馃摎 This guide explains how to use **Weights & Biases** (W&B) with YOLOv5 馃殌. UPDATED 29 September 2021.
- [About Weights & Biases](#about-weights-&-biases)
- [First-Time Setup](#first-time-setup)
- [Viewing runs](#viewing-runs)
- [Disabling wandb](#disabling-wandb)
- [Advanced Usage: Dataset Versioning and Evaluation](#advanced-usage)
- [Reports: Share your work with the world!](#reports)
## About Weights & Biases
Think of [W&B](https://wandb.ai/site?utm_campaign=repo_yolo_wandbtutorial) like GitHub for machine learning models. With a few lines of code, save everything you need to debug, compare and reproduce your models 鈥� architecture, hyperparameters, git commits, model weights, GPU usage, and even datasets and predictions.
Used by top researchers including teams at OpenAI, Lyft, Github, and MILA, W&B is part of the new standard of best practices for machine learning. How W&B can help you optimize your machine learning workflows:
- [Debug](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Free-2) model performance in real time
- [GPU usage](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#System-4) visualized automatically
- [Custom charts](https://wandb.ai/wandb/customizable-charts/reports/Powerful-Custom-Charts-To-Debug-Model-Peformance--VmlldzoyNzY4ODI) for powerful, extensible visualization
- [Share insights](https://wandb.ai/wandb/getting-started/reports/Visualize-Debug-Machine-Learning-Models--VmlldzoyNzY5MDk#Share-8) interactively with collaborators
- [Optimize hyperparameters](https://docs.wandb.com/sweeps) efficiently
- [Track](https://docs.wandb.com/artifacts) datasets, pipelines, and production models
## First-Time Setup
<details open>
<summary> Toggle Details </summary>
When you first train, W&B will prompt you to create a new account and will generate an **API key** for you. If you are an existing user you can retrieve your key from https://wandb.ai/authorize. This key is used to tell W&B where to log your data. You only need to supply your key once, and then it is remembered on the same device.
W&B will create a cloud **project** (default is 'YOLOv5') for your training runs, and each new training run will be provided a unique run **name** within that project as project/name. You can also manually set your project and run name as:
```shell
$ python train.py --project ... --name ...
```
YOLOv5 notebook example: <a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<img width="960" alt="Screen Shot 2021-09-29 at 10 23 13 PM" src="https://user-images.githubusercontent.com/26833433/135392431-1ab7920a-c49d-450a-b0b0-0c86ec86100e.png">
</details>
## Viewing Runs
<details open>
<summary> Toggle Details </summary>
Run information streams from your environment to the W&B cloud console as you train. This allows you to monitor and even cancel runs in <b>realtime</b> . All important information is logged:
- Training & Validation losses
- Metrics: Precision, Recall, mAP@0.5, mAP@0.5:0.95
- Learning Rate over time
- A bounding box debugging panel, showing the training progress over time
- GPU: Type, **GPU Utilization**, power, temperature, **CUDA memory usage**
- System: Disk I/0, CPU utilization, RAM memory usage
- Your trained model as W&B Artifact
- Environment: OS and Python types, Git repository and state, **training command**
<p align="center"><img width="900" alt="Weights & Biases dashboard" src="https://user-images.githubusercontent.com/26833433/135390767-c28b050f-8455-4004-adb0-3b730386e2b2.png"></p>
</details>
## Disabling wandb
- training after running `wandb disabled` inside that directory creates no wandb run
![Screenshot (84)](https://user-images.githubusercontent.com/15766192/143441777-c780bdd7-7cb4-4404-9559-b4316030a985.png)
- To enable wandb again, run `wandb online`
![Screenshot (85)](https://user-images.githubusercontent.com/15766192/143441866-7191b2cb-22f0-4e0f-ae64-2dc47dc13078.png)
## Advanced Usage
You can leverage W&B artifacts and Tables integration to easily visualize and manage your datasets, models and training evaluations. Here are some quick examples to get you started.
<details open>
<h3> 1: Train and Log Evaluation simultaneousy </h3>
This is an extension of the previous section, but it'll also training after uploading the dataset. <b> This also evaluation Table</b>
Evaluation table compares your predictions and ground truths across the validation set for each epoch. It uses the references to the already uploaded datasets,
so no images will be uploaded from your system more than once.
<details open>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --upload_data val</code>
![Screenshot from 2021-11-21 17-40-06](https://user-images.githubusercontent.com/15766192/142761183-c1696d8c-3f38-45ab-991a-bb0dfd98ae7d.png)
</details>
<h3>2. Visualize and Version Datasets</h3>
Log, visualize, dynamically query, and understand your data with <a href='http://222.178.203.72:19005/whst/63/=cnbrzvZmcazZh//guides/data-vis/tables'>W&B Tables</a>. You can use the following command to log your dataset as a W&B Table. This will generate a <code>{dataset}_wandb.yaml</code> file which can be used to train from dataset artifact.
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python utils/logger/wandb/log_dataset.py --project ... --name ... --data .. </code>
![Screenshot (64)](https://user-images.githubusercontent.com/15766192/128486078-d8433890-98a3-4d12-8986-b6c0e3fc64b9.png)
</details>
<h3> 3: Train using dataset artifact </h3>
When you upload a dataset as described in the first section, you get a new config file with an added `_wandb` to its name. This file contains the information that
can be used to train a model directly from the dataset artifact. <b> This also logs evaluation </b>
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --data {data}_wandb.yaml </code>
![Screenshot (72)](https://user-images.githubusercontent.com/15766192/128979739-4cf63aeb-a76f-483f-8861-1c0100b938a5.png)
</details>
<h3> 4: Save model checkpoints as artifacts </h3>
To enable saving and versioning checkpoints of your experiment, pass `--save_period n` with the base cammand, where `n` represents checkpoint interval.
You can also log both the dataset and model checkpoints simultaneously. If not passed, only the final model will be logged
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --save_period 1 </code>
![Screenshot (68)](https://user-images.githubusercontent.com/15766192/128726138-ec6c1f60-639d-437d-b4ee-3acd9de47ef3.png)
</details>
</details>
<h3> 5: Resume runs from checkpoint artifacts. </h3>
Any run can be resumed using artifacts if the <code>--resume</code> argument starts with聽<code>wandb-artifact://</code>聽prefix followed by the run path, i.e,聽<code>wandb-artifact://username/project/runid </code>. This doesn't require the model checkpoint to be present on the local system.
<details>
<summary> <b>Usage</b> </summary>
<b>Code</b> <code> $ python train.py --resume wandb-artifact://{run_path} </code>
![Screenshot (70)](https://user-images.githubusercontent.com/15766192/128728988-4e84b355-6c87-41ae-a591-14aecf45343e.png)
</details>
<h3> 6: Resume runs from dataset artifact & checkpoint artifacts. </h3>
<b> Local dataset or model checkpoints are not required. This can be used to resume runs directly on a different device </b>
The syntax is same as the previous section, but you'll need to lof both the dataset and model checkpoints as artifacts, i.e, set bot <code>--upload_dataset</code> or
train fro
没有合适的资源?快使用搜索试试~ 我知道了~
基于yolov5的高速公路及城市道路车辆视觉检测(CIAC比赛项目)源码+详细文档 +全部资料+高分项目.zip
共171个文件
py:60个
yaml:48个
png:16个
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 137 浏览量
2024-12-20
17:57:09
上传
评论
收藏 2.51MB ZIP 举报
温馨提示
【资源说明】 基于yolov5的高速公路及城市道路车辆视觉检测(CIAC比赛项目)源码+详细文档 +全部资料+高分项目.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
资源推荐
资源详情
资源评论
收起资源包目录
基于yolov5的高速公路及城市道路车辆视觉检测(CIAC比赛项目)源码+详细文档 +全部资料+高分项目.zip (171个子文件)
setup.cfg 2KB
Dockerfile 2KB
Dockerfile 821B
Dockerfile-arm64 2KB
Dockerfile-cpu 2KB
.dockerignore 4KB
.gitattributes 75B
.gitignore 4KB
single_json_to_txt.ipynb 70KB
tutorial.ipynb 57KB
statistic.ipynb 3KB
bus.jpg 476KB
1627260257570.jpg 263KB
zidane.jpg 165KB
optimizer_config.json 3KB
1627260257570.json 3KB
LICENSE 34KB
README_cn.md 29KB
README.md 11KB
README.md 10KB
README.md 10KB
CODE_OF_CONDUCT.md 5KB
CONTRIBUTING.md 5KB
README.md 4KB
README.md 2KB
PULL_REQUEST_TEMPLATE.md 693B
SECURITY.md 359B
task_inf.pdf 760KB
image-20221101104915032.png 183KB
image-20221101111317461.png 95KB
image-20221101110510144.png 94KB
image-20221101114630511.png 37KB
image-20221101105902008.png 36KB
image-20221101105857363.png 36KB
image-20221101105532039.png 36KB
image-20221101104252070.png 29KB
image-20221101102848235.png 26KB
image-20221101102149002.png 19KB
image-20221101103218388.png 16KB
image-20221101102106991.png 16KB
image-20221101102947189.png 10KB
image-20221101110637584.png 10KB
image-20221101104014792.png 4KB
image-20221101115704711.png 3KB
dataloaders.py 52KB
general.py 44KB
common.py 40KB
train.py 34KB
train.py 33KB
export.py 29KB
wandb_utils.py 28KB
tf.py 26KB
plots.py 25KB
val.py 23KB
val_75.py 20KB
val.py 20KB
torch_utils.py 19KB
__init__.py 18KB
yolo.py 17KB
augmentations.py 17KB
__init__.py 17KB
train.py 16KB
detect_task1.py 15KB
predict.py 15KB
metrics.py 14KB
dataloaders.py 13KB
predict.py 11KB
loss.py 10KB
loss.py 8KB
val.py 8KB
benchmarks.py 8KB
hubconf.py 8KB
clearml_utils.py 7KB
autoanchor.py 7KB
hpo.py 6KB
plots.py 6KB
metrics.py 5KB
hpo.py 5KB
general.py 5KB
comet_utils.py 5KB
downloads.py 5KB
experimental.py 4KB
augmentations.py 4KB
vis_dataset.py 4KB
triton.py 4KB
activations.py 3KB
autobatch.py 3KB
callbacks.py 3KB
split_file.py 2KB
img2vid.py 2KB
__init__.py 2KB
vis_result.py 2KB
restapi.py 1KB
sweep.py 1KB
resume.py 1KB
log_dataset.py 1KB
compare_img.py 862B
example_request.py 368B
statistic.py 144B
__init__.py 0B
共 171 条
- 1
- 2
资源评论
Yuki-^_^
- 粉丝: 3112
- 资源: 4586
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 2025计算机网络技术考试题及答案.docx
- 2025驾驶员交通安全知识测试题及答案.docx
- 2025继续教育公需课必修课考试题库附含答案.docx
- 2025家政服务考试题及答案.docx
- 工程造价咨询企业基于绩效的体系设计.doc
- 2018年造价咨询公司绩效提成方案.doc
- 工程造价从业人员绩效考核制度.doc
- 工程造价企业绩效考核细则.doc
- 工程造价咨询项目考核评分制度(试行).doc
- 项目管理有限公司造价咨询薪酬管理办法.doc
- 造价咨询公司绩效提成方法.doc
- 造价咨询公司薪酬管理办法.doc
- 2025驾照C1证考试科目一必考考试题库带答案.docx
- 2025建筑八大员(材料员基础知识)考试题与答案.docx
- 2025检验类之临床医学检验技术(士)真题库附答案.docx
- 咨询公司薪酬管理办法.doc
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功