<div align="center">
<p>
<a align="left" href="https://ultralytics.com/yolov3" target="_blank">
<img width="850" src="https://user-images.githubusercontent.com/26833433/99805965-8f2ca800-2b3d-11eb-8fad-13a96b222a23.jpg"></a>
</p>
<br>
<div>
<a href="https://github.com/ultralytics/yolov3/actions"><img src="https://github.com/ultralytics/yolov3/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a>
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv3 Citation"></a>
<a href="https://hub.docker.com/r/ultralytics/yolov3"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov3?logo=docker" alt="Docker Pulls"></a>
<br>
<a href="https://colab.research.google.com/github/ultralytics/yolov3/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
<a href="https://www.kaggle.com/ultralytics/yolov3"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a>
<a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a>
</div>
<br>
<div align="center">
<a href="https://github.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.linkedin.com/company/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://twitter.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://youtube.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.facebook.com/ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="2%"/>
</a>
<img width="2%" />
<a href="https://www.instagram.com/ultralytics/">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="2%"/>
</a>
</div>
<br>
<p>
YOLOv3 ð is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a>
open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development.
</p>
<!--
<a align="center" href="https://ultralytics.com/yolov3" target="_blank">
<img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a>
-->
</div>
## <div align="center">Documentation</div>
See the [YOLOv3 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment.
## <div align="center">Quick Start Examples</div>
<details open>
<summary>Install</summary>
[**Python>=3.6.0**](https://www.python.org/) is required with all
[requirements.txt](https://github.com/ultralytics/yolov3/blob/master/requirements.txt) installed including
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/):
<!-- $ sudo apt update && apt install -y libgl1-mesa-glx libsm6 libxext6 libxrender-dev -->
```bash
$ git clone https://github.com/ultralytics/yolov3
$ cd yolov3
$ pip install -r requirements.txt
```
</details>
<details open>
<summary>Inference</summary>
Inference with YOLOv3 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36). Models automatically download
from the [latest YOLOv3 release](https://github.com/ultralytics/yolov3/releases).
```python
import torch
# Model
model = torch.hub.load('ultralytics/yolov3', 'yolov3') # or yolov3-spp, yolov3-tiny, custom
# Images
img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.print() # or .show(), .save(), .crop(), .pandas(), etc.
```
</details>
<details>
<summary>Inference with detect.py</summary>
`detect.py` runs inference on a variety of sources, downloading models automatically from
the [latest YOLOv3 release](https://github.com/ultralytics/yolov3/releases) and saving results to `runs/detect`.
```bash
$ python detect.py --source 0 # webcam
img.jpg # image
vid.mp4 # video
path/ # directory
path/*.jpg # glob
'https://youtu.be/Zgi9g1ksQHc' # YouTube
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream
```
</details>
<details>
<summary>Training</summary>
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png">
</details>
<details open>
<summary>Tutorials</summary>
* [Train Custom Data](https://github.com/ultralytics/yolov3/wiki/Train-Custom-Data) ð RECOMMENDED
* [Tips for Best Training Results](https://github.com/ultralytics/yolov3/wiki/Tips-for-Best-Training-Results) âï¸
RECOMMENDED
* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289) ð NEW
* [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975) ð NEW
* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475)
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) â NEW
* [TorchScript, ONNX, CoreML Export](https://github.com/ultralytics/yolov5/issues/251) ð
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303)
* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318)
* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304)
* [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607)
* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314) â NEW
* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx)
</details>
## <div align="center">Environments</div>
Get started in seconds with our verified environments. Click each icon below for details.
<div align="center">
<a href="https://colab.research.google.com/github/ultralytics/yolov3/blob/master/tutorial.ipynb">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="15%"/>
</a>
<a href="https://www.kaggle.com/ultralytics/yolov3">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="15%"/>
</a>
<a href="https://hub.docker.com/r/ultralytics/yolov3">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="15%"/>
</a>
<a href="https://github.com/ultralytics/yolov3/wiki/AWS-Quickstart">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="15%"/>
</a>
<a href="https://github.com/ultralytics/yolov3/wiki/GCP-Quickstart">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gcp-small.png" width="15%"/>
</a>
</div>
## <div align="center">Integrations</div>
<div align="center">
<a href="https://wandb.ai/site?utm_campaign=repo_yolo_readme">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-wb-long.png" width="49%"/>
</a>
<a href="https://roboflow.com/?ref=ultralytics">
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-roboflow-long.png" width="49%"/>
</a>
</div>
|Weights and Biases|Roboflow â NEW|
|:-:|:-:|
|Automa
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
训练好的yolov3算法水果好坏-新鲜度检测模型+数据集,数据集目录已经配置好,yolo格式(txt)的标签,划分好 train,val, test,并附有data.yaml文件,yolov5、yolov7、yolov8等算法可以直接进行训练模型, 数据集和检测结果参考: https://blog.csdn.net/zhiqingAI/article/details/124230743 https://blog.csdn.net/zhiqingAI/article/details/136969433 数据集配置目录结构data.yaml: nc: 6 names: ['Fresh Apple', 'Fresh Banana', 'Fresh Orange', 'Rotten Apple', 'Rotten Banana', 'Rotten Orange']
资源推荐
资源详情
资源评论
收起资源包目录
yolov3算法水果好坏-新鲜度检测权重模型+1000数据集+运行教程 (2000个子文件)
events.out.tfevents.1711372028.USER-20231125JB.13572.0 1.28MB
labels.cache 260KB
results.csv 29KB
.gitattributes 75B
bus.jpg 476KB
val_batch1_pred.jpg 393KB
val_batch1_labels.jpg 390KB
val_batch0_pred.jpg 344KB
val_batch0_labels.jpg 337KB
val_batch2_pred.jpg 305KB
val_batch2_labels.jpg 298KB
train_batch2.jpg 290KB
train_batch0.jpg 289KB
train_batch1.jpg 272KB
zidane.jpg 165KB
FreshApple_original_FreshApple-18-jpg_4c6a4a65-bfb1-483f-a15d-e19e3818e892_jpg.rf.5efeb975ecdad98cb6143a71af10b0d7.jpg 45KB
RottenOrange_original_RottenOrange-40-jpg_16a2a786-fde8-4857-b467-4ef083666353_jpg.rf.5f247830429bc2fdb154099b530d9568.jpg 43KB
FreshApple-104-_jpg.rf.510913dd81572a1ac4eaecc9ffccf899.jpg 43KB
RottenOrange-41-_jpg.rf.23ec9d7e76283795f30a2e82f37da61a.jpg 42KB
FreshApple_original_FreshApple-13-jpg_5809f7e9-d368-4ee6-9ad7-40cc0ac82f2a_jpg.rf.e72cb226ce7ec411f4eb3d65a52abdc9.jpg 41KB
RottenOrange-87-_jpg.rf.2a166208e6990a080bd161578b420419.jpg 40KB
RottenOrange-14-_jpg.rf.694213826ff743adf83ae1c8e5a530cf.jpg 40KB
RottenOrange-155-_jpg.rf.a60832916d92e0b7fc4ea4f0c0db8870.jpg 40KB
FreshApple-5-_jpg.rf.31e73f9e00e78978fb0c444727a21805.jpg 39KB
RottenOrange-17-_jpg.rf.78fe4cd0db1a393da8b7c53330ed756b.jpg 39KB
FreshApple-119-_jpg.rf.c26a8906d22a8b57499e4e4fc331c68e.jpg 38KB
FreshApple-123-_jpg.rf.bc7339e03bbe95012d6819aa1ecb6f46.jpg 38KB
FreshApple_original_FreshApple-17-jpg_f5c36b0c-9901-4be0-8162-605966c8cb6e_jpg.rf.3701968af8364cee2e81dd8ec0119025.jpg 38KB
FreshApple-158-_jpg.rf.318d35fb78fa4a50bfd4b07a5067196a.jpg 37KB
FreshApple-199-_jpg.rf.1cfd927aa2218fa2e528089e3ec1af23.jpg 37KB
FreshApple-96-_jpg.rf.2801d75d5432706cb280daebd7b79f08.jpg 37KB
RottenOrange-49-_jpg.rf.781d17f4adc0324a72f3966ccbba335d.jpg 37KB
RottenOrange-13-_jpg.rf.ba0a93b3a9253029acbccbd63fa27708.jpg 37KB
RottenOrange-42-_jpg.rf.2211eec04127c58b09f95c1c7fbcd8b5.jpg 37KB
FreshApple-147-_jpg.rf.3d795a30e411fb1423673b6ab0dcee5b.jpg 36KB
FreshApple-92-_jpg.rf.623bcb898880b3f998043c684cae4ec8.jpg 36KB
FreshApple-116-_jpg.rf.7fc2e2993a9298506d2df5054288c7bf.jpg 36KB
FreshApple_original_FreshApple-3-jpg_94563a57-878c-41b1-9548-cebee63e7ab6_jpg.rf.51473e2e9bf0121c187c6777b9924393.jpg 36KB
FreshApple-160-_jpg.rf.a01f84de367eca64b55f4ae3077c899e.jpg 36KB
FreshApple-118-_jpg.rf.f1c61481fefee11e64912b248d57d517.jpg 36KB
FreshApple-102-_jpg.rf.b8be4cad94b3ddc4a846429c92821b4a.jpg 36KB
FreshApple-161-_jpg.rf.0ce509a2cb414485302c66430ae49db9.jpg 36KB
FreshApple-130-_jpg.rf.12071ced395d672180d6642844375479.jpg 35KB
FreshApple-182-_jpg.rf.0c7b01d8eea5a6a10076a19c1d0fb919.jpg 35KB
RottenOrange-141-_jpg.rf.1b3626d69e224c351ffe4336319a057c.jpg 35KB
FreshApple-183-_jpg.rf.439a5f2c4a293e7658b05fbfb72fc516.jpg 35KB
FreshApple-125-_jpg.rf.7f67c0c26dd3ee96b3d2f5a07e980991.jpg 35KB
RottenOrange-50-_jpg.rf.85004a9d6fdbdbfba9116d3da303f128.jpg 35KB
RottenOrange-154-_jpg.rf.265825d3016ef70c9907841cf449fb52.jpg 35KB
RottenOrange-46-_jpg.rf.15fd4a10cdb48e30c1ceee8b8bdf2e23.jpg 35KB
FreshApple-115-_jpg.rf.de62b4063dd8b0fcefc4483a1b2e8ce0.jpg 35KB
FreshApple_original_FreshApple-17-jpg_0b4ae1fb-a387-4d33-8692-05e0221de65d_jpg.rf.f7d64f399e7c4a6b83c2d092df36b877.jpg 35KB
FreshApple-200-_jpg.rf.b2d9177916a56390817985ece44fa620.jpg 34KB
FreshApple-18-_jpg.rf.29a7bf89dfdf8ebbc7e32d0e10023e2f.jpg 34KB
FreshApple-122-_jpg.rf.7c2c88a8c845f290d308b0c6b3f051fc.jpg 34KB
RottenOrange-149-_jpg.rf.fabd6ef87f110b386ebcf41111daa4c0.jpg 34KB
FreshOrange-150-_jpg.rf.4afd1bb46ab80c4c29c2d77fdd9a659e.jpg 34KB
FreshApple-156-_jpg.rf.80c180a8082d18af3f7b620e006169eb.jpg 34KB
RottenOrange-142-_jpg.rf.5c5ddd8a2d6274865b62a09664ebfe0b.jpg 34KB
FreshApple-151-_jpg.rf.b2ececa59a14349aa4babdf220b00593.jpg 34KB
FreshApple-97-_jpg.rf.ba3a2f6726248b1194361519a38255eb.jpg 34KB
RottenOrange-138-_jpg.rf.5827226cc0284afd77e117f9d1ecf18d.jpg 33KB
RottenOrange-77-_jpg.rf.6781bc2f9509a72fe605a41aede37b39.jpg 33KB
FreshApple-197-_jpg.rf.483af687bda95ad8fffcb47e39c69231.jpg 33KB
FreshApple-159-_jpg.rf.26220828d66b5e79e0a653c66a87e4ce.jpg 33KB
RottenOrange-197-_jpg.rf.38ebf0fb0e1d8258c726c32274079e23.jpg 33KB
RottenOrange-79-_jpg.rf.c74f2e735de1cd0abfc890143fd3e30b.jpg 33KB
RottenBanana-157-_jpg.rf.d4545e5b90badb631fdefff65080bbd1.jpg 33KB
RottenOrange-33-_jpg.rf.b430756a59c39b0c1fd6fc6c8c0b50b5.jpg 33KB
RottenApple-3-_jpg.rf.7c414a4d9c29fda3cbf369a7dd0c9c3b.jpg 33KB
RottenOrange-91-_jpg.rf.b9508f9a1523d782ca70720888ed7b11.jpg 33KB
FreshApple-189-_jpg.rf.b204ee0b4ca67b935bf57610b7546f29.jpg 33KB
FreshApple-11-_jpg.rf.cb43f64c56e6d1877d8ebe9c7dc936f8.jpg 33KB
FreshApple-14-_jpg.rf.65a3727485513109cf2ca45762cb3826.jpg 33KB
FreshApple_original_FreshApple-19-jpg_fcc0b696-d0a1-4f84-bada-8794fbc72960_jpg.rf.5b08efb5bf601a1765b93eda082eb68f.jpg 33KB
RottenOrange-167-_jpg.rf.ab92602738070e0959e01e39898dca6c.jpg 33KB
FreshApple-19-_jpg.rf.533668b7405c5b8413bec48b40d0771e.jpg 33KB
RottenOrange-152-_jpg.rf.7b597c769f4c37ba96af5da738179033.jpg 32KB
FreshApple-113-_jpg.rf.7e9f98da8e6751e06b93556d2c536398.jpg 32KB
FreshApple-10-_jpg.rf.a66605894ee17053302d3f9e886c6582.jpg 32KB
RottenOrange-194-_jpg.rf.a4dba9f6cf38b5df336972e1a9bd18f7.jpg 32KB
FreshApple-98-_jpg.rf.bc608cfbc0c33f910dbcd6346aaf439c.jpg 32KB
RottenOrange-153-_jpg.rf.692f5eef7f92309540a09ea3d3c0b247.jpg 32KB
RottenOrange-192-_jpg.rf.3cb1542a1dd344ffe84e3cf3f9e4c69e.jpg 32KB
FreshApple-169-_jpg.rf.325a19bc7cf31785cb6dc0dfbf0a23b0.jpg 32KB
RottenOrange-169-_jpg.rf.bf21bce2714b1ff9719f090272a1d0c7.jpg 32KB
FreshApple-163-_jpg.rf.2b80d85105cb91e6c3269f4ec537ffc5.jpg 32KB
FreshApple-153-_jpg.rf.423c6503c24c58ebd078ca7f7662d97b.jpg 32KB
RottenOrange-172-_jpg.rf.6febdec98ca986bfbc7c20dc70ae1f8f.jpg 32KB
FreshApple-109-_jpg.rf.ced743081a773895bfab96876fa32b41.jpg 32KB
FreshApple-173-_jpg.rf.6262eb95040cbfc89a09efda9735bf57.jpg 32KB
FreshApple_original_FreshApple-9-jpg_5e2f4e5c-d10f-4def-a7f0-e834e6a942a6_jpg.rf.bcced9fb331499427abd30d029dcbf8c.jpg 32KB
FreshApple-17-_jpg.rf.7a8fa318fa069b35e7b1761651c5401d.jpg 32KB
RottenOrange-140-_jpg.rf.96589d2ca207a10ac6236c851630d8db.jpg 32KB
FreshOrange-74-_jpg.rf.1045dd509dacba538ef036912259759f.jpg 32KB
FreshApple-121-_jpg.rf.ddb08634a03d8e5391830ee53b65d296.jpg 32KB
RottenApple-20-_jpg.rf.47f4d3e04a1812dcb4d1fc9500ec78a5.jpg 32KB
FreshApple-8-_jpg.rf.6b7adda91524abf681527a00560dc1b6.jpg 32KB
FreshApple-21-_jpg.rf.751df89e3cb897b380ffd076c7e5c4aa.jpg 32KB
RottenBanana-134-_jpg.rf.ab5c4b85ca2f5630d173c4587cfdb04a.jpg 31KB
共 2000 条
- 1
- 2
- 3
- 4
- 5
- 6
- 20
资源评论
stsdddd
- 粉丝: 3w+
- 资源: 985
上传资源 快速赚钱
- 我的内容管理 展开
- 我的资源 快来上传第一个资源
- 我的收益 登录查看自己的收益
- 我的积分 登录查看自己的积分
- 我的C币 登录后查看C币余额
- 我的收藏
- 我的下载
- 下载帮助
最新资源
- ssm基于Vue框架的订餐系统+vue.zip
- ssm基于Vue.js的在线购物系统的设计与实现+vue.zip
- ssm基于Tomcat技术的车库智能管理平台+jsp.zip
- ssm基于SSM框架云趣科技客户管理系统+jsp.zip
- ssm基于SSM框架的微博系统+vue.zip
- ssm基于SSM框架的校园代购服务订单管理系统的设计与实现+vue.zip
- ssm基于SSM框架的网上拍卖系统的设计与实现+vue.zip
- ssm基于SSM框架的企业博客网站的设计与实现+vue.zip
- 昆仑通态MCGS与力士乐VFC-x610变频器通讯 实现昆仑通态触摸屏与力士乐VFC-x610变频器通讯,程序稳定可靠 器件:昆仑通态TPC7062KD触摸屏,力士乐VFC-x610变频器,附送接线说
- MATLAB simulink MIL SIL单元测试,模型在环测试,软件在环测试,测试步骤文档,包含期望输出和实际输出的比较,输出测试报告pass或fail状态
- 台达DVP PLC与力士乐VFC-x610变频器通讯程序程序带注释,并附送昆仑通态程序,有接线方式,设置 器件:台达DVP ES系列的PLC,力士乐VFC-x610系列变频器,昆仑通态 功能:实现频
- 知识付费管理系统源码,移动端uniApp开发,app h5 小程序一套代码多端运行,后端php(tp6)+layui+MySQL,功能齐全,直播,点播,管理,礼物等等功能应有尽有
- Step7-Mricro win S7-200 485轮询 西门子485 modbus RTU 200 ModbusRTU通信S7-200与最大32个从站RS 485主站程序,程序块自动轮询,无需编写
- 2024年度项目总结1.0
- Java 正则表达式的应用及其实现 - 基于Pattern与Matcher类的邮件和电话匹配
- fpga数据手册杂七杂八1.0
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈
安全验证
文档复制为VIP权益,开通VIP直接复制
信息提交成功