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Abstract

We introduce a relational graph neural network with bi-directional attention mecha-
nism and hierarchical representation learning for open-domain question answering
task. Our model can learn contextual representation by jointly learning and updat-
ing the query, knowledge graph, and document representations. The experiments
suggest that our model achieves state-of-the-art on the WebQuestionsSP bench-
mark.

1 Introduction

Fusing structured knowledge from knowledge graphs into deep models using Graph Neural Networks
(GNN) [23,130, 129] is shown to improve their performance on tasks such as visual question answering
[12], object detection [9], natural language inference [2]], neural machine translation[11]], and open-
domain question answering [[17]. This particularly helps question answering neural models such
as Memory Networks [22] and Key-Value Memory Networks [10] by providing them with well-
structured knowledge on specific and open domains [28]. Most models, however, answer questions
using a single information source, usually either a text corpus, or a single knowledge graph. Text
corpora have high coverage but extracting information from them is challenging whereas knowledge
graphs are incomplete but are easier to extract answers from [[17].

In this paper, we propose a relational GNN for open-domain question answering that learns contextual
knowledge graph embeddings by jointly updating the embeddings from a knowledge graph and a
set of linked documents. More specifically, our contributions are as follows: (1) we use documents
as contextualized relations to augment the knowledge graph and co-train the knowledge graph and
document representations, (2) we introduce a bi-directional graph attention mechanism for knowledge
graphs, (3) we propose a simple graph coarsening method to fuse node and cluster representations,
and (4) we show that our model achieves state-of-the-art results on the WebQuestionsSP benchmark.

2 Related Works

Graph representation learning on knowledge graphs allows projecting high-level factual information
into embedding spaces which can be fused with other learned structural representations to improve
down-stream tasks. Pioneer works such as Trans-E [[1]], Complex-E [18]], Hole-E[13], and DistMul
[25] use unsupervised and mostly linear models to learn such pre-trained representations. A few recent
works, on the other hand, use GNNs to compute the knowledge graph representation [24} 20, [27]].
These high-level knowledge graph representations are particularly important for question answering
task [22, 10} [17]. We use pre-trained representations to initialize the model and then update them
using a relational and bi-directional GNN model.
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Only a few works fuse knowledge graphs with text corpora to answer question. In [3] early fusion of
knowledge graph facts and text is performed using Key-Value Memory Networks (KVMN). This
model, however, ignores relational structure between the text and knowledge graph. Our model links
the knowledge graph and documents through document-contextualized edges and also links entities
with their positions in the corpus. This linking is used in GRAFT-Net as well which also performs
question answering through fusing learned knowledge graph and linked document representations
[17]. Unlike GRAFT-Net, our model uses variants of differential pooling [26] and bi-directional graph
attention [[19] for more powerful message passing. Our model also introduces trainable document-
contextualized relation embeddings instead of exclusively relying on fixed relation representations.

3 Method

Assume a knowledge graph G = (V, E, R) where V, R, and E are sets of entities, relations, and
edges, respectively. Each edge e; = (s,7,0) € E denotes an object o interacting with subject s
through a relationship 7. Given a textual query ¢ € (w;...w)q) and a set of relevant documents
D linked to G by an imperfect linker, the task is to predict the answer nodes: v,, € V. A query
can have zero or multiple answers and hence the task is reduced to binary node classification on
G (i.e., binary cross entropy loss). Following [17], we first extract a subgraph G, C G which
contains v,, with high probability. This is done by linking the query entities to G' and expanding
their neighborhood using Personalized PageRank (PPR) method. We then initialize G, ¢, D, and R
in embedding space as follows. Each entity v € V is initialized using pre-trained TransE embeddings

m: A = TransE(v) € R, Documents are encoded as H(l) € RIPIXnaxdu where ng is the
maximum number of tokens in documents, and H j, u ) ;€ R%= corresponds to the jth token embedding
of dimension d,, in the kth document. A bldlrectlonal LSTM that takes in pre-trained GloVe embed-
dings [15] of tokens and computes a global sequence embedding is shared between query and docu-
ments to initialize their embeddings: h((zo) = BILSTM (wl...w‘q‘) and H(;O) = BiLSTM (wl...w|d|).
Each relation r € R is initialized as: h\”) = ReLU (W&O) [TransE(r) || uglove(wl...w|r|)]) where

WS” € R(d+duw)Xdr jg 4 trainable parameter, || is the concatenation operator, and Hglove € Réw jg
the mean pool over GloVe embeddings of the relation tokens.

3.1 Documents as Relations

We use documents to explicitly augment the knowledge graph by forming additional relations between
entities. Assuming two unique entities v; and v; co-occurring within document d,, we compute the
document relation embedding for both plausible directions between v; and v;. This lets the model
to learn to attend to the direction that optimizes the objective. These embeddings are computed as
follows:
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where W(lr) € R3dwxdr ig g trainable parameter, hg: is the learned textual embedding of the document
and h(l() A = Zpe Ma, (v) H C(li)’p denotes the textual representation of the entity and is computed

by summing up the textual embeddings of its tokens within the document (i.e., My, (v) returns the
positions of entity v in document dg). An example of this process is illustrated in Figure

3.2 Bi-Directional Graph Attention

To update the node embedding hq(,l) we aggregate the embeddings of its connecting edges. An edge
embedding is computed by aggregating its relation embedding hg,l) with the neighbor node embedding
A connecting through that edge. Let e,,+ = (v,7,v;) € E and e;,, = (v;,7,v) € E represent two
facts in which the node v is either the subject or the object. If the node is an object, we will refer the
edge to point inwards, and outwards if it is a subject. The edge embedding are computed as follows:

€out
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Figure 1: An example of forming relations from documents.

where h(l) and hé{}w denote the embeddings of the inward and outward edges connecting to node v,

and W£ ) and Wq()l) are trainable parameters. To distinguish inward edges from outward edges, we
negate h,.. This is distinct from previous approaches which only process incoming nodes [[17]].
The next step is aggregating the embeddings of the edges connecting to the node, i.e., k.  and

€out

h! . We apply two attention mechanisms to perform the aggregation and hence the model separately

€in*
aggregates weighted sums of edge embeddings over each attention parameters: agl) and ag)AT. The

first attention parameter oz,gl) is based on the normalized similarity between the relation embedding

of an edge (i.e. h(o)) and the question embedding (i.e., hgo)) at layer O: aél,?em = softmax(hgjn hg)

O]

and age,,, = softmax(hglt hg) This captures the semantic similarity between the query and the
O]

inward and outward relations separately. The second attention parameter o, 4, is based on the
similarity between a node and its neighbors with respect to the relationship between them. Assume
(vs,7,v;) is an edge between nodes v; and v; with relationship of type r. The edge score is defined

as the dot product between the edge embedding of the original direction and inverted direction
O]

€in

(vj, 7, v;) and then normalized over all inward edges: «

a&?ut = softmax(h l)ThU )

= softmax(h(fﬁh(f)) and outward edges:

. Unlike graph attention [26] this method addresses heterogeneous
directed knowledge graphs. Finally, the model updates the node embedding (Figure [2):
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3.3 Hierarchical Aggregation

GNN models cannot learn hierarchical representations as they do not exploit the compositionality
of graphs. Inspired by [26] we define a linear layer to assign nodes into clusters and then use
them to represent the nodes. This increases the receptive field by letting messages to pass among
nodes belonging to the same cluster. We compute the soft cluster assignments using a linear layer
C = softmax(H" W) where H, € R™ *4 is the node embedding matrix, W) € R *ne ig
a trainable parameter, and Cc) ¢ R *ne s the normalized soft assignment matrix mapping 7,
nodes to n. clusters. We then compute the cluster centroids using H(l) = C(Z)THE})and compute the
cluster-based node representation using H = softmax((H(l)W(l))T)Hff). Finally, we concatenate
the node representation in the final layer w1th all the cluster-based node representations from previous
layers (i.e., similar to DenseNet [S]]). We reduce the dimensionality using a trainable parameter
Wiinal € Rd»L>xdv followed by a sigmoid function to produce the probability score per node.
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Step 1: Get Embeddings for each fact as well as its inverse (Ex. €0,1, inv(eg1) =eiy)
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Figure 2: Message passing in proposed bi-directional graph attention mechanism.

Model Fricro  Frmacro  FO9 Hits@1
KVMN [3] - - 309 405
GRAFT-Net [I7] 660 610 604 678
Ours 726 625 617 682

Table 1: Comparative results on the WebQuestionsSP benchmark.

4 Results

We implemented the model with Pytorch [14] on a Nvidia DGX-1 server with 8 Volta GPUs and
optimize it using Adam [7]] with initial learning rate of 0.001 and batch size of 10 for 100 epochs
with early stopping. The learning rate is decayed by a factor of 0.8 every 10 epochs. We also apply
batch-normalization [[6] and dropout [[16]. We evaluated our model on the WebQuestionsSP dataset
consisting of 4,737 natural language questions (i.e., 3,098 training, 250 validation, and 1,639 test
questions) posed over Freebase entities [8]. Following [[17], we apply the same pre-processing and
report average Fy and Hits@1, as well as micro-average, and macro-average F; scores. [4] suggests
that micro-averaged F; best represents the performance on imbalanced binary classification .

Table 1 shows the performance of our model compared to other models that also feature early fusion
of the knowledge graph and text. These include Key-Value Memory Networks with (KVMN) [3]
and GRAFT-Net [[17]. The results suggest that our model outperforms GRAFT-Net with an absolute
increase in all metrics. To investigate the effect of the proposed methods we performed an ablation
study by masking each introduced component and training and evaluating the model. The results in
Table 2 (Appendix) shows the effect of each component and suggest that all introduced components
contribute to the performance.

5 Conclusion

We introduced a relational GNN with bi-directional attention and hierarchical representation learning
for open-domain question answering that jointly learns to represent the query, knowledge graph,
and documents. The experiments showed that our model achieves state-of-the-art performance on
WebQuestionsSP. For future directions, we are planning to expand our model towards cross-modal
question answering benchmarks such as Fact-based Visual Question Answering (FVQA) [21]].
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6 Appendix

Masked Component Fpicro Fpacro  F{Y9 Hits@1

Document Relations 69.3 61.1 59.0 69.3
Bi-Directional Attention 67.9 60.6 58.5 66.9
Graph Coarsening 67.9 60.8 58.7 67.8
No Mask 72.6 62.5 61.7 68.2

Table 2: Effect of components on the performance of the proposed model.
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