%
%
% the procedure of ant colony algorithm for VRP
%
% % % % % % % % % % %
%initialize the parameters of ant colony algorithms
load data.txt;
d=data(:,2:3);
g=data(:,4);
m=31; % 蚂蚁数
alpha=1;
belta=4;% 决定tao和miu重要性的参数
lmda=0;
rou=0.9; %衰减系数
q0=0.95;
% 概率
tao0=1/(31*841.04);%初始信息素
Q=1;% 蚂蚁循环一周所释放的信息素
defined_phrm=15.0; % initial pheromone level value
QV=100; % 车辆容量
vehicle_best=round(sum(g)/QV)+1; %所完成任务所需的最少车数
V=40;
% 计算两点的距离
for i=1:32;
for j=1:32;
dist(i,j)=sqrt((d(i,1)-d(j,1))^2+(d(i,2)-d(j,2))^2);
end;
end;
%给tao miu赋初值
for i=1:32;
for j=1:32;
if i~=j;
%s(i,j)=dist(i,1)+dist(1,j)-dist(i,j);
tao(i,j)=defined_phrm;
miu(i,j)=1/dist(i,j);
end;
end;
end;
for k=1:32;
for k=1:32;
deltao(i,j)=0;
end;
end;
best_cost=10000;
for n_gen=1:50;
print_head(n_gen);
for i=1:m;
%best_solution=[];
print_head2(i);
sumload=0;
cur_pos(i)=1;
rn=randperm(32);
n=1;
nn=1;
part_sol(nn)=1;
%cost(n_gen,i)=0.0;
n_sol=0; % 由蚂蚁产生的路径数量
M_vehicle=500;
t=0; %最佳路径数组的元素数为0
while sumload<=QV;
for k=1:length(rn);
if sumload+g(rn(k))<=QV;
gama(cur_pos(i),rn(k))=(sumload+g(rn(k)))/QV;
A(n)=rn(k);
n=n+1;
end;
end;
fid=fopen('out_customer.txt','a+');
fprintf(fid,'%s %i\t','the current position is:',cur_pos(i));
fprintf(fid,'\n%s','the possible customer set is:')
fprintf(fid,'\t%i\n',A);
fprintf(fid,'------------------------------\n');
fclose(fid);
p=compute_prob(A,cur_pos(i),tao,miu,alpha,belta,gama,lmda,i);
maxp=1e-8;
na=length(A);
for j=1:na;
if p(j)>maxp
maxp=p(j);
index_max=j;
end;
end;
old_pos=cur_pos(i);
if rand(1)<q0
cur_pos(i)=A(index_max);
else
krnd=randperm(na);
cur_pos(i)=A(krnd(1));
bbb=[old_pos cur_pos(i)];
ccc=[1 1];
if bbb==ccc;
cur_pos(i)=A(krnd(2));
end;
end;
tao(old_pos,cur_pos(i))=taolocalupdate(tao(old_pos,cur_pos(i)),rou,tao0);%对所经弧进行局部更新
sumload=sumload+g(cur_pos(i));
nn=nn+1;
part_sol(nn)=cur_pos(i);
temp_load=sumload;
if cur_pos(i)~=1;
rn=setdiff(rn,cur_pos(i));
n=1;
A=[];
end;
if cur_pos(i)==1; % 如果当前点为车场,将当前路径中的已访问用户去掉后,开始产生新路径
if setdiff(part_sol,1)~=[];
n_sol=n_sol+1; % 表示产生的路径数,n_sol=1,2,3,..5,6...,超过5条对其费用加上车辆的派遣费用
fid=fopen('out_solution.txt','a+');
fprintf(fid,'%s%i%s','NO.',n_sol,'条路径是:');
fprintf(fid,'%i ',part_sol);
fprintf(fid,'\n');
fprintf(fid,'%s','当前的用户需求量是:');
fprintf(fid,'%i\n',temp_load);
fprintf(fid,'------------------------------\n');
fclose(fid);
% 对所得路径进行路径内3-opt优化
final_sol=exchange(part_sol);
for nt=1:length(final_sol); % 将所有产生的路径传给一个数组
temp(t+nt)=final_sol(nt);
end;
t=t+length(final_sol)-1;
sumload=0;
final_sol=setdiff(final_sol,1);
rn=setdiff(rn,final_sol);
part_sol=[];
final_sol=[];
nn=1;
part_sol(nn)=cur_pos(i);
A=[];
n=1;
end;
end;
if setdiff(rn,1)==[];% 产生最后一条终点不为1的路径
n_sol=n_sol+1;
nl=length(part_sol);
part_sol(nl+1)=1;%将路径的最后1位补1
% 对所得路径进行路径内3-opt优化
final_sol=exchange(part_sol);
for nt=1:length(final_sol); % 将所有产生的路径传给一个数组
temp(t+nt)=final_sol(nt);
end;
cost(n_gen,i)=cost_sol(temp,dist)+M_vehicle*(n_sol-vehicle_best); %计算由蚂蚁i产生的路径总长度
for ki=1:length(temp)-1;
deltao(temp(ki),temp(ki+1))=deltao(temp(ki),temp(ki+1))+Q/cost(n_gen,i);
end;
if cost(n_gen,i)<best_cost;
best_cost=cost(n_gen,i);
old_cost=best_cost;
best_gen=n_gen; % 产生最小费用的代数
best_ant=i; %产生最小费用的蚂蚁
best_solution=temp;
end;
if i==m; %如果所有蚂蚁均完成一次循环,,则用最佳费用所对应的路径对弧进行整体更新
for ii=1:32;
for jj=1:32;
tao(ii,jj)=(1-rou)*tao(ii,jj);
end;
end;
for kk=1:length(best_solution)-1;
tao(best_solution(kk),best_solution(kk+1))=tao(best_solution(kk),best_solution(kk+1))+deltao(best_solution(kk),best_solution(kk+1));
end;
end;
fid=fopen('out_solution.txt','a+');
fprintf(fid,'%s%i%s','NO.',n_sol,'路径是:');
fprintf(fid,'%i ',part_sol);
fprintf(fid,'\n');
fprintf(fid,'%s %i\n','当前的用户需求量是:',temp_load);
fprintf(fid,'%s %f\n','总费用是:',cost(n_gen,i));
fprintf(fid,'------------------------------\n');
fprintf(fid,'%s\n','最终路径是:');
fprintf(fid,'%i-',temp);
fprintf(fid,'\n');
fclose(fid);
temp=[];
break;
end;
end;
end;
end;