end{bmatrix}_k$$
If we take row $l$ of the residue matrix for mode $k$, we have:
$$ \begin{pmatrix}
{R_{l1}}&{R_{l2}}& \cdots &{R_{ll}}& \cdots &{R_{ln}}
\end{pmatrix}_k =
\begin{pmatrix}
{u_l}{u_1}&
{u_l}{u_2}&
& \cdots &
{u_l}{u_l}&
& \cdots &
{u_l}{u_n}
\end{pmatrix}_k $$
Where, $k=1,2,…, n$ for n number of modes. In our case, when we choose move the hammer to impact all the point on the tool-holder combination and measure the vibration at point $1$ where the accelerometer is mounted. The residue matrix for specific modes will be of the form:
$$ \begin{pmatrix}
{R_{11}}&
{R_{12}}&
{R_{13}}&
{R_{14}}&
{R_{15}}
\end{pmatrix}_k =
\begin{pmatrix}
{u_1}{u_1}&
{u_1}{u_2}&
{u_1}{u_3}&
{u_1}{u_4}&
{u_1}{u_5}
\end{pmatrix}_k $$
The transfer function ${\Phi _{11}}$is measured by hitting the structure at point $1$ and measuring at point $1$, i.e. where the accelerometer is mounted. This is known as the direct transfer function. The transfer function ${\Phi _{12}}$ is measured by hitting the structure at point $2$ and measuring at point $1$. This is a cross transfer function.
$$ \Phi = G + jH $$
<b> Where, the $u_{11}u_{11}$ means the direct displacement response residues of point $1$ contributed by the first mode. E.g. for $u_{11}$, First subscript denote the measured (for left $u$) or impact point (for right $u$), and Second subscript denote the modal number.</b>
If let $ s \to j\omega $
$$ {\Phi _{11}} = {\left( {\frac{{{u _{11}}{u _{11}}}}{{{\omega ^2} + j2{\zeta _1}{\omega _{n1}}\omega - \omega _{n1}^2}}} \right) _{mode\ 1}} + {\left( {\frac{{{u _{12}}{u _{12}}}}{{{\omega ^2} + j2{\zeta _2}{\omega _{n2}}\omega - \omega _{n2}^2}}} \right) _{mode\ 2}} + {\left( {\frac{{{u _{13}}{u _{13}}}}{{{\omega ^2} + j2{\zeta _3}{\omega _{n3}}\omega - \omega _{n3}^2}}} \right) _{mode\ 3}} $$
When $ω=ω_{n1}$ , leads to a negligible contribution from $ω_{n2}$ and $ω_{n3}$, and the first part approximately equal to:
$$ {\Phi _{11}}\left( {\omega = {\omega _{n1}}} \right) \approx {\left( {\frac{{{u _{11}}{u _{11}}}}{{\omega _{n1}^2 + j2{\zeta _1}{\omega _{n1}}{\omega _{n1}} - \omega _{n1}^2}}} \right) _{mode\ 1}} $$
So we have:
$$ {\Phi _{11}}\left( {\omega = {\omega _{n1}}} \right) \approx j{H _{11,1}} = {\left( {\frac{{{u _{11}}{u _{11}}}}{{j2{\zeta _1}\omega _{n1}^2}}} \right) _{mode\ 1}} $$
$$ {u _{11}} = \sqrt { - 2{\zeta _1}\omega _{n1}^2{H _{11,1}}} $$
Similarly, when $ω=ω_{n2}$ and $ω=ω_{n3}$,
$$ {\Phi _{11}}\left( {\omega = {\omega _{n2}}} \right) \approx j{H _{11,2}} = {\left( {\frac{{{u _{12}}{u _{12}}}}{{j2{\zeta _2}\omega _{n2}^2}}} \right) _{mode\ 2}} $$
$$ {u _{12}} = \sqrt { - 2{\zeta _2}\omega _{n2}^2{H _{11,2}}} $$
$$ {\Phi _{11}}\left( {\omega = {\omega _{n3}}} \right) \approx j{H _{11,3}} = {\left( {\frac{{{u _{13}}{u _{13}}}}{{j2{\zeta _3}\omega _{n3}^2}}} \right) _{mode\ 3}} $$
$$ {u _{13}} = \sqrt { - 2{\zeta _3}\omega _{n3}^2{H _{11,3}}} $$
Similarly,
$$ {\Phi _{12}} = {\left( {\frac{{{u _{11}}{u _{21}}}}{{{s^2} + 2{\zeta _1}{\omega _{n1}}s + \omega _{n1}^2}}} \right) _{mode\ 1}} + {\left( {\frac{{{u _{12}}{u _{22}}}}{{{s^2} + 2{\zeta _2}{\omega _{n2}}s + \omega _{n2}^2}}} \right) _{mode\ 2}} + {\
程高兴
- 粉丝: 524
- 资源: 463
最新资源
- 昆仑通态MCGS与3台欧姆龙E5*C温控器通讯程序功能:通过昆仑通态触摸屏,实现对3台欧姆龙E5CC温控器 设定温度值,读取实际温度,设定报警值,设定报警类型,报警上下限功能 反应灵敏,通讯稳定可靠
- 大电流电动工具,电动螺丝刀,电锯批量方案,12V,30A FOC控制
- 三菱FX3G两轴标准程序,XZ两轴,包含轴点动,回零,相对与绝对定位,只要弄明白这个程序,就可以非常了解整个项目的程序如何去编写,从哪里开始下手,
- 昆仑通态MCGS与2台台达VFD-M变频器通讯程序实现昆仑通态触摸屏与2台台达VFD-M变频器通讯,程序稳定可靠 器件:昆仑通态TPC7062KD触摸屏,2台台达VFD-M变频器,附送接线说明和设置说
- MATLAB代码:考虑安全约束及热备用的电力系统机组组合研究 关键词:机组组合 直流潮流 优化调度 参考文档:店主自编文档,模型数据清晰明了 仿真平台:MATLAB+CPLEX gurobi平台
- c#上位案例,动态添加控件 1、这是个上位机案例,自己写来通过电脑监控kuka机器人信号的工具; 3、软件界面上可以动态添加要监控的信号,可以强制输出信号 4、有c#源代码,可以作为上位机与机器人通
- 三菱FX3U与力士乐VFC-x610变频器通讯程序三菱FX3U与力士乐VFC-x610变频器通讯案例程序,有注释 并附送程序,有接线方式,设置 器件:三菱FX3U的PLC,力士乐VFCx610变频
- 台达DVP PLC与3台力士乐VFC-x610变频器通讯程序 程序带注释,并附送昆仑通态程序,有接线方式,设置 器件:台达DVP ES系列的PLC,3台力士乐VFC-x610系列变频器,昆仑通态 功
- FPGA开发:实现数码管+1602双通道秒表(联系后留邮)按键切秒表模式,所用开发板DE2-115,代码可移植,内含FPGA驱动1602代码,代码有详细注释
- 汇川PLC AM403-CPU1608TN,2020产品基于CODESYS平台二次订制软件,支持16轴ethercat总线,自带以太网 USB CANOPEN 2路485,16高速输入8高速输出,功能
- 电力电子、电机驱动、数字滤波器matlab simulink仿真模型实现及相关算法的C代码实现 配置C2000 DSP ADC DAC PWM定时器 中断等模块,提供simulink与DSP的联合仿
- labview.通用OCR识别技术
- FoobarCon_v0.9.91.0.apk
- 华为HarmonyOS应用开发者高级认证,官方专业证书
- 华为HarmonyOS应用开发者高级认证,官方专业证书
- 51单片机四层电梯控制器 基于51单片机的四层电梯控制系统 包括源代码和proteus仿真 系统硬件由51单片机最小系统、蜂鸣器电路、指示灯电路、内部按键电路、外部按键电路、步进电机、ULN2003
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈