

Overview of the Evolution of EN 1995: Design of timber structures

21 August 2020

Issue 1

Copyright © CEN, 2021. Reuse and reproduction of this document is authorised, provided the source is acknowledged as follows: "reprinted with authorisation of CEN, copyright @CEN, rue de la Science 23, 1040 Brussels, Belgium".

Structure of this slide deck

- → General overview of the evolution of EN 1995
- → Specific overview of the evolution of EN 1995 parts:
 - EN 1995-1-1: General Common rules and rules for buildings
 - EN 1995-1-2: General Structural fire design
 - EN 1995-2: Bridges

General overview of the Evolution of EN 1995: Design of timber structures

21 August 2020

lssue 1

Agenda – Evolution of EN 1995

- → Key changes to EN 1995
- → New content included in the scope of EN 1995
- → How ease of use has been enhanced

The following slides provide a general overview of the evolution of EN 1995. Complementary slides provide greater details for individual Eurocode Parts.

Key changes to EN 1995

- → Extension to current state of the art i.e.:
 - Implementation of new materials
 - Extension and revision of several design procedures
 - Extension and revision on the rules for fire design
- → Material properties needed for Eurocode design Annex M

New content included in scope of EN 1995

- CEN Technical Specification for timber-concrete composite
- → CEN Technical Report for bonded-in rods

How ease of use has been enhanced

- → Harmonization with the whole Eurocode family (i.e. general structure and symbols)
- → Reduction of NDPs
- → Restructuring of key clauses
- → Outsourcing of minor design issues to normative Annexes

Overview of the Evolution of EN 1995-1-1: General – Common rules and rules for buildings

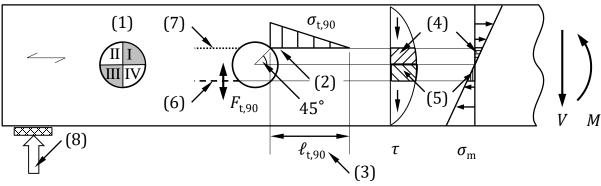
21 August 2020

lssue 1

Agenda – Evolution of EN 1995-1-1: General – Common rules and rules for buildings

- → Key changes to EN 1995-1-1
- → New content included in the scope of EN 1995-1-1
- → How ease of use has been enhanced

- → Extension of design rules for:
 - Laminated veneer lumber
 - Floor vibrations
 - Connections (i.e. bonded-in rods, modern carpentry connections)
- → Revision of design rules for:
 - Compression perpendicular to grain
 - Stability and bracing
 - Racking resistance of walls
 - Connections (i.e. lateral load-carrying capacity, corrosion protection)


New content included in scope of EN 1995-1-1

- → Materials i.e.:
 - Cross laminated timber
 - Multi-layered solid wood panels
 - Glued laminated veneer lumber
- → Brittle failure
- Unreinforced and reinforced holes in beams
- → Reinforcement of timber structures
- → Carpentry connections
- → Wooden foundation piles

New design rules for unreinforced and reinforced holes in beams

Key

- (1) Hole in member, may be divided into quadrants I-IV; the quadrant with possible crack development is dependent on the type of loading and the location in the beam, see clause 8.4.5.2(5)
- (2) possible crack line and (simplified) distribution of tensile stresses perpendicular to the grain $\sigma_{\rm t,90}$
- (3) distribution length, see clause 8.4.5.2(2)
- (4) portion of shear and bending stresses to be transferred around the upper edge of the hole
- (5) portion of shear and bending stresses to be transferred around the lower edge of the hole
- (6) possible crack line in locations with high shear stresses $(F_{t,V,d} \ge F_{t,M,d})$ and tensile force perpendicular to the grain Ft,90
- (7) possible crack line in locations with dominating bending stresses ($F_{t,V,d} \ll F_{t,M,d}$)
- (8) external force direction

Figure 8.2 – Holes in beams

New design rules for reinforcement of timber structures

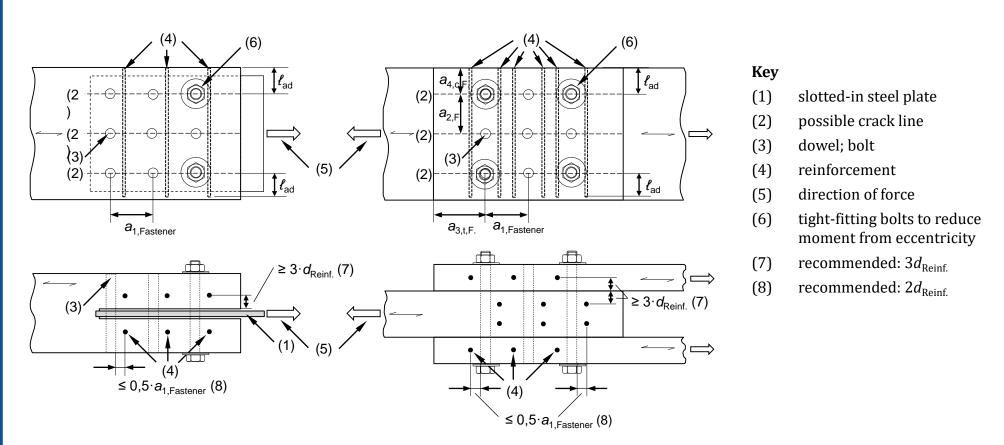
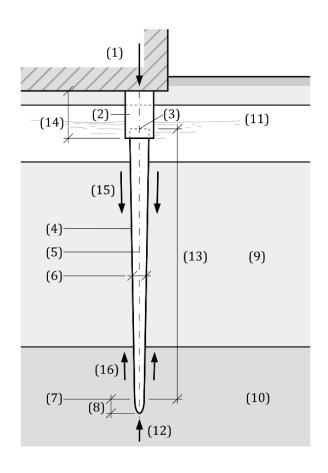



Figure 10.11 - Reinforcement of bolted and dowelled connections

New design rules for wooden foundation piles

Key

- (1) Supported structure
- (2) Extension pile made of material exhibiting sufficient durability when exposed to varying ground water levels (e.g. concrete pile extension, see [14.3 (3) and (4)])
- (3) Pile head
- (4) Timber pile (tapered), pile shaft
- (5) Pile axis
- (6) Pile diameter
- (7) Pile toe
- (8) Pile tip (pile base, tapered end of the pile or of the log, respectively)
- (9) Weak soil
- (10) Load bearing (compact) soil layer
- (11) Ground water table
- (12) Base resistance, resistance at pile toe
- (13) Pile length
- (14) Length of concrete pile-extension (see Figure 14.2)
- (15) Down drag (negative skin friction)
- (16) Positive skin friction

Figure 14.1 - Timber foundation pile with acting forces

How ease of use has been enhanced

- → Improving clarity:
 - Restructuring of Clause:
 - 4. Basis of design
 - 7. Structural analysis
 - 8. Ultimate limit states
 - Reinforcement draft clauses following the design sequence:
 - i. General requirements
 - ii. Design of the unreinforced detail
 - iii. Design of the reinforced detail (if necessary)

How ease of use has been enhanced

- → Improving clarity:
 - Improved definition of service classes in clause 4
 - Stiffness values to be used to calculate the design stiffness in ultimate limit states (ULS) in clause 4

Improved definition of service classes

Polotivo humidity	Service class				
Relative humidity	SC 1	SC 2	SC 3	SC 4	
Upper limit (a)	65%	85%	95%	(c)	
Corresponding moisture content	12%	20%	24%	saturated	
Yearly average (b)	50%	75%	85%	(c)	
Corresponding moisture content	10%	16%	18%	saturated	

- (a) The upper limit of relative humidity should not be exceeded for more than a period of a few consecutive weeks per year (see [Key (4) in Figure 4.1]).
- (b) The yearly average relative humidity over a ten-year period is used to assign timber members to corrosivity classes for steel dowel-type fasteners (see [Key (5) in Figure 4.1]).
- (c) The moisture content of members in service class SC 4 (mostly fully saturated) is affected by the surrounding element (e.g. soil or water).

NOTE 1: The moisture content in a structure is dependent on the building type, building use, location of the building. The following are examples of structures assigned to different service classes:

- SC 1: structures inside insulated and heated buildings;
- SC 2: structures under shelter (i.e. not exposed to rain), in non-insulated and unheated conditions;
- SC 3: structures exposed to rain, if water will run off and end grain is protected from splashing (e.g. facades);
- SC 4: structures submerged in soil or water (e.g. foundation piles and marine structures).

Table 4.2 - Service classes

How ease of use has been enhanced

→ Simplified methods for:

- Verification of deflections (harmonization with prEN 1990:2019)
- European yield model (EYM) for the design of wood connections
- Simplified formulas for the buckling of screws in the wood
- Symmetric arrangement of reinforcement

→ Reduction of NDPs:

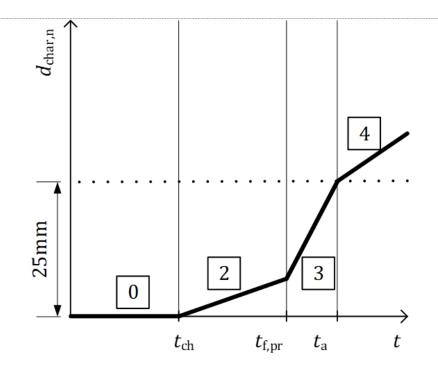
- Bracing
- Design of the racking resistance of walls

Overview of the Evolution of EN 1995-1-2: General – Structural fire design

21 August 2020

Issue 1

Agenda – Evolution of EN 1995-1-2 : General – Structural fire design


- → Key changes to EN 1995-1-2
- → New content included in the scope of EN 1995-1-2
- → How ease of use has been enhanced

- → Extension of design rules for:
 - Effective cross-section method (application i.e. on timber I-joists, cross laminated timber, timber-concrete composite elements, etc.)
 - Design model for the verification of the separating function of wall and floor assemblies
 - Failure time (falling off) of the fire protection system
- → Revision of design rules for:
 - Charring
 - Timber-frame assemblies
 - Connections in fire
 - Detailing
 - Design of timber structures exposed to physically based design fires

→ The European charring model

b) Initially protected sides of timber members when $t_{f,pr} > t_{\it ch}$

Key:

- 1 Normal charring phase (Phase 1)
- 0 Encapsulated phase (Phase 0)
- 2 Protected charring phase (Phase 2)
- 3 Post-protected charring phase (Phase 3)
- 4 Consolidated charring phase (Phase 4)

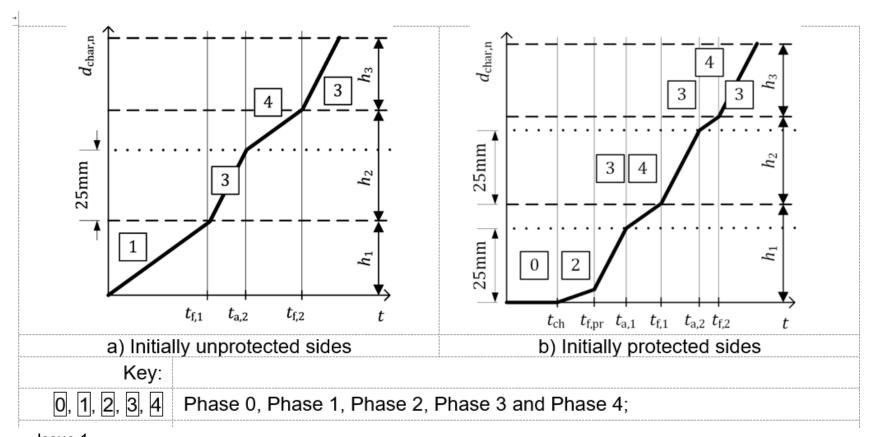
Issue 1

→ Failure time (falling off) of the fire protection system

Fire protection system		Wall		Floor		
		$t_{f, degr}$ [min]	h_p [mm]	$t_{f, \deg r}$ [min]	h _p [mm]	
Gypsum plasterboards	Type F,	$t_{f,\text{degr}} = 3.9 \cdot h_p - 16$ (5.9)	9 ≤ h _p ≤ 18	$t_{f,\text{degr}} = 1,6 \cdot h_p + 3$ (5.10)	$12.5 \le h_p \le 16$	
	one layer	58	$h_p > 18$	29	$h_p > 16$	
	Type F, two layers	$t_{f,\text{degr}} = 3.1 \cdot h_p - 19$ (5.11)	$25 \le h_p \le 31$	$t_{f,\text{degr}} = 0, 7 \cdot h_p + 31$ (5.12)	$25 \le h_p \le 31$	
		77	$h_p > 31$	53	$h_p > 31$	
	Type F, three layers			68	$h_p = 45$	
	Type A,	$t_{f,\text{degr}} = 1,8 \cdot h_p - 4,8$ (5.13)	$9 \le h_p \le 15$	14	$h_p = 12,5$	
	one layer	22,5	$h_p > 15$			
	Type A, two layers	40	$h_p = 25$	28	$h_p = 25$	
	osum eboards	$t_{f,\text{degr}} = 2, 5 \cdot h_p - 11$ (5.14)	9 ≤ h _p ≤ 18			
whe						
h_p	is the th	is the thickness of the fire protection system, in mm				

Issue 1

New content included in scope of EN 1995-1-2



- → Fire design rules for:
 - Cross laminated timber
 - Timber-concrete composite elements
- → Fire design rules for timber frame assemblies:
 - With fully filled cavities with different insulation materials
 - With partly filled cavities with different insulation materials
 - With I-joists
- → Design procedures for fire protective system

New content included in scope of EN 1995-1-2

→ Fire design rules for cross laminated timber:

How ease of use has been enhanced

→ Improving clarity:

- Deletion of the reduced properties method
- → Simplified methods for:
 - Calculation of the mechanical resistance of timber members (i.e. effective cross-section method)
 - Calculation of the mechanical resistance of connections (i.e. exponential reduction method)
 - Calculation of the failure time of fire protective systems
- → Reduction of NDPs:
 - Only safety relevant NDPs

Overview of the Evolution of EN 1995-2: Bridges

21 August 2020

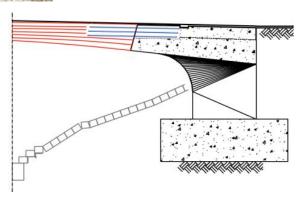
Issue 1

Agenda – Evolution of EN 1995-2: Bridges

- → Key changes to EN 1995-2
- → How ease of use has been enhanced

- → Extension of design rules for:
 - Durability and Detailing, Sealing
 - Deck plates
 - Integral bridges
 - Seismic design
- → Revision of design rules for:
 - Timber-concrete composites (TCC)
 - Laminated veneer lumber (LVL)
 - Vibrations and damping
 - Fatigue

Issue 1 Date: 21/08/2020



→ Timber-concrete composites

→ Integral bridges

How ease of use has been enhanced

- → Improving clarity:
 - Harmonization of EN 1995-1-1 and EN 1995-2 regarding:
 - Durability
 - Fatigue
- → Simplified methods for:
 - Fatigue of notches under dynamic loads
- → Reduction of NDPs:
 - Only safety relevant NDPs (and 1 SLS NDP on damping)