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Abstract

This paper focuses on spectral graph convolutional neural networks (CNNs), where
filters are defined as elementwise multiplication in the frequency domain of a graph.
In machine learning settings where the dataset consists of signals defined on many
different graphs, the trained CNN should generalize to signals on graphs unseen in
the training set. It is thus important to transfer filters from one graph to the other.
Transferability, which is a certain type of generalization capability, can be loosely
defined as follows: if two graphs represent the same phenomenon, then a single
filter/CNN should have similar repercussions on both graphs. This paper aims at
debunking the common misconception that spectral filters are not transferable. We
show that if two graphs are discretizations of the same underlying space, then a
spectral filter/CNN has approximately the same repercussion on both graphs. Our
analysis is more permissive than the standard analysis. Transferability is typically
described as the robustness of the filter to small graph perturbations and re-indexing
of the vertices. We prove transferability between graphs that can have completely
different dimensions and topologies, only requiring that both graphs discretize the
same underlying space.

1 Introduction
The success of convolutional neural networks on Euclidean domains ignited an interest in recent
years in extending these methods to graph structured data. In a standard CNN, the network receives as
input a signal defined over a Euclidean rectangle, and at each layer applies a set of convolutions/filters
on the outputs of the previous layer, a non linear activation function, and, optionally, pooling. A
graph CNN has the same architecture, with the only difference that now signals are defined over the
vertices of graph domains, and not Euclidean rectangles. Graph structured data is ubiquitous in a
range of application, and can represent 3D shapes, molecules, social networks, point clouds, and
citation networks to name a few. In some situations, the data consists of many different graphs, and
many different signals on these graphs (multi-graph setting). In this situation, if two graphs represent
the same underlying phenomenon, and the two signals given on the two graphs are similar in some
sense, the output of the CNN on both signals should be similar as well. This property is typically
termed transferability, and is an essential requirement if we wish the CNN to generalize well on the
test set in multi-graph settings. In fact, transferability can be seen as special type of generalization
capability. Analyzing and proving transferability of spectral graph CNNs is the focus of this paper.

Graph CNNs can manage transferability in different ways. First, when a graph CNN is shown a
multi-graph training set, it can learn “concepts” that promote transferability. Let us call this approach
concept-based transferability. Second, it may be the case that transferability is a mathematical law: a
built-in capability of certain types of graph CNNs, independent of their specific filters, which requires
no training. This approach, that we call principle transferability, is the focus of this paper.

We believe that the success of spectral graph CNNs in multi-graph settings relies on both types
of transferability. We call the accumulative effect of concept-based transferability and principle
transferability total transferability. In this paper we prove theoretically that spectral graph CNNs
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have principle transferability. We moreover demonstrate principle transferability by concocting
experiments that isolate principle transferability from concept-based transferability. This is done by
training the network on one single graph, which prevents it from learning concepts for dealing with
varying graphs, and testing the resulting network on other graphs. The performance of such a network
on the new graphs only partially degrades, illustrating the effect size of principle transferability in
total transferability. Moreover, in this isolated principle transferability experiment, spectral methods
do not perform worse than spatial methods, which indicates that spectral methods have competitive
transferability capabilities.

2 Convolution operators on graphs
There are generally two approaches to defining convolution operators on graphs, both generalizing
the standard convolution on Euclidean domains [2, 13]. Spatial approaches generalize the idea of a
sliding window to graphs. Here, the main challenge is to define a way to aggregate feature information
from the neighbors of each node. Some popular examples of spatial methods are [7, 12, 10]. Spectral
methods are inspired by the convolution theorem in Euclidean domains, that states that convolution
in the spatial domain is equivalent to pointwise multiplication in the frequency domain. To define the
frequency domain of a graph, we consider the graph Laplacian ∆ or some other graph shift operator,
and use its eigenvalues as frequencies and its eigenvectors as the corresponding Fourier modes [11].
The filter F is defined on the graph signal s by

Fs =

N∑
n=1

fn(ψ
∗
n · s)ψn (1)

where {ψn}Nn=1 are the eigenvectors of ∆, andψ∗n is the conjugate transpose ofψn. Here, the scalars
{fn}Nn=1 are the frequency responses of the filter, and different choices of fn results in different types
of filters, e.g., high, middle and low pass filters. For some examples of spectral methods see, e.g.,
[3, 4, 9, 6].

State of the art spectral graph CNNs are not based on the naive implementation (1) of graph filters, but
rather on a functional calculus implementation. As oppose to (1), where the frequency responses are
parametrized by the index n of the eigenvectors, the frequency response in functional calculus filters
is parametrized by the value λn of the eigenvalues corresponding to the eigenvecors ψn. Namely, we
define filters by

Fs = f(∆)s :=

N∑
n=1

f(λn)(ψ
∗
n · s)ψn (2)

where the frequency response f : R → C is now a function. It turns out that spectral filters based
on functional calculus implementation are linearly stable with respect to perturbations in the graph
Laplacian [8, 5]. Moreover, functional calculus filters are computationally efficient [4, 9].

One typical motivation for favoring spatial methods is the claim that spectral methods are not
transferable, and thus are not appropriate in multi-graph settings. The goal in this paper is to debunk
this misconception, and to show that state-of-the-art spectral graph filtering methods are transferable.
Interestingly, [1] obtained state-of-the-art results using spectral graph filters in a multi-graph setting,
without any modification to compensate for the “non-transferability”.

3 Principle transferability of spectral graph CNNs
We present a framework of transferability, allowing to compare graphs of incompatible sizes and
topologies. We consider spectral filters as they are, and do not enhance them with any computational
machinery for transferring filters. Thus, one of the main conceptual challenges is to find a way to
compare two different graphs, with incompatible graph structures, from a theoretical stance. To
accommodate the comparison of incompatible graphs, our approach resorts to non-graph theoretical
considerations, assuming that graphs are observed from some underlying spaces that may or may not
be graphs. One example is when graphs are regarded as discretizations of underlying corresponding
continuous metric spaces. This makes sense, since a weighted graph can be interpreted as a set
of points (vertices) and a decreasing function of their distances (edge weights). Two graphs are
comparable, or represent the same phenomenon, if both discretize the same space. This approach
allows us to prove transferability under small perturbations of the adjacency matrix, but more
generally, allows us to prove transferability between graphs with incompatible structures.
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The way to compare two graphs is to consider their embeddings to the space they both discretize.
For intuition, consider the special case where the metric space is a manifold. Any manifold can
be discretized to a graph/polygon-mesh in many ways, resulting in different graph topologies. A
filter designed/learned on one polygon-mesh should have approximately the same repercussion on
a different polygon-mesh discretizing the same manifold. To compare the filter on the two graphs,
we consider a generic signal defined on the continuous space, and sampled to both graphs. After
applying the graph filter on the sampled signal on both graphs, we interpolate both results back to
two continuous signals. In our analysis we show that these two interpolated continuous signals are
approximately equal.

Consider a metric spaceM with a Borel measure µ, and the space of signals L2(M). In general, the
space L2(M) may be infinite dimensional. Consider a self-adjoint operator L in L2(M) that we call
the metric Laplacian. We suppose that L has a discrete spectrum, with eigenvalues λ0 < λ1 < . . . ,
and corresponding eigenfunctions φn :M→ C. The metric-Laplacian models the geometry inM,
and specifically formalizes the notion of oscillations or frequencies. We define band-limited spaces
in L2(M), also called Paley-Wiener spaces, by

PW (λM ) = span{φm}Mm=0.

Denote by P (λM ) the orthogonal projection upon PW (λM ). Graphs are sampled from metric spaces
using sampling operators. In general, given the graph G, we define sampling as a linear operator
S : C(M)→ L2(G), where C(M) is the space of continuous functions inM. We define for each
Paley-Wiener space P (λM ) an interpolation operator as a linear operator Rλ : L2(G)→ PW (λM ).
We consider a graph Laplacian ∆ of G that may be any self-adjoint shift operator.

Our theory applies on any model of S,Rλ, which are only required to be linear and bounded. For a
concrete example, consider sampling by evaluation on sample points in a metric spaceM. Given N
sample points G = {xk}Nk=1 ⊂M, the sampling operator S : C(M)→ L2(G) is defined by

Sq = {q(xk)}Nn

k=1.

Given a graph signal q ∈ L2(G), we define the interpolation of q to the Paley-Wiener space PW (λM )

as the adjoint operator of the operator SP (λM ), namely, RλM
=
(
SP (λM )

)∗
.

In another example,M is a graph, and G is a coarsened version ofM, where pairs of neighboring
nodes in M are collapsed to single nodes in G. Sampling is the operator that assigns the value
2−1/2q1+2−1/2q2 to the node ofGwith parent nodes fromM have the values q1 and q2. Interpolation
is defined to be R = S∗ on the whole spectral gap λmax. In a simpler example,M is a graph, and G
is a perturbation ofM, that is obtain by adding/deleting random edges fromM or perturbing the
edge weights. Here, S = R = I .

We formulate transferability between filters inM and filters in G has follows

Theorem 1 Consider the above setting, and let λM > 0 be a band with ‖RλM
‖ < C. Let f :

R → C be a Lipschitz continuous function, with Lipschitz constant D, and denote ‖f‖L,M =

max0≤m≤M{|f(λm)|}. Then the following two bounds are satisfied

‖f(L)P (λM )−RλM
f(∆n)SnP (λM )‖ ≤DC

√
M ‖SLP (λM )−∆SP (λM )‖

+ ‖f‖L,M ‖P (λM )−RλM
SnP (λM )‖ .

(3)

‖f(L)q −RλM
f(∆n)Snq‖ ≤ DC

M∑
m=0

|cm| ‖SLφm −∆Sφm‖+ ‖f‖L,M ‖q −RλM
Snq‖ . (4)

where q =
∑M
m=0 cmφm.

To interpret (3) and (4), the left-hand-side is the transferability error in the filter. The first term in the
right-hand-side is the transferability error in the Laplacian, either in maximal spectral norm or applied
on the different Fourier modes, and the second term is the error entailed by sampling-interpolation a
signal.

Now, consider two graphs G1 and G2, with corresponding graph Laplacians ∆1 and ∆2, that
represent the same phenomenon. Adopting our basic assumption, we thus suppose that both graphs
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approximate the spaceM in the following sense. For some fixed Paley-Wiener space PW (λM ),
and for each n = 1, 2 and any signal q ∈ PW (λM ), we suppose ‖Lq −Rn;λM

∆nSnq‖ ≈ 0 and
‖q −Rn;λM

Snq‖ ≈ 0 . By the triangle inequality, we can also show

‖R1;λM
∆1S1q −R2;λM

∆2S2q‖ , ‖R1;λM
S1q −R2;λM

S2q‖ ≈ 0. (5)

As a result of (3) and by the triangle inequality, we have

‖R1;λM
f(∆1)S1q −R2;λM

f(∆2)S2q‖

= O
(
‖R1;λM

∆1S1q −R2;λM
∆2S2q‖+ max

n=1,2
‖q −Rn;λM

Snq‖
)
.

(6)

4 Experiments
In top-left of Figure 1 we isolate principle transferability form concept-based transferability in
MNIST, and compare a spectral graph CNN method with a spatial graph CNN method. We consider a
simple CNN architecture based on two convolution layers, where the max pooling in the second layer
collapses each channel to one node, and two fully connected layers. Both the spectral and spatial
methods have 92K parameters. We train the network on MNIST images of one fixed fine resolution
(32X32) and test on images of various coarse resolutions. The graph Laplacian is given by the central
difference approximating second derivative. In this setting, the spectral method, CayleyNet, has
higher principle transferability than the spatial method, MoNet. Indeed, its performance degrades
slower as we coarsen the grid.

In top-middle and right of Figure 1 we test transferability between the Citeseer graph M and
its coarsened version G as described in Section 3. We consider the coarsening and interpolation
operators S and R = S∗ of Section 3. We consider the normalized Laplacian L onM, and the
coarse Laplacian ∆ = SLR on G. We consider low-pass (top-middle) and high-pass (top-right)
filters with Lipschitz constant 1. To show transferability, we plot ‖Sf(L)φm − f(∆)Sφm‖ as a
function of ‖SLφm −∆Sφm‖ for various eigenvectors φm of L (some corresponding eigenvalues
are displayed). All values lie below y = x, which accord with (1) of the supplementary material.

In Figure 1 bottom, we test the stability of spectral graph filters in the Cora graph with the normalized
Laplacian, for different models of graph perturbations and sub-sampling. We consider three filters:
low, mid and high pass. In bottom-left we randomly remove edges, in bottom-middle we randomly
add edges, and in bottom-right randomly delete vertices, and compare the filters on the sub-sampled
graph. The markers indicate the percentage of edges/vertices that were removed/added. The x axis is
the relative error in the Laplacian, and the y axis is the relative error in the filter. The experimental
results support the theoretical results on linear stability. All errors are given in Frobenius norm. The
Frobenius norm can be seen as the average pointwise error, where the Laplacians and filters are
applied on the signals of the standard basis.

93.86% 86.82%

75.92%

45.54%

14.12%

94.98%

84.26%

40.00%

12.76% 10.94%

Transferability of CNN: spectral vs spatial methods Low pass transferability on coarsened Citeseer High pass transferability on coarsened Citeseer

Filter stability on Cora—randomly removing edges Filter stability on Cora—randomly adding edges Filter stability on Cora—randomly removing verteces

Figure 1: Trasferability experiments
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A Proof of Theorem 1

By linearity and finite dimension of PW (λ), we start a signal s = φm which is an eigenvector of
L corresponding to the eigenvalue λj , and then generalize to linear combinations. Let Pnk be the
projection upon the eigenspace of ∆n corresponding to the eigenvalues κnk of ∆n. Then,

∆nSnφm − SnLφm =
∑
k

κnkP
n
k Snφm − λmSnφm

=
∑
k

(κnk − λm)Pnk Snφm.

By orthogonality of the projections {Pnk }k,∥∥∥∥∥∑
k

κnkP
n
k Snφm − λmSnφm

∥∥∥∥∥
2

=
∑
k

|κnk − λm|
2 ‖Pnk Snφm‖

2

Now, since f is Lipschitz,

‖f(∆n)Snφm − Snf(L)φm‖2 =
∑
k

|f(κnk )− f(λj)|
2 ‖Pnk Snφm‖

2

≤D2
∑
k

|κnk − λm|
2 ‖Pnk Snφm‖

2

=D2

∥∥∥∥∥∑
k

κnkP
n
k Snφm − λmSnφm

∥∥∥∥∥
2

=D2 ‖∆nSnφm − SnLφm‖2 .

(1)

Now, any s ∈ L2(M) can be written as

s =
∑
m

cmφm.

We have

‖f(∆n)SnP (λM )s− Snf(L)P (λM )s‖ =

∥∥∥∥∥
M∑
m=1

cm

(
f(∆n)Sn − Snf(L)

)
φm

∥∥∥∥∥ .
By the triangle inequality,

‖f(∆n)SnP (λM )s− Snf(L)P (λM )s‖ ≤
M∑
m=1

|cm|
∥∥∥(f(∆n)Snφm − Snf(L)φm

)∥∥∥
≤ ‖s‖1D ‖∆nSnP (λM )− SnLP (λM )‖ .

(2)
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Here, ‖s‖1 :=
∑M
m=1 |cm|, satisfies

‖s‖1 ≤ ‖s‖2
√
M.

Let us now derive another bound. Denote the vector

E = {Em}m = {
∥∥∥(f(∆n)Snφm − Snf(L)φm

)∥∥∥}m.
The vector E represents the Laplacian error on the Fourier modes. Then

‖f(∆n)SnP (λM )s− Snf(L)P (λM )s‖ ≤
M∑
m=1

|cm|
∥∥∥(f(∆n)Snφm − Snf(L)φm

)∥∥∥
≤

M∑
m=1

|cm|D ‖∆nSnP (λM )φm − SnLP (λM )φm‖

(3)

Last, by the triangle inequality on (2),

‖f(L)P (λM )− In;λM
f(∆n)SnP (λM )‖

≤ ‖f(L)P (λM )− In;λM
Snf(L)P (λM )‖+ ‖In;λM

Snf(L)P (λM )− In;λM
f(∆n)SnP (λM )‖

≤ ‖P (λM )− In;λM
SnP (λM )‖ ‖f(L)P (λM )‖+ ‖In;λM

‖ ‖Snf(L)P (λM )− f(∆n)SnP (λM )‖ .

Note that by assumption
‖In;λM

‖ ≤ C
and, by the diagonal form of f(L)P (λM ),

‖f(L)P (λM )‖ ≤ ‖f‖L,M ,

which gives (4) of Theorem 1. A similar argument based on (3) gives (5) of Theorem 1.
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