## News!
- Aug 2020: [**v0.4.0** version](https://github.com/MVIG-SJTU/AlphaPose) of AlphaPose is released! Stronger tracking! Include whole body(face,hand,foot) keypoints! [Colab](https://colab.research.google.com/drive/14Zgotr2_F0LfvcpRi03uQdMvUbLQSgok?usp=sharing) now available.
- Dec 2019: [**v0.3.0** version](https://github.com/MVIG-SJTU/AlphaPose) of AlphaPose is released! Smaller model, higher accuracy!
- Apr 2019: [**MXNet** version](https://github.com/MVIG-SJTU/AlphaPose/tree/mxnet) of AlphaPose is released! It runs at **23 fps** on COCO validation set.
- Feb 2019: [CrowdPose](https://github.com/MVIG-SJTU/AlphaPose/docs/CrowdPose.md) is integrated into AlphaPose Now!
- Dec 2018: [General version](https://github.com/MVIG-SJTU/AlphaPose/PoseFlow) of PoseFlow is released! 3X Faster and support pose tracking results visualization!
- Sep 2018: [**v0.2.0** version](https://github.com/MVIG-SJTU/AlphaPose/tree/pytorch) of AlphaPose is released! It runs at **20 fps** on COCO validation set (4.6 people per image on average) and achieves 71 mAP!
## AlphaPose
[AlphaPose](http://www.mvig.org/research/alphapose.html) is an accurate multi-person pose estimator, which is the **first open-source system that achieves 70+ mAP (75 mAP) on COCO dataset and 80+ mAP (82.1 mAP) on MPII dataset.**
To match poses that correspond to the same person across frames, we also provide an efficient online pose tracker called Pose Flow. It is the **first open-source online pose tracker that achieves both 60+ mAP (66.5 mAP) and 50+ MOTA (58.3 MOTA) on PoseTrack Challenge dataset.**
AlphaPose supports both Linux and **Windows!**
<div align="center">
<img src="docs/alphapose_17.gif", width="400" alt><br>
COCO 17 keypoints
</div>
<div align="center">
<img src="docs/alphapose_26.gif", width="400" alt><br>
<b><a href="https://github.com/Fang-Haoshu/Halpe-FullBody">Halpe 26 keypoints</a></b> + tracking
</div>
<div align="center">
<img src="docs/alphapose_136.gif", width="400"alt><br>
<b><a href="https://github.com/Fang-Haoshu/Halpe-FullBody">Halpe 136 keypoints</a></b> + tracking
</div>
## Results
### Pose Estimation
Results on COCO test-dev 2015:
<center>
| Method | AP @0.5:0.95 | AP @0.5 | AP @0.75 | AP medium | AP large |
|:-------|:-----:|:-------:|:-------:|:-------:|:-------:|
| OpenPose (CMU-Pose) | 61.8 | 84.9 | 67.5 | 57.1 | 68.2 |
| Detectron (Mask R-CNN) | 67.0 | 88.0 | 73.1 | 62.2 | 75.6 |
| **AlphaPose** | **73.3** | **89.2** | **79.1** | **69.0** | **78.6** |
</center>
Results on MPII full test set:
<center>
| Method | Head | Shoulder | Elbow | Wrist | Hip | Knee | Ankle | Ave |
|:-------|:-----:|:-------:|:-------:|:-------:|:-------:|:-------:|:-------:|:-------:|
| OpenPose (CMU-Pose) | 91.2 | 87.6 | 77.7 | 66.8 | 75.4 | 68.9 | 61.7 | 75.6 |
| Newell & Deng | **92.1** | 89.3 | 78.9 | 69.8 | 76.2 | 71.6 | 64.7 | 77.5 |
| **AlphaPose** | 91.3 | **90.5** | **84.0** | **76.4** | **80.3** | **79.9** | **72.4** | **82.1** |
</center>
More results and models are available in the [docs/MODEL_ZOO.md](docs/MODEL_ZOO.md).
### Pose Tracking
<p align='center'>
<img src="docs/posetrack.gif", width="360">
<img src="docs/posetrack2.gif", width="344">
</p>
Please read [trackers/README.md](trackers/) for details.
### CrowdPose
<p align='center'>
<img src="docs/crowdpose.gif", width="360">
</p>
Please read [docs/CrowdPose.md](docs/CrowdPose.md) for details.
## Installation
Please check out [docs/INSTALL.md](docs/INSTALL.md)
## Model Zoo
Please check out [docs/MODEL_ZOO.md](docs/MODEL_ZOO.md)
## Quick Start
- **Colab**: We provide a [colab example](https://colab.research.google.com/drive/14Zgotr2_F0LfvcpRi03uQdMvUbLQSgok?usp=sharing) for your quick start.
- **Inference**: Inference demo
``` bash
./scripts/inference.sh ${CONFIG} ${CHECKPOINT} ${VIDEO_NAME} # ${OUTPUT_DIR}, optional
```
- **Training**: Train from scratch
``` bash
./scripts/train.sh ${CONFIG} ${EXP_ID}
```
- **Validation**: Validate your model on MSCOCO val2017
``` bash
./scripts/validate.sh ${CONFIG} ${CHECKPOINT}
```
Examples:
Demo using `FastPose` model.
``` bash
./scripts/inference.sh configs/coco/resnet/256x192_res50_lr1e-3_1x.yaml pretrained_models/fast_res50_256x192.pth ${VIDEO_NAME}
#or
python scripts/demo_inference.py --cfg configs/coco/resnet/256x192_res50_lr1e-3_1x.yaml --checkpoint pretrained_models/fast_res50_256x192.pth --indir examples/demo/
```
Train `FastPose` on mscoco dataset.
``` bash
./scripts/train.sh ./configs/coco/resnet/256x192_res50_lr1e-3_1x.yaml exp_fastpose
```
More detailed inference options and examples, please refer to [GETTING_STARTED.md](docs/GETTING_STARTED.md)
## Common issue & FAQ
Check out [faq.md](docs/faq.md) for faq. If it can not solve your problems or if you find any bugs, don't hesitate to comment on GitHub or make a pull request!
## Contributors
AlphaPose is based on RMPE(ICCV'17), authored by [Hao-Shu Fang](https://fang-haoshu.github.io/), Shuqin Xie, [Yu-Wing Tai](https://scholar.google.com/citations?user=nFhLmFkAAAAJ&hl=en) and [Cewu Lu](http://www.mvig.org/), [Cewu Lu](http://mvig.sjtu.edu.cn/) is the corresponding author. Currently, it is maintained by [Jiefeng Li\*](http://jeff-leaf.site/), [Hao-shu Fang\*](https://fang-haoshu.github.io/), [Yuliang Xiu](http://xiuyuliang.cn/about/) and [Chao Xu](http://www.isdas.cn/).
The main contributors are listed in [doc/contributors.md](docs/contributors.md).
## TODO
- [x] Multi-GPU/CPU inference
- [ ] 3D pose
- [x] add tracking flag
- [ ] PyTorch C++ version
- [ ] Add MPII and AIC data
- [ ] dense support
- [x] small box easy filter
- [x] Crowdpose support
- [ ] Speed up PoseFlow
- [ ] Add stronger/light detectors and the [mobile pose](https://github.com/YuliangXiu/MobilePose-pytorch)
- [x] High level API
We would really appreciate if you can offer any help and be the [contributor](docs/contributors.md) of AlphaPose.
## Citation
Please cite these papers in your publications if it helps your research:
@inproceedings{fang2017rmpe,
title={{RMPE}: Regional Multi-person Pose Estimation},
author={Fang, Hao-Shu and Xie, Shuqin and Tai, Yu-Wing and Lu, Cewu},
booktitle={ICCV},
year={2017}
}
@article{li2018crowdpose,
title={CrowdPose: Efficient Crowded Scenes Pose Estimation and A New Benchmark},
author={Li, Jiefeng and Wang, Can and Zhu, Hao and Mao, Yihuan and Fang, Hao-Shu and Lu, Cewu},
journal={arXiv preprint arXiv:1812.00324},
year={2018}
}
@inproceedings{xiu2018poseflow,
author = {Xiu, Yuliang and Li, Jiefeng and Wang, Haoyu and Fang, Yinghong and Lu, Cewu},
title = {{Pose Flow}: Efficient Online Pose Tracking},
booktitle={BMVC},
year = {2018}
}
## License
AlphaPose is freely available for free non-commercial use, and may be redistributed under these conditions. For commercial queries, please drop an e-mail at mvig.alphapose[at]gmail[dot]com and cc lucewu[[at]sjtu[dot]edu[dot]cn. We will send the detail agreement to you.
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
课堂专注度及考试作弊系统、课堂动态点名,情绪识别、表情识别和人脸识别结合 转头(probe)+低头(peep)+传递物品(passing) 课堂专注度+表情识别 侧面的传递物品识别 **人脸识别**:dlib_face_recognition_resnet_model_v1.dat - detection_system/face_recog/weights **人脸对齐**:shape_predictor_68_face_landmarks.dat - detection_system/face_recog/weights **作弊动作分类器**:cheating_detector_rfc_kp.pkl ## 使用 ### 运行setup.py安装必要内容 ## 使用 ### 运行setup.py安装必要内容 ```shell python setup.py build develop ``` [windows上安装scipy1.1.0可能会遇到的问题](https://github.com/MVIG-SJTU/AlphaPose/issues/722) ### 运行
资源推荐
资源详情
资源评论
收起资源包目录
基于深度学习的课堂行为识别和考试作弊检测系统的设计与实现(python源码) (850个子文件)
maskApi.c 8KB
psroi_pooling_cuda.c 3KB
psroi_pooling_cuda.c 3KB
Widerface-RetinaFace.caffemodel 1.78MB
yolov3-spp.cfg 9KB
yolov3-spp.cfg 9KB
yolov3.cfg 9KB
yolov3.cfg 9KB
yolov3.cfg 8KB
yolov3.cfg 8KB
yolo-voc.cfg 3KB
yolo-voc.cfg 3KB
yolo.cfg 3KB
yolo.cfg 3KB
tiny-yolo-voc.cfg 1KB
tiny-yolo-voc.cfg 1KB
setup.cfg 66B
setup.cfg 66B
soft_nms_cpu.cpp 342KB
soft_nms_cpu.cpp 342KB
deform_conv_cuda.cpp 29KB
deform_conv_cuda.cpp 29KB
gason.cpp 9KB
deform_pool_cuda.cpp 4KB
deform_pool_cuda.cpp 4KB
roi_align_cuda.cpp 3KB
roi_align_cuda.cpp 3KB
nms_cpu.cpp 2KB
nms_cpu.cpp 2KB
nms_cuda.cpp 575B
nms_cuda.cpp 575B
deform_conv_cuda_kernel.cu 41KB
deform_conv_cuda_kernel.cu 41KB
deform_pool_cuda_kernel.cu 16KB
deform_pool_cuda_kernel.cu 16KB
roi_align_kernel.cu 11KB
roi_align_kernel.cu 11KB
psroi_pooling_kernel.cu 8KB
psroi_pooling_kernel.cu 8KB
nms_kernel.cu 5KB
nms_kernel.cu 5KB
nms_kernel.cu 5KB
alphapose_17.gif 7.93MB
alphapose_17.gif 7.93MB
alphapose_26.gif 6.74MB
alphapose_26.gif 6.74MB
alphapose_136.gif 6.7MB
alphapose_136_2.gif 6.7MB
alphapose_136.gif 6.7MB
posetrack1.gif 3.9MB
posetrack.gif 3.9MB
posetrack1.gif 3.9MB
posetrack.gif 3.9MB
posetrack2.gif 3.13MB
posetrack2.gif 3.13MB
posetrack2.gif 3.13MB
posetrack2.gif 3.13MB
pose.gif 2.14MB
pose.gif 2.14MB
crowdpose.gif 1.61MB
crowdpose.gif 1.61MB
demo.gif 1.37MB
demo.gif 997KB
demo1.gif 930KB
.gitignore 318B
.gitignore 236B
.gitignore 39B
.gitignore 26B
.gitignore 5B
gason.h 3KB
maskApi.h 2KB
psroi_pooling_kernel.h 835B
psroi_pooling_kernel.h 835B
psroi_pooling_cuda.h 489B
psroi_pooling_cuda.h 489B
gpu_nms.hpp 146B
smart_classroom.iml 417B
MANIFEST.in 56B
pycocoDemo.ipynb 1.71MB
pycocoEvalDemo.ipynb 4KB
静默活体APK.jpeg 26KB
human_model.jpg 447KB
logo.jpg 438KB
logo.jpg 438KB
step4.jpg 352KB
step4.jpg 352KB
1.jpg 193KB
1.jpg 193KB
2.jpg 148KB
2.jpg 148KB
4.jpg 139KB
worlds-largest-selfie.jpg 136KB
logo.jpg 128KB
step3.jpg 102KB
step3.jpg 102KB
3.jpg 91KB
5.jpg 90KB
image_F2_result.jpg 85KB
image_F2.jpg 84KB
2.jpg 80KB
共 850 条
- 1
- 2
- 3
- 4
- 5
- 6
- 9
资源评论
JavaScript奴隶
- 粉丝: 12
- 资源: 1
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 【员工管理】30-030有了保密制度,还要保密协议吗.doc
- 【员工管理】50-010我国劳动法律法规中有关工时的规定有哪些.doc
- 【员工管理】50-030实行不定时工时制的员工,有加班加点一说吗.doc
- 【员工管理】50-060加班费纠纷,谁有举证责任.doc
- 【员工管理】50-450什么是劳动报酬.doc
- 【员工管理】50-500带薪产假的劳动报酬有哪些规定.doc
- 【员工管理】50-600什么情况下用人单位能合法扣减员工劳动报酬.doc
- 【员工管理】50-620未足额支付劳动者劳动报酬的法律后果有哪些.doc
- 【员工管理】50-620未足额支付劳动者劳动报酬的法律后果有哪些.doc
- 【员工管理】50-520病假期间的劳动报酬有哪些规定.doc
- 【员工管理】80-010申请劳动争议仲裁前必须经过协商和调解吗.doc
- 【员工管理】80-015 劳动争议双方协商达成的和解协议有法律效力吗.doc
- 【员工管理】80-020仲裁前调解有什么作用.doc
- 【员工管理】80-045劳动争议仲裁前的协商或者调解有期限吗 会影响申请仲裁的时效吗.doc
- 【员工管理】80-050调解协议履行后还可以仲裁吗.doc
- 基于PLC的智能农业温室大棚控制系统大棚电气控制组态 带解释的梯形图程序,接线图原理图图纸,io分配,组态画面
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功