通过分析火控计算机的工作原理,选取了 12 个主要参数作为故障预测的输入, 针对输入数据的特性,选用了卷积神经网络(CNN)建立故障预测模型,针对传统卷积神 经网络模型存在的问题,加入批标准化层提高网络训练效果。通过实例验证,在数据充足 的条件下,针对训练弹的改进后卷积神经网络的火控计算机故障预测模型,预测准确率为 93.1% 化层 is added. Through practical verification, under the condition of sufficient data, the improved CNN-based fire control computer fault prediction model for training rounds achieves a prediction accuracy of 93.1%. (2) The convolution kernel in the CNN is transformed into atrous convolution. By applying this modification, the fault prediction model's generalization ability and accuracy are enhanced for the fire control computer. For the case of training rounds, the prediction accuracy of the model using atrous convolution reaches 96.9%, demonstrating its effectiveness in capturing patterns and improving performance. (3) To address the issue of limited data for armor-piercing rounds, transfer learning is integrated with the CNN model. Using the fire control computer fault prediction data from training rounds as the source domain and armor-piercing rounds as the target domain, the CNN model undergoes transfer learning adjustments. The prediction accuracy of an unmodified CNN model for armor-piercing rounds, under data scarcity, is 82.1%. However, when incorporating transfer learning, the accuracy improves significantly to 96.1%, highlighting the value of transfer learning in adapting the model to new scenarios. (4) A user-friendly fire control computer fault prediction software is developed, featuring a human-computer interaction interface that streamlines the process of adding, deleting, and conducting fault prediction data operations. This software enhances the efficiency and usability of the fault prediction system. In conclusion, this research delves into the application of CNNs in the field of fault prediction for fire control computers. By analyzing the system's working principles, selecting appropriate input parameters, and employing advanced techniques like batch normalization, atrous convolution, and transfer learning, the model's performance is significantly improved. The study also contributes a software solution that simplifies data management and prediction tasks. These advancements contribute to the reliability and readiness of military equipment, ultimately supporting the nation's defense capabilities.
剩余49页未读,继续阅读
- 粉丝: 274
- 资源: 23
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- 基于MATLAB的手势识别系统:支持新姿势录入与机器学习算法训练迭代,可分辨手势1至10并增加样本数量,基于matlab的手势识别系统,支持新手势录入,pca或者特征提取,机器学习算法训练迭代,分辩手
- 微波工程(第三版)-David M Pozar-电子工业出版社-附作者手写习题答案
- mmexport1736522444416_edit_247368526025628.jpg
- 基于Xilinx 7系列芯片实现SDI转HDMI及HDMI转SDI开发:高清视频信号转换技术突破,xilinx 7系列 3G SDI转hdmi hdmi转sdi开发 现已完成sdi的接收和发送,使
- "Flow3D 11.2驱动下的激光送粉技术:增材制造FDM与激光熔覆的融合应用",Flow3d11.2 激光送粉 增材制造FDM 激光熔覆 ,核心关键词:Flow3d11.2; 激光送粉; 增
- 锂电池二阶RC等效电路SOC的双卡尔曼滤波器估计与内阻更新,【锂电池双卡尔曼估计SOC】 利用双卡尔曼滤波器估计锂电池二阶RC等效电路SOC,辅助卡尔曼滤波器更新内阻R0,返回给主卡尔曼滤波器,循环往
- 全球线性淋浴排水管市场:预计2031年市场规模预计将达到66.8亿元
- 微波工程(第三版)习题答案-作者手写版 ((美)波扎) (David M Pozar)
- "先进高效机房控制系统:融合智能算法与优化策略,实现多功能成熟完善与节能高效运行",高效机房控制系统,非常先进的控制算法,已预测和最优结合控制,所有功能成熟完善,目前已在30个以上项目运行 大小冷水
- 远程协助配置MATLAB中Gurobi与Mosek求解器的调用,安装保障与退款承诺,安装费用透明化说明,gurobi求解器安装 mosek求解器安装 实现matlab中用yalmip工具箱调用guro
- 三菱FX3U两轴标准程序详解:XZ轴点动、回零与定位全攻略-流程明晰、注释完备,三菱FX3U两轴标准程序,XZ两轴,包含轴点动,回零,相对与绝对定位,只要弄明白这个程序,就可以非常了解整个项目的程序
- 高校实验室预约系统 免费JAVA毕业设计 2024成品源码+论文+录屏+启动教程.zip
- 电池销售系统 免费JAVA毕业设计 2024成品源码+论文+录屏+启动教程.zip
- mybatis专栏 001 mybatis入门
- 基于HMCAD1511的四通道高精度示波器方案:单通道达1G采样率,双通道500M,四通道模式实现至250M采样率原理图PCB及FPGA代码全解析,用HMCAD1511实现的四通道示波器方案,单通道模
- 2024年中国自行车行业调查报告