"磁悬浮系统建模及其PID控制器设计"
磁悬浮系统是一种具有无摩擦、无磨损、无需润滑以及寿命较长等一系列优点的技术,在能源、交通、航空航天、机械工业和生命科学等高科技领域有着广泛的应用背景。随着磁悬浮技术的广泛应用,对磁悬浮系统的控制已成为首要问题。
磁悬浮系统的控制是基于PID控制器的原理,设计出PID控制器对磁悬浮系统进行控制。在分析磁悬浮系统构成及工作原理的基础上,建立磁悬浮控制系统的数学模型,并以此为研究对象,设计了PID控制器,确定控制方案,运用MATLAB软件进行仿真,得出较好的控制参数,并对磁悬浮控制系统进行实时控制,验证控制参数。
PID控制器自产生以来,一直是工业生产过程中应用最广、也是最成熟的控制器。目前大多数工业控制器都是PID控制器或其改进型。尽管在控制领域,各种新型控制器不断涌现,但PID控制器还是以其结构简单、易实现、鲁棒性强等优点,处于主导地位。
磁悬浮技术的应用非常广泛,包括交通、能源、航空航天、机械工业和生命科学等领域。在交通领域,磁悬浮技术可以应用于磁悬浮列车、磁悬浮轴承等;在能源领域,磁悬浮技术可以应用于磁悬浮发电机、磁悬浮风力发电机等;在航空航天领域,磁悬浮技术可以应用于磁悬浮飞行器、磁悬浮推进器等。
磁悬浮技术的发展历程可以追溯到1900年初,当时美国、法国等专家曾提出物体摆脱自身重力阻力并高效运营的若干猜想-- 也就是磁悬浮的早期模型。1842年,英国物理学家Earnshow就提出了磁悬浮的概念,同时指出:单靠永久磁铁是不能将一个铁磁体在所有六个自由度上都保持在自由稳定的悬浮状态。1934年,德国的赫尔曼·肯佩尔申请了磁悬浮列车这一的专利。
在20世纪70、80年代,磁悬浮列车系统继续在德国蒂森亨舍尔测试和实施运行。德国开始命名这套磁悬浮系统为“磁悬浮”。1966年,美国科学家詹姆斯·鲍威尔和戈登·丹比提出了第一个具有实用性质的磁悬浮运输系统。1970年代以后,随着世界工业化国家经济实力的不断加强,为提高交通运输能力以适应其经济发展的需要,德国、日本、美国、加拿大、法国、英国等发达国家相继开始筹划进行磁悬浮运输系统的开发。
在日本,磁悬浮列车的发展很快,1994年2月24日,日本的电动悬浮式磁悬浮列车,在宫崎一段74km长的试验线上,创造了时速431km的日本最高纪录。1999年4月,日本研制的超导磁悬浮列车在试验线上达到时速552km。
在德国,磁悬浮列车的发展也很快,德国经过近20年的努力,技术上已趋于成熟,已具有建造运用的水平。原计划在汉堡和柏林之间修建第一条时速为400km的磁悬浮铁路,总长度为248km,预计2003年正式投入营运。
在中国,对磁悬浮列车的研究工作起步较晚,1989年3月,国防科技大学研制出我国第一台磁悬浮试验样车。1995年,我国第一条磁悬浮列车实验线在西南交通大学建立。
磁悬浮系统建模及其PID控制器设计是当前一个非常重要的研究方向, Magnetic levitation system based on PID controller simulation摘要磁悬浮技术具有无摩擦、无磨损、无需润滑以及寿命较长等一系列优点,在能源、交通、航空航天、机械工业和生命科学等高科技领域有着广泛的应用背景。随着磁悬浮技术的广泛应用,对磁悬浮系统的控制已成为首要问题。本设计以PID控制为原理,设计出PID控制器对磁悬浮系统进行控制。在分析磁悬浮系统构成及工作原理的基础上,建立磁悬浮控制系统的数学模型,并以此为研究对象,设计了PID控制器,确定控制方案,运用MATLAB软件进行仿真,得出较好的控制参数,并对磁悬浮控制系统进行实时控制,验证控制参数。