没有合适的资源?快使用搜索试试~ 我知道了~
资源推荐
资源详情
资源评论
Causal Inference:
A Statistical Learning Approach
Stefan Wager
Stanford University
draft version, comments welcome
September 6, 2024
Contents
1 Randomized Controlled Trials 4
1.1 Difference-in-means estimation . . . . . . . . . . . . . . . . . . . 5
1.2 Regression adjustments in randomized trials . . . . . . . . . . . 9
1.3 Bibliographic notes . . . . . . . . . . . . . . . . . . . . . . . . . 16
2 Unconfoundedness and the Propensity Score 18
2.1 Stratified estimation . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Inverse-propensity weighting . . . . . . . . . . . . . . . . . . . . 23
2.3 Bibliographic notes . . . . . . . . . . . . . . . . . . . . . . . . . 28
3 Doubly Robust Methods 30
3.1 Double machine learning . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Efficient estimation under uncounfoundedness . . . . . . . . . . 40
3.3 Bibliographic notes . . . . . . . . . . . . . . . . . . . . . . . . . 43
4 Estimating Heterogeneous Treatment Effects 45
4.1 Semiparametric modeling . . . . . . . . . . . . . . . . . . . . . . 47
4.2 A loss function for treatment heterogeneity . . . . . . . . . . . . 52
4.3 Bibliographic notes . . . . . . . . . . . . . . . . . . . . . . . . . 56
5 Policy Learning 58
5.1 Policy evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2 Empirical-welfare maximization . . . . . . . . . . . . . . . . . . 64
5.3 Bibliographic notes . . . . . . . . . . . . . . . . . . . . . . . . . 68
6 Adaptive Experiments 70
6.1 Low-regret data collection . . . . . . . . . . . . . . . . . . . . . 71
6.2 Inference after adaptive data collection . . . . . . . . . . . . . . 77
6.3 Bibliographic notes . . . . . . . . . . . . . . . . . . . . . . . . . 83
7 Balancing Estimators 85
7.1 Covariate-balancing propensity scores . . . . . . . . . . . . . . . 87
1
7.2 Approximate balance and augmented estimators . . . . . . . . . 92
7.3 Bibliographic notes . . . . . . . . . . . . . . . . . . . . . . . . . 97
8 Regression Discontinuity Designs 99
8.1 Local linear regression . . . . . . . . . . . . . . . . . . . . . . . 101
8.2 Optimized estimation and bias-aware inference . . . . . . . . . . 104
8.3 Bibliographic notes . . . . . . . . . . . . . . . . . . . . . . . . . 111
9 Causal Inference with Endogenous Treatments 113
9.1 Structural equation models and do-calculus . . . . . . . . . . . . 114
9.2 Instrumental variables regression . . . . . . . . . . . . . . . . . 119
9.3 Bibliographic notes . . . . . . . . . . . . . . . . . . . . . . . . . 126
10 Local Average Treatment Effects 128
10.1 Non-compliance in randomized trials . . . . . . . . . . . . . . . 129
10.2 Latent choice models . . . . . . . . . . . . . . . . . . . . . . . . 132
10.3 Bibliographic notes . . . . . . . . . . . . . . . . . . . . . . . . . 139
11 Spillovers and Interference 140
11.1 Exposure mappings . . . . . . . . . . . . . . . . . . . . . . . . . 141
11.2 Permutation tests . . . . . . . . . . . . . . . . . . . . . . . . . . 143
11.3 Bibliographic notes . . . . . . . . . . . . . . . . . . . . . . . . . 149
12 Estimating Treatment Effects under Interference 151
12.1 Finite-population methods . . . . . . . . . . . . . . . . . . . . . 154
12.2 Confidence intervals for exposure effects . . . . . . . . . . . . . 158
12.3 Bibliographic notes . . . . . . . . . . . . . . . . . . . . . . . . . 163
13 Event-Study Designs 165
13.1 Difference in differences . . . . . . . . . . . . . . . . . . . . . . . 167
13.2 Synthetic-control methods . . . . . . . . . . . . . . . . . . . . . 173
13.3 Bibliographic notes . . . . . . . . . . . . . . . . . . . . . . . . . 176
14 Evaluating Dynamic Policies 178
14.1 Sequential unconfoundedness . . . . . . . . . . . . . . . . . . . . 180
14.2 Doubly robust estimation . . . . . . . . . . . . . . . . . . . . . 187
14.3 Bibliographic notes . . . . . . . . . . . . . . . . . . . . . . . . . 192
15 Markov Decision Processes 193
15.1 The long-run average value . . . . . . . . . . . . . . . . . . . . . 195
15.2 Switchback experiments . . . . . . . . . . . . . . . . . . . . . . 203
2
Chapter 1
Randomized Controlled Trials
How best to understand and characterize causality is an age-old question in
philosophy. As such, one might expect that any discussion of causal inference
would need to be framed in terms of subtle and esoteric concepts. However,
a ground-breaking line of work starting with Neyman [1923] and Rubin [1974]
established that—although causality is in general a delicate and complicated
notion—there exists an important class of problems, randomized controlled
trials, where it is possible to approach causal questions in a practical and
conceptually straight-forward way via careful application of randomization,
averaging, and counterfactual reasoning.
1
This chapter presents a brief overview of statistical estimation and infer-
ence in randomized controlled trials (RCTs). When available, evidence drawn
from RCTs is often considered gold standard statistical evidence; and thus
methods for studying RCTs form the foundation of the statistical toolkit for
causal inference. Furthermore, many widely used observational study designs
in, e.g., econometrics or epidemiology are motivated by analogy to RCTs; and
so this chapter will also serve as a stepping stone to subsequent discussions of
estimation and inference in observational studies.
Average treatment effects Suppose that we have run a RCT with n study
participants i = 1, . . . , n, where each unit i is assigned a binary treatment
W
i
∈ {0, 1} and we then measure an outcome Y
i
. Our goal is to estimate the
effect of the treatment on the outcome. Following the Neyman–Rubin causal
model, we define the causal effect of a treatment via potential outcomes:
For each treatment level w ∈ {0, 1}, we define potential outcomes Y
i
(1) and
Y
i
(0) corresponding to the outcome the i-th subject would have experienced
had they respectively received the treatment or not, such that Y
i
= Y
i
(W
i
).
1
See Holland [1986] for one perspective on the work of Neyman [1923] and Rubin [1974]
in a historical context.
4
剩余246页未读,继续阅读
资源评论
Lynnhio
- 粉丝: 72
- 资源: 1
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 基于机器学习的锂离子电池容量估计使用多通道充电配置程序,利用神经网络学习容量与充电性能之间的关系 使用前馈神经网络,卷积神经网络和长短时记忆来准确地估计健康状态 电池寿命预测,有相关资料数据
- centos 7 chrome浏览器及所有依赖包
- 基于遗传算法优化极限学习机(GA-ELM)的数据回归预测 matlab代码
- STM32L0系列微控制器的设备支持包
- 医疗问诊平台会员续费分析活动数据.zip
- 遗传算法微网优化 考虑风光柴油机等设备,程序注释详细,适合初学者学习
- 区间综合柜零层端子配线表.dwg-2019-03-03-17-14-05-703.bak
- 永磁同步电机矢量控制foc simulink仿真 转速电流双闭环,pi控制器
- BP神经网络的数据分类预测和故障信号诊断分类matlab代码 ,直接运行出数据分类结果和误差分布,注释详细易读懂,可直接套数据运行 PS:基于遗传算法的BP神经网络数据分类预测,基于PNN概率神经
- 2024国家公务员招录职位信息.zip
- springboot集成常用开发中间件,分库分表,缓存,消息队列,定时器,权限管理等组件
- 欧姆龙cp1h-xa40dt-d与台达变频器modbus rtu通讯程序 控制启停、写入频率和读取频率,plc型号cp1h-xa40dt-d,触摸屏型号是威纶通mt6103ip和mt8071ie,变
- 台达eh3与台达温控器modbus rtu通讯程序 程序有注释 plc为台达eh3,触摸屏为dop-107bv,温控器为台达dta4848系列
- 西门子PLC通用库 S7.Net.dll
- 基于Python Tkinter的图像处理工具:实现与应用
- VB6.0股票实时交易数据采集源代码
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功