function [varargout] = vmd(x,varargin)
%VMD Variational mode decomposition
% [IMF,RESIDUAL] = VMD(X) returns intrinsic mode functions (IMFs) and a
% residual signal corresponding to the variational mode decomposition
% (VMD) of X, with default decomposition parameters. X can be a vector or
% a timetable with a single variable containing a vector. X must be a
% real signal. When X is a vector, IMF is a matrix where each column
% stores an extracted intrinsic mode function, and RESIDUAL is a column
% vector storing the residual. When X is a timetable, IMF is a timetable
% with multiple single variables where each variable stores a mode
% function, and RESIDUAL is a timetable with a single variable. X can be
% double or single precision.
%
% [IMF,RESIDUAL] = VMD(X,'Name1',Value1,'Name2',Value2,...)
% specifies name-value pairs that configure the initial optimization
% settings and the decomposition stopping criterion to be used for VMD.
% The supported name-value pairs are:
%
% 'NumIMFs': Number of decomposition IMFs. The default
% value is 5.
%
% 'MaxIterations': Maximum number of optimization iterations. The
% optimization process stops when the number of
% iterations is greater than MaxIterations. The
% default value is 500.
%
% 'AbsoluteTolerance': Mode convergence tolerance. The optimization
% 'RelativeTolerance': process stops when two conditions are met at
% the same time: 1) The average squared absolute
% improvement toward convergence of IMFs in two
% consecutive iterations is less than
% AbsoluteTolerance; and 2) The average relative
% improvement toward convergence of IMFs in two
% consecutive iterations is less than
% RelativeTolerance. AbsoluteTolerance and
% RelativeTolerance are both specified as
% positive real values and default to 5e-6 and
% AbsoluteTolerance*1e3, respectively.
%
% 'CentralFrequencies': Initial central IMF frequencies, specified as
% a vector of length NumIMFs. Vector values must
% be within the range, [0,0.5] cycles/sample,
% which is equivalent to the frequency range,
% [0,pi] radians/sample.
%
% 'InitializeMethod': Method to initialize the central frequencies.
% 'CentralFrequencies' and 'InitializeMethod'
% are mutually exclusive. The methods can be:
%
% 'random' - Initialize the central frequencies
% as random numbers distributed uniformly in the
% interval [0,0.5].
%
% 'grid' - Initialize the central frequencies as
% a uniformly sampled grid in the interval
% [0,0.5].
%
% 'peaks' - Initialize the central frequencies
% as the peak locations of the signal in the
% frequency domain (default).
%
% 'InitialIMFs': Initial IMFs, specified as a real matrix with
% rows corresponding to time samples and columns
% corresponding to modes. The default value is a
% matrix of zeros.
%
% 'PenaltyFactor': Penalty factor for reconstruction fidelity,
% specified as a positive real value. The
% smaller its the value, the stricter the data
% fidelity. The default value is 1000.
%
% 'InitialLM': Initial frequency-domain Lagrange multiplier
% over the interval, [0,0.5]. The multiplier
% enforces the reconstruction constraint. The
% default value is a complex vector of zeros.
% The length of the multiplier depends on the
% input size. See documentation for more
% details.
%
% 'LMUpdateRate': Update rate for the Lagrange multiplier in
% each iteration. A higher rate results in
% faster convergence but increases the chance of
% getting stuck in a local optimum. The default
% value is 0.01.
%
% 'Display': Set to true to display the average absolute
% and relative improvement of modes and central
% frequencies every 20 iterations, and show the
% final stopping information. The default is
% false.
%
% [IMF,RESIDUAL,INFO] = VMD(...) returns the IMFs, the residual, and a
% structure containing these fields:
%
% ExitFlag: Termination flag. A value of 0 indicates the
% algorithm stopped when it reached the maximum
% number of iterations. A value of 1 indicates
% the algorithm stopped when it met the absolute
% and relative tolerances.
%
% CentralFrequencies: Central frequencies of the IMFs.
%
% NumIterations: Total number of iterations.
%
% AbsoluteImprovement: Average squared absolute improvement toward
% convergence of the IMFs between the final two
% iterations.
%
% RelativeImprovement: Average relative improvement toward
% convergence of the IMFs between the final two
% iterations.
%
% LagrangeMultiplier: Frequency-domain Lagrange multiplier at the
% last iteration.
%
% VMD(...) with no output arguments plots the original signal, the
% residual signal, and the IMFs in the same figure.
%
% % EXAMPLE 1:
% % Compute and display the VMD of a signal
% t = 0:1e-3:1;
% x1 = cos(2*pi*2*t);
% x2 = 1/4*cos(2*pi*24*t);
% x3 = 1/16*cos(2*pi*288*t);
% x = x1 + x2 + x3 + 0.1*randn(1,length(t));
% vmd(x,'NumIMFs',3,'Display',true)
%
% % EXAMPLE 2:
% % Compute the VMD of a signal and output decomposition details.
% % Check that the summation of the IMFs and the residual returns the
% % original signal
% t = 0:1e-3:4;
% x1 = sin(2*pi*50*t) + sin(2*pi*200*t);
% x2 = sin(2*pi*25*t) + sin(2*pi*100*t) + sin(2*pi*250*t);
% x = [x1 x2] + 0.1*randn(1,length(t)*2);
% [IMFs,residual,info] = vmd(x,'MaxIterations',600);
% max(x(:) - (sum(IMFs,2)+residual))
%
% See also HHT and EMD.
%
% Copyright 2019-2022 The MathWorks, Inc.
%#codegen
signalwavelet.internal.licenseCheck;
%---------------------------------
% Check inputs/outputs
narginchk(1,23);
if coder.target('MATLAB') % for MATLAB
nargoutchk(0,3);
else
nargoutchk(1,3);
end
% Parse input
[x,td,isTT] = parseInput(x);
% Parse name-value pairs
opts = signalwavelet.internal.vmd.vmdParser(length(x),class(x),varargin{:});
if isTT
coder.internal.assert(coder.internal.isConst(opts.NumIMFs),...
'shared_signalwavelet:vmd:vmd:NeedConstantNumIMFs');
end
[IMF,residual,info] = computeVMD(x,opts);
if (nargout == 0) && coder.target('MATLAB')
signalwavelet.internal.convenienceplot.imfPlot(x,IMF,residual,td,'vmd');
end
if nargout > 0
if isTT
variableNames = cell(1,opts.NumIMFs);
coder.unroll();
for i = 1:opts.NumIMFs
var
MATLAB代码 信号分析 VMD分解代码 包络谱分析
需积分: 0 34 浏览量
更新于2024-05-24
2
收藏 11KB ZIP 举报
在本文中,我们将深入探讨如何使用MATLAB进行信号分析,特别是针对电机电流信号轴承故障的检测。MATLAB是一款强大的计算软件,广泛应用于工程、科学和数学领域,其强大的信号处理和数据分析功能使得它成为此类任务的理想工具。
我们要了解的是VMD(Variational Mode Decomposition,变分模态分解)算法。VMD是一种非线性、非平稳信号的分解方法,它能够将复杂信号分解为一系列简谐模态函数(IMF,Instantaneous Frequency Modulated Modes)。在这个场景中,VMD被用于电机电流信号的分解,目的是揭示隐藏在信号中的故障特征。通过VMD,我们可以将信号拆分成几个具有不同特性的IMF分量,每个分量对应不同的物理过程或故障模式。
电机电流信号的分析通常包括时域、频域以及包络谱分析。时域分析主要观察信号随时间的变化,寻找异常的峰值或趋势;频域分析则揭示信号的频率成分,通过傅立叶变换将信号从时域转换到频域,可以识别出故障频率。而包络谱分析是检测周期性冲击故障的一种有效手段,它通过希尔伯特变换提取信号的包络,从而更容易识别出故障特征频率。
在这个代码中,我们首先要选取要分析的信号通道,这可能是电机电流信号的不同传感器数据。然后,为了减少计算复杂性和存储需求,通常会对信号进行降采样处理。降采样是指降低信号的采样率,但必须保证不失真地捕获信号的关键信息。
接下来,VMD算法会被应用到处理后的信号上,分解出4个IMF分量。每个IMF代表信号的一个不同动态特性,可能包含正常运行状态、潜在的微小故障,甚至严重的机械问题。通过分析这些IMF,工程师可以确定哪个分量与故障模式最相关。
寻找故障频率是整个分析的关键步骤。这通常涉及对每个IMF的频谱进行分析,寻找与已知故障模式相匹配的频率峰值。例如,在电机轴承故障中,可能会出现特定的滚动元素故障频率、转子速度频率等。通过精确识别这些频率,可以更准确地定位故障源头。
总结来说,MATLAB代码“信号分析 VMD分解代码 包络谱分析”是电机健康监测的有效工具,它利用VMD进行信号分解,结合时域、频域和包络谱分析,帮助工程师诊断电机轴承的潜在故障。通过理解并应用这些技术,可以在早期发现并预防可能的设备故障,提高设备的可靠性和维护效率。
Arya.472
- 粉丝: 0
- 资源: 1
最新资源
- ssm前后端分离鲜花销售系统+vue.zip
- ssm人力资源管理系统+vue.zip
- dropdown 是一款基于layui框架的下拉框控件,填补了layui原生没有下拉框这个空隙 借助下拉框的操作方式和UI交互,可以带来更加直观、便于操作、模块划分清晰等优势
- ssm企业人事管理系统的设计与实现+jsp.zip
- ssm农业视频实时发布管理系统设计+jsp.zip
- ssm农家乐信息平台的设计与实现+vue.zip
- 西门子PLC1500大型程序fanuc机器人焊装 包括1台 西门子1500PLC程序,2台触摸屏TP1500程序 9个智能远程终端ET200SP Profinet连接 15个Festo气动智能模块P
- ssm农产品仓库管理系统系统+jsp.zip
- ssm绿色农产品推广应用网站+vue.zip
- ssm民宿管理系统+jsp.zip
- ssm旅游网站的设计与实现+jsp.zip
- ssm旅游攻略网站设计+jsp.zip
- ssm旅游景点管理系统设计+jsp.zip
- ssm连锁经营商业管理系统+jsp.zip
- ssm临沂旅游咨询系统+vue.zip
- ssm旅行社管理系统的设计与实现+jsp.zip