

Microsoft Dynamics AX 2012 R3 Pawel Kruk

May 2014

This document describes the typical steps for

building Transportation management (TMS)

engines and utilizing them in Microsoft

Dynamics AX.

Implementing and

deploying Transportation

management engines

White paper www.microsoft.com/dynamics/ax

Send feedback.

http://www.microsoft.com/dynamics/ax
mailto:adocs@microsoft.com

 2

Implementing and deploying Transportation management engines

White Paper

Contents

Implementing and deploying Transportation management engines 3

Prerequisites 3

Architectural background 3

Tutorial: Construct a Hello-World rate engine 4

Tutorial: Enable a Hello-World rate engine 7

More about TMS engine implementation 8

 3

Implementing and deploying Transportation management engines

White Paper

Implementing and deploying Transportation management engines
The Transportation management (TMS) module includes a number of extension points that let you implement custom

algorithms to perform tasks that are related to the rating of transport and freight reconciliation. The implementations of

the algorithms are called Transportation management engines (also referred to as TMS engines or engines). The

engines are delivered as implementations of specific .NET interfaces and deployed on the Microsoft Dynamics AX

Application Object Server (AOS) tier. Each Transportation management engine can be switched on and off, and it can

also be tuned at runtime, based on Microsoft Dynamics AX data. Some of the most important objectives of these

engines are as follows:

• Calculation of transportation rate

• Calculation of travel distance from point to point

• Calculation of the time it takes to travel from point to point

• Zone identification of addresses

• Distribution of transportation charges for shipments across source document lines (also referred to as

apportionment of charges).

Microsoft Dynamics AX 2012 R3 includes a number of fully functional engines that are available out of the box.

However, in many cases, new engines might be required in order to satisfy contract requirements. For example, there is

no engine that calculates freight charge by using a particular algorithm, or an engine might be required to retrieve

rating data directly from a web service provided by the carrier.

This document explains the typical steps for building Transportation management engines and utilizing them in

Microsoft Dynamics AX. It is targeted to engineers who want to learn how to implement and deploy custom

Transportation management engines.

Prerequisites
Microsoft Visual Studio Tools for Microsoft Dynamics AX must be installed. For more information, see

http://technet.microsoft.com/en-us/library/gg889157.aspx.

Architectural background
The following illustration shows a simplified view of the TMS system.

Within TMS, a number of operations might require some kind of data processing that is specific to a particular carrier,

such as transportation rate calculation. Typically, this kind of calculation requires a lot of input data, such as the origin

and delivery addresses, the size, weight, and number of packages, and the requested delivery date. For a rate shopping

operation, you can track this information from the Rate route workbench form. When you initiate a rate shopping

http://technet.microsoft.com/en-us/library/gg889157.aspx

 4

Implementing and deploying Transportation management engines

White Paper

request, request XML is constructed in TMS by using one of the X++ classes that are derived from

TMSProcessXML_Base. The request XML is passed to the processing system encapsulated in the .NET assembly named

Microsoft.Dynamics.Ax.TMS (also referred to as the TMS managed system). The further processing involves instantiation

and utilization of one or more Transportation management engines. The final response from the TMS managed system

consists of XML, which is interpreted into a result that is persisted in the Microsoft Dynamics AX database.

The source code of the TMS managed system is available in the Microsoft Dynamics AX Application Object Tree (AOT),

under the following path: \Visual Studio Projects\C Sharp Projects\Microsoft.Dynamics.AX.Tms.

All of the engines that are available out of the box in AX 2012 R3 are defined within the TMS managed system itself. We

recommend that all custom engines be implemented in a stand-alone assembly. This assembly should be constructed

by using Visual Studio Tools for Microsoft Dynamics AX, and its project should be hosted in the AOT. The Microsoft

Dynamics AX server infrastructure ensures that the actual project output is deployed to a server-binary location upon

AOS startup. Microsoft Dynamics AX models are the recommended vehicles for distributing the TMS engine

implementations to customers. For more information about Microsoft Dynamics AX models, see

http://technet.microsoft.com/en-us/library/hh335184.aspx.

Tutorial: Construct a Hello-World rate engine
Follow these steps to implement a simple rate engine.

1. Follow these steps to enable debugging and hot-swapping of assemblies on the Microsoft Dynamics AX server:

1. Open the Microsoft Dynamics AX Server Configuration Utility.

2. Create a new configuration.

3. Select the Enable breakpoints to debug X++ code running on this server and Enable the hot-swapping of

assemblies for each development session check boxes.

The following illustration shows the new configuration.

4. Click OK to restart the AOS service.

2. From the AOT, follow these steps to open the source of Microsoft.Dynamics.Ax.TMS in a new instance of Visual

Studio:

1. Navigate to \Visual Studio Projects\C Sharp Projects\Microsoft.Dynamics.AX.Tms.

2. On the context menu, click Edit to open Visual Studio.

3. Follow these steps to add a new C# Class Library project to the solution:

1. In Solution Explorer, right-click your solution node, and then click Add > New Project.

2. In the C# project templates, select Class Library.

http://technet.microsoft.com/en-us/library/hh335184.aspx

 5

Implementing and deploying Transportation management engines

White Paper

3. Enter HelloWorldEngines as the project name.

4. Click OK.

4. In Solution Explorer, right-click the HelloWorldEngines project node, and then click Add HelloWorldEngines to AOT.

5. Follow these steps to add a project-to-project reference from your project to Microsoft.Dynamics.AX.Tms:

1. In Solution Explorer, right-click the HelloWorldEngines project node, and then click Add Reference.

2. On the Projects tab, select Microsoft.Dynamics.AX.Tms.

3. Click OK.

The following illustration shows what your solution should now look like in Solution Explorer.

6. Follow these steps to enable deployment of the project output to the Microsoft Dynamics AX server:

1. In Solution Explorer, select the project node.

2. In the Properties window, set the Deploy to Server property to Yes.

The following illustration shows the project properties after this change has been made.

7. Follow these steps to implement a rate engine called HelloWorldRateEngine:

1. In Solution Explorer, rename Class1.cs to HelloWorldRateEngine.cs.

2. Implement the HelloWorldRateEngine class.

The following example shows how to implement this class.

 6

Implementing and deploying Transportation management engines

White Paper

namespace HelloWorldEngines

{

 using System;

 using System.Xml.Linq;

 using Microsoft.Dynamics.Ax.Tms;

 using Microsoft.Dynamics.Ax.Tms.Bll;

 using Microsoft.Dynamics.Ax.Tms.Data;

 using Microsoft.Dynamics.Ax.Tms.Utility;

 /// <summary>

 /// Sample rate engine class using rating formula of quantity * factor.

 /// </summary>

 public class HelloWorldRateEngine : BaseRateEngine

 {

 private const string RATE_FACTOR = “RateFactor”;

 private decimal rateFactor;

 /// <summary>

 /// Initializes the engine instance.

 /// </summary>

 /// <param name=”rateEngine”>Rate engine setup record.</param>

 /// <param name=”ratingDto”>Rating data transfer object.</param>

 public override void Initialize(

 TMSRateEngine rateEngine,

 RatingDto ratingDto)

 {

 base.Initialize(rateEngine, ratingDto);

 RateEngineParameters parameters =

 new RateEngineParameters(TMSEngine.RateEngine,

 rateEngine.RateEngineCode);

 // Try to retrieve decimal value of RateFactor parameter specified

 // on engine setup Parameters

 if (!Decimal.TryParse(parameters.RetrieveStringValue(RATE_FACTOR),

 out rateFactor))

 {

 // Throw TMS Exception. The exception message is shown in infolog.

 // Additional exception data is recorded in

 // “Transportation system error log”

 throw TMSException.Create(

 “HelloWorldRateEngine requires definition of RateFactor parameter with valid decimal value”,

 TMSExceptionType.TMSEngineSetupException);

 }

 }

 /// <summary>

 /// Calculates rate.

 /// </summary>

 /// <param name=”transactionFacade”>The request transaction facade.</param>

 /// <param name=”shipment”>Rated shipment element.</param>

 /// <param name=”rateMasterCode”>Rate master code.</param>

 /// <returns>Updated rating data transfer object.</returns>

 7

Implementing and deploying Transportation management engines

White Paper

 public override RatingDto Rate(

 TransactionFacade transactionFacade,

 XElement shipment,

 string rateMasterCode)

 {

 // Use extension method to sum down the item

 // quantity from the shipment XML element

 decimal quantity = shipment.SumDown(ElementXmlConstants.Quantity);

 // Retrieve or create rating element

 XElement rateEntity = shipment.RetrieveOrCreateRatingEntity(this.RatingDto);

 // Use extension method to record rate

 // This method does not record additional information

 // like unit counts, currency etc.

 rateEntity.AddRate(TmsRateType.Rate, quantity * rateFactor);

 return this.RatingDto;

 }

 }

}

8. In Solution Explorer, select the HelloWorldEngines project node, and then click Add HelloWorldEngines to AOT.

9. Follow these steps to deploy the engine assembly:

1. In Solution Explorer, right-click your project node, and then click Deploy.

2. Restart AOS.

Your engine assembly is now available for use in Microsoft Dynamics AX. You can verify that HelloWorldEngines.dll is

available in the following folder: [AOS installation location]\bin\VSAssemblies.

Tutorial: Enable a Hello-World rate engine
Follow these steps to enable the engine that you implemented and deployed in the previous tutorial.

1. Follow these steps to create a rating engine in Microsoft Dynamics AX:

1. Click Transportation Management > Setup > Engines > Rate engine to open the Rate engine form.

2. Create a new record that refers to the engine that you created in step 4 of the previous tutorial:

• Rate engine: HelloWorld

• Name: Hello World Rate Engine

• Engine assembly: HelloWorldEngines.dll

• Engine type: HelloWorldEngines.HelloWorldRateEngine

The following illustration shows the new record.

Note: Because your engine does not source any data from Microsoft Dynamics AX, you don’t need to construct and

 8

Implementing and deploying Transportation management engines

White Paper

assign a rate base type for it.

2. Follow these steps to specify a value for the RateFactor parameter:

1. In the Rate engine form, click Parameters.

2. Create a parameter record for RateFactor, and assign a value of 3.

Your engine is now ready for use.

To test the engine, assign it to the rating profile of an active carrier, and run the rating, based on a source document

that includes at least one line with a specific quantity. The total rate is computed as (Total lines quantity) * (RateFactor

value). The Hello-World engine implementation is not currency-sensitive.

For more information about how to associate shipping carriers with rate engines, see Set up shipping carriers and

carrier groups.

More about TMS engine implementation
• Extension types – The following table enumerates the most important interfaces and abstract classes for building

engine extensions. All these base types are defined in the Microsoft.Dynamics.Ax.Tms.Bll namespace.

Name Purpose Notes

BaseRateEngine Use this class to implement a new rate

engine.

This class is the base class of concrete

rate engines. It implements the

IRateEngine interface. The concrete class

derived from BaseRateEngine requires

definition of methods for the calculation

of transportation cost. By default, this

class does not support the voiding of

shipment operations.

IRateEngine Use this interface to implement a new

rate engine if you don’t want to use the

BaseRateEngine class. In particular, use

this interface to implement a rate engine

that communicates with external services

through a web service.

This interface is used to calculate

transportation cost and to run the

voiding of shipments.

IApportionmentEngine Use this interface to implement a new

apportionment engine.

This interface is used to assign the

transportation rate to each line element

under a particular XML node.

ITransitTimeEngine Use this interface to implement a new

transit time engine.

This interface is used to calculate

transportation time in days for a

particular shipment. The transit time

engine can take into consideration

factors such as the source and

destination addresses, mileage, and the

type of service.

http://technet.microsoft.com/EN-US/library/dn553155.aspx
http://technet.microsoft.com/EN-US/library/dn553155.aspx

 9

Implementing and deploying Transportation management engines

White Paper

Name Purpose Notes

IZoneEngine Use this interface to implement a new

zone engine.

This interface provides the

RetrieveRatingZone method, which is

used by rate engines, and the

RetrieveRoutingZone method, which is

used to apply a proper routing guide.

Typically, the response for a rating

engine includes the calculation of the

distance in zones from origin to

destination. For route guide filtering, the

valid response contains the identifier of

the zone to which a particular address

belongs.

IRateBaseAssigner Use this interface to implement a new

rate base assigner for rate engines that

source Microsoft Dynamics AX data by

using a rate base.

A rate base assigner is typically used by

a rate engine to select a rate base that is

applicable to a particular rating. This

assignment is usually stored in the

TMSRateBaseAssignment table. This

table includes a number of generic

fields, such as Dimension1 to

Dimension6. For proper UI interpretation

of these fields, a rate base type must be

assigned to the rate engine and to the

rating profile.

Concrete rate engines and concrete rate

base assigners are expected to be

decoupled from each other.

• User messages – To format a language-specific user message, use the Microsoft.Dynamics.Ax.Tms.TMSGlobal class

that is defined in the TMS managed system. This class contains an overloaded method, called getLabel, that lets you

retrieve a Microsoft Dynamics AX label in the current user language.

• Language-sensitive data – The input and output XML can contain elements that carry language-sensitive data, such

as dates or decimal numbers. The TMS managed system enforces that the current language of the thread is set to

invariant. Use System.Globalization.CultureInfo.CurrentCulture to serialize and de-serialize XML data.

• Accessing data from Microsoft Dynamics AX – A rate engine might require read or write access to the Microsoft

Dynamics AX database. We highly recommend that you use proxy classes for .NET interop for interaction with tables

in Microsoft Dynamics AX. For more information about proxy classes, see http://msdn.microsoft.com/en-

us/library/gg879799.aspx.

If you use proxy classes to interact with the Microsoft Dynamics AX database, consider using LINQ to Microsoft

Dynamics AX to build and run queries. For more information about LINQ to Microsoft Dynamics AX, see

http://msdn.microsoft.com/en-us/library/jj677293.aspx.

Out of the box, the TMS managed system provides access to interaction with some of the TMS-specific tables by

using proxy classes for .NET interop and LINQ to Microsoft Dynamics AX. You can use the

Microsoft.Dynamics.Ax.Tms.Data.AXDataRepository class to retrieve IQueryable objects for these tables.

• Using the common engine data infrastructure – All the engines that are shipped out of the box with AX 2012 R3

require Microsoft Dynamics AX data in order to do the actual calculations. To reduce the cost of building engines

that must source data from Microsoft Dynamics AX, the TMS system includes an implementation of a common

engine data infrastructure. This feature enables the recording of engine-specific data, without the need to add new

Microsoft Dynamics AX tables and build additional Microsoft Dynamics AX forms to maintain data. For more

information about how to set up engine metadata, see “Transportation management engines” and “Set up

transportation management engines” under Rating setup in online Help.

http://msdn.microsoft.com/en-us/library/gg879799.aspx
http://msdn.microsoft.com/en-us/library/gg879799.aspx
http://msdn.microsoft.com/en-us/library/jj677293.aspx
http://technet.microsoft.com/EN-US/library/dn553178.aspx

 10

Implementing and deploying Transportation management engines

White Paper

The TMS system defines a number of tables and Microsoft Dynamics AX forms that enable the recording of engine-

specific data. This data is stored in physical table records that contain a number of generic table fields that can be

reused for different purposes, depending on the specific engine implementation. For proper UI interpretation of

data at runtime, metadata is recorded. For each group of data records that are used by a particular engine, a

number of metadata records are required. These metadata records describe the caption, data type, lookup type,

and a few other properties for each generic field that the engine is using.

Use the following table to find the Microsoft Dynamics AX table that contains data and metadata for a particular

type of engine.

Engine type Physical data table Metadata table Number of generic fields

Rate engine TMSRateBaseDetail TMSRateBaseField

(where FieldType=Rate base)

6

Note: The last generic field

on a rate base can be

broken into a sequence of

values of the same type,

based on the break

master. The merged Detail

view in the Rate base form

shows multiple values,

which are stored in

separate records in the

TMSRateBaseDetail table.

Rate base assigner TMSRateBaseDetail TMSRateBaseField

(where FieldType=Assignment)

6

Transit time engine TMSTransitTimeDetail TMSTransitTimeField 10

Zone engine TMSZoneMasterDetail TMSZoneMasterField 8

Mileage engine TMSMileageDetail TMSMileageField 8

Implementing and deploying Transportation management engines

White Paper

Send feedback.

Microsoft Dynamics is a line of integrated, adaptable business management

solutions that enables you and your people to make business decisions with

greater confidence. Microsoft Dynamics works like and with familiar Microsoft

software, automating and streamlining financial, customer relationship, and

supply chain processes in a way that helps you drive business success.

United States and Canada toll free: (888) 477-7989

Worldwide: (1) (701) 281-6500

www.microsoft.com/dynamics

 The information contained in this document

represents the current view of Microsoft

Corporation on the issues discussed as of the

date of publication. Because Microsoft must

respond to changing market conditions, this

document should not be interpreted to be a

commitment on the part of Microsoft, and

Microsoft cannot guarantee the accuracy of

any information presented after the date of

publication.

This white paper is for informational

purposes only. MICROSOFT MAKES NO

WARRANTIES, EXPRESS, IMPLIED, OR

STATUTORY, AS TO THE INFORMATION IN

THIS DOCUMENT.

Complying with all applicable copyright laws

is the responsibility of the user. Without

limiting the rights under copyright, no part of

this document may be reproduced, stored in,

or introduced into a retrieval system,  or

transmitted in any form or by any means

(electronic, mechanical, photocopying,

recording, or otherwise), or for any purpose,

without the express written permission of

Microsoft Corporation.  Microsoft may have

patents, patent applications, trademarks,

copyrights, or other intellectual property

rights covering subject matter in this

document. Except as expressly provided in

any written license agreement from

Microsoft, the furnishing of this document

does not give you any license to these

patents, trademarks, copyrights, or other

intellectual property.

© 2014 Microsoft. All rights reserved. 

Microsoft, Microsoft Dynamics, and the

Microsoft Dynamics logo are trademarks of

the Microsoft group of companies.

mailto:adocs@microsoft.com

