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Abstract

We consider the task of knowledge graph link prediction. Recent approaches
tackle this problem by learning entity and relation embeddings. However, they
often constrain the relationship between these embeddings to be additive (i.e.,
the embeddings are concatenated and then processed by a sequence of linear
functions and element-wise non-linearities). We show that this type of interaction
significantly limits representational power, and instead propose to use contextual
parameter generation to address this limitation. More specifically, we treat relations
as the context in which entities are processed to produce predictions, by using
relation embeddings to generate the parameters of a model operating over entity
embeddings. We apply our method on two existing link prediction methods,
including the current state-of-the-art, resulting in significant performance gains and
establishing a new state-of-the-art for this task. These gains are achieved while
also reducing training time by up to 28 times.

1 Introduction
Many real-world applications, from search engines to conversational agents such as Amazon’s Alexa
and Apple’s Siri, rely on the ability to infer new facts from existing knowledge. A common means of
representing such knowledge is via knowledge graphs (KGs), where facts are represented as triples
(es, r, et), and encode factual relationships between graph nodes. For each triple, we refer to es and
et as the source and target entities, respectively, and we refer to r as the relation between es and et.
While there exist many KGs that capture a diverse field of information, they are often incomplete [21].
However, many missing links are inferrable from existing knowledge. This motivates the task of
link prediction, which is typically formulated as either question answering—inferring answers to
questions of the form (es, r, ?)—or fact checking—evaluating the validity for statements of the form
(es, r, et). This work focuses explicitly on the question answering formulation.

The study of link prediction has gathered substantial attention in the past years, and many methods
have been proposed to solve it. These can be categorized as either single-hop or multi-hop models.
Given a question, single-hop approaches [1, 23, 20, 14, 8] infer the answer directly, while multi-hop
methods [11, 4, 15, 5, 19, 2, 13, 24, 6] find a path along the KG from the source entity to the most
probable target entity. A significant boost in performance was observed when recent methods such
as ConvE [3], MINERVA [2], or MultiHop-KG [13] combined KGs with the expressive power of
neural networks. Such approaches learn finite dimensional continuous vector representations (i.e.,
embeddings) for both the entities and relations in the KG, and process them (e.g., through a neural
network) to infer its missing links. However, in these models, interactions between entity and relation
representations are restricted to being additive (e.g. they may be concatenated and linearly projected).
In this work, we show how this type of interaction between entities and relations significantly limits
expressive power, and we propose a novel method to address this limitation. More specifically, we
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Figure 1: Architectures for ConvE (left) and its CoPER-enhanced version, CoPER-ConvE (right).

propose to treat the relations as the context in which source entities are interpreted and transformed to
produce target entities. Concretely, we use the relation embeddings to generate the parameters of a
model operating over entity embeddings, which then outputs a distribution over correct answers. The
proposed method, CoPER (Contextual Parameters from Embedded Relations), has the following
desirable properties: (1) Abstract: It can be used to enhance the representational power of several
link prediction methods; (2) Simple: It can be formulated as a simple transformation for qualifying
models, that can be implemented with only about 10 lines of code; (3) Scalable: It speeds up training
by up to 28×; (4) State-of-the-Art: It outperforms competing methods by a significant margin on
several established datasets.

2 Background
Notation. Let es, r, and et denote one-hot encoded representations of the source entity, relation, and
target entity of a KG triple. A common approach to learning abstract representations of entities and
relations is to learn vector embeddings, which provides for a simple yet effective method of sharing
information. The transformation from one-hot encodings to vector embeddings is modeled as follows.
Let Ne and Nr denote the total number of distinct entities and relations in the KG, respectively.
Given a set of entities, E = {ei}Nei=1, and a set of relations R = {ri}Nri=1, we define the following
embedding matrices: E ∈ RDe×Ne and R ∈ RDr×Nr , where De and Dr correspond to the entity
and relation embedding sizes, respectively. E and R are both trainable parameters. Given a question
of the form (es, r, ?), the corresponding source entity and relation embeddings are es = Ees and
r = Rr, where es ∈ RDe and r ∈ RDr , respectively.

ConvE. ConvE [3] is the current state-of-the-art and one of the baselines used in our experiments. In
ConvE, the target entity is estimated through the function: et = Denseφ(Conv2D(Reshape([es; r]))).
Here, [es; r] ∈ RDe+Dr represents the result of stacking the entity and relation embeddings together,
followed by a reshape into a W ×H rectangular matrix, where W and H are model hyperparameters
such that WH = De + Dr. This matrix is then passed through a 2D convolution layer, followed
by a dense layer, to obtain the answer entity embedding es. The dense layer is defined as a ReLU
activated linear-layer, where φ denotes its weight matrix and bias vector combined. An illustration
of the ConvE model is shown in the left of Figure 1. For further details, we refer the reader to the
work of [3]. Importantly, we observe that the entity and relation embeddings are concatenated as
input to the convolution, which induces an additive interaction between them. As we introduce in the
following paragraph, this induces a restriction on the expressibility of the model.

e0

r1

r1
r0

r0e1 e3

e2

Figure 2: Toy ex-
ample.

Limited Expressive Power. Many existing neural methods consist of the follow-
ing steps: (i) learn entity and relation embeddings, (ii) concatenate the source
entity and relation embeddings, and (iii) perform a sequence of linear transforma-
tions and element-wise non-linear operations on the concatenated vector. Through
these types of operations, the elements of the entity embedding, es, and relation
embedding, r, will only interact in an additive way. To understand what we mean
by additive, consider the case where es and r are concatenated and then projected
using the weight matrix W. The output is given by W[es; r], which is equivalent to Wees + Wrr,
where [We;Wr]

T = W. Note that no elements of es are multiplied with any from r. This imposes
a restriction on what types of KG structures can be modeled explicitly, and even the simple example
in Figure 2 poses an issue. Due to space limitations, we leave the proof in Appendix A, and we show
how our proposed method addresses this limitation in Appendix B. However, it suffices to note that
our proposed approach alleviates the constraints imposed by these additive interactions.
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3 Model
Our method, termed CoPER — Contextual Parameters from Embedded Relations, can be used to
enhance multiple existing additive link prediction methods, by enabling them to learn more expressive
relationships between entities and relations. At the core of CoPER lies the key idea that relations
define how source entities are processed in order to produce answer entities (i.e. relations are the
context in which we process the entities). Specifically, when answering a question (es, r, ?), the target
entity et can be obtained through a transformation of the source entity es, and the parameters of this
transformation are determined by the relation r. In this section, we propose and compare different
potential architectures for this contextual parameter generation (CPG) module.

Parameter Generator Network. Let hφ denote an arbitrary merge function, with parameters φ, that
additively combines es and r. In the example above, hφ(es, r) = W[es; r] with φ = W. In CoPER,
we introduce a function that takes as input r and outputs the parameters φ of h, while h now only
operates over es. Let g : {1, 2, ..., Nr} → RDφ be our parameter generation function, where Nr is
the number of relations in the KG, φ ∈ RDφ , and Dφ is the number of parameters in φ. We now
present three simple functional forms for g that we also use for our experiments.

Parameter Lookup Table. The simplest approach is to output an entirely different φ for each
relation. This results in the following form: glookup(r) = Wlookupr, where r here is a one-hot encoded
vector representation of the relation, and Wlookup ∈ RDW×Nr is the only learnable parameter of
glookup, with Dφ = DW ·Nr. However, the problem with this simple formulation is that information
sharing across relations can only happen through the shared entity embeddings. As we illustrate in
Appendix F, this makes the model prone to overfitting. Moreover, in large KGs, many of the relations
may be similar (e.g., bornIn and livesIn), and it may be beneficial for these relations to share
information. This motivates a different approach for generating parameters.

Linear Projection. Instead of using one-hot encodings for the relations, we can learn embeddings:
glinear(r) = WlinearRr + b, where we use the embedding lookup equation, Wlinear ∈ RDW×Dr ,
bias term b ∈ RDW , Dr is the relation embedding size, and Wlinear, b, and R are trainable model
parameters. Thus, φ = (W,b), with Dφ = DW · (Dr + 1). Intuitively, the learned relation
embeddings represent a linear combination (offset by b) of Dr different values for φ, allowing for
shared information between relations.

Multi-Layer Perceptron. Most of our experiments are performed using glinear, with which we
achieve state-of-the-art results. However, we observed that glinear underperforms for small datasets.
We believe that this is most likely due to Wlinear becoming too big relative to the original number
of parameters. This is because, if our original additive network had Dφ = DW trainable variables,
glinear introduces DW × (Dr + 1) parameters, which makes glinear significantly larger. Limiting the
value of Dr is not necessarily a solution as a small Dr can significantly constrain the capacity of our
model. We therefore propose a third variant of the generator network using a multi-layer perceptron:
gMLP(r) = MLP(Rr). This can be thought of as a low-rank approximation to glinear.

These are only three possible proposals for the parameter generator network and, as we show in
Appendix B, even a simple network such as glinear already significantly increases representational
power. Note however, that the idea behind CoPER is more general and can be extended to more
complex architectures. In contrast to similar work discussed in Appendix H, CPG learns more
powerful relationships between relations; the network can learn any arbitrary relation interactions.
Furthermore, in comparison to these methods (refer to Appendix H), CoPER achieves the best
performance.

CoPER-ConvE. In CoPER-ConvE, the first pre-processing steps in the pipeline (reshape, convo-
lution) are only applied to the entity embedding, while the relation is now used to generate the
parameters of the projection layer:

z = Conv2D(Reshape(es)), φ = g(r), and êt = Denseφ(z) = φ1 + φ2:Dφz,

where φ is the parameter vector produced by the Parameter Generator, with its first element φ1 used
as bias in the projection layer, and the other Dφ − 1 elements being used as a weight matrix.

CoPER-MINERVA. MINERVA is a multi-hop method, which means that it will answer the question
(es, r, ?) by finding a path in the graph that connects es with the predicted answer êt. At each hop in
the graph, the model is repeatedly invoked to predict the next target entity to move to. Due to space
constraints, we describe this architecture in more detail in Appendix C. However, what is important
to note is that MINERVA’s architecture contains two points where entity and relation embeddings are
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Table 1: Results for various link prediction models. Results for ConvE, MINERVA, CoPER-ConvE
and CoPER-MINERVA are reported according to our own experiments. The remainder are taken
from [2]. All numbers are expressed as percentages. “*” denotes experiments in progress, while “-”
denotes missing results from the respective publications.

Dataset Metric Models
DistMult ComplEx NeuralLP NTP-λ MINERVA MultiHop-KG ConvE CoPER-MINERVA CoPER-ConvE

UMLS
Hits@1 82.1 82.3 64.3 84.3 75.3 90.2 92.89 77.76 95.46
Hits@10 96.7 99.5 96.2 100.0 96.7 99.2 99.70 97.43 99.70
MRR 86.8 89.4 77.8 91.2 84.1 94.0 95.35 85.44 97.08

Kinship
Hits@1 48.7 75.4 47.5 75.9 60.5 78.9 74.21 66.20 83.62
Hits@10 90.4 98.0 91.2 87.8 92.4 98.2 97.86 94.23 98.42
MRR 61.4 83.8 61.9 79.3 72.0 86.5 83.04 76.00 89.52

WN18RR
Hits@1 43.1 41.0 37.6 – 41.3 41.8 41.86 42.66 44.05
Hits@10 52.4 51.0 65.7 – 51.3 51.7 52.17 50.99 56.12
MRR 46.2 44.0 46.3 – 44.8 45.0 45.19 46.51 48.33

FB15k237
Hits@1 32.4 15.8 16.6 – 22.3 32.7 30.30 29.49 32.18
Hits@10 60.0 42.8 34.8 – 44.9 56.4 60.83 50.39 62.92
MRR 41.7 24.7 22.7 – 29.2 40.7 40.51 36.51 42.56

NELL-995
Hits@1 55.2 64.3 – – 66.3 65.6 67.04 * 70.25
Hits@10 78.3 86.0 – – 83.1 84.4 87.96 * 88.70
MRR 64.1 72.6 – – 72.5 72.7 75.42 * 77.48

combined, and in both cases the combination is additive. With CoPER we replace these merge steps
with a CPG module.

4 Experiments
Datasets. We adopt the following datasets used in prior literature: Unified Medical Language
Systems (UMLS) [10], Alyawarra Kinship, WN18RR [3], FB15k-237[18], and NELL-995 [22]. Table
2 in Appendix D shows summary statistics for each dataset.

Models. We evaluate CoPER-ConvE and CoPER-MINERVA against their base models and multiple
other link prediction methods. Regarding the parameter generation module, we perform experiments
using both glinear and gMLP. Further details with respect to hyperparameters, batch size and optimizier
can be found in Appendix E.

Results. We report results for two metrics used throughout prior work: Hits@k and Mean Reciprocal
Rank (MRR). Further details about what these represent can be found in Appendix E. Our overall
performance results are reported in Table 1. We observe that CoPER-ConvE outperforms ConvE
on all datasets, with up to +9.41% Hits@1 performance gain over ConvE on Kinship. Moreover,
we find that CoPER-ConvE achieves better performance over all other existing methods on these
datasets, often by a significant margin. Notably, we observe a +4.7% Hits@1 gain for Kinship over
the best existing method and a +3.21% Hits@1 gain for NELL-995. To the best of our knowledge,
CoPER-ConvE establishes a new state-of-the-art on all these datasets.

We also examine the effect of CoPER on training time. Since CoPER-ConvE is the version with
the best results across all datasets, we perform this analysis for ConvE and CoPER-ConvE. Given
that CoPER-ConvE consistently outperforms ConvE in terms of Hits@1 we compare the number of
iterations that each method requires to reach the best Hits@1 value that ConvE achieves (e.g., we
check when both ConvE and CoPER reach 92.89% Hits@1 on UMLS). Then we calculate the ratio:
# iterations CoPER
# iterations ConvE . For instance, if a baseline model requires 10,000 steps to attain best performance,

while its CoPER variant takes 3,000 steps to achieve identical performance, then this metric would be:
3,000
10,000 = 0.3. Correspondingly, the training speedup would be 1

0.3 = 3.33. Our results, illustrated in
Figure 4 in Appendix G, show that CoPER-ConvE always requires much fewer training iterations
than ConvE, yielding a speedup between 2.9× to 28.6×.

5 Conclusion
We propose CoPER, a novel framework that improves upon the current state-of-the-art methods
for the task of knowledge graph link prediction. CoPER treats relations as the context in which
source entities are processed to predict target entities. We show how this significantly increases the
expressive power of link prediction models by allowing them to represent multiplicative interactions
between entities and relations. We also show our approach’s flexibility by extending both a single-hop
and a multi-hop link prediction model, achieving new state-of-the-art performance for this task, while
significantly speeding up training time over unaltered methods by up to 28×.
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Appendices
A Limitations of Additive Interactions

Most existing neural methods consist of the following steps: (i) learn entity and relation embeddings,
(ii) concatenate the source entity and relation embeddings, and (iii) perform a sequence of linear
transformations and element-wise non-linear operations on them, in order to obtain the target entities.
We now use an example to explain why this only explicitly allows for additive interactions between
the source entity and relation, and why this is significantly limiting the model’s expressive power.
Consider a simple merging function where the source entity and relation are first concatenated into a
single vector as [es; r], and then projected through a linear layer:

hφ(es, r) = φ · [es; r], (1)

where φ ∈ RDz×(De+Dr) and Dz is the size of z. If we refer to the first De columns of φ as φe, and
the last Dr columns as φr (i.e., φ = [φe;φr]), then we can write hφ(es, r) = φses + φrr. Note that,
in this case the elements of the entity embedding es and the relation embedding r only interact in an
additive way (i.e., the output z is a linear combination of the elements in es and r and it does not
support more complex interactions, such as multiplicative or polynomial). The same is true for the
merging function in ConvE through Conv2D (only some of the elements of φ are shared), as well as
the merging functions of MINERVA and Multihop-KG. The main implication of this is that relations
cannot influence the projection matrices used to transform the entities.

Let us demonstrate this important limitation by considering the example shown in Figure 2, illustrating
4 KG facts: (e0, r0, e2), (e0, r1, e3), (e1, r0, e3), (e1, r1, e2). Suppose we want to encode these
facts using a model in the form of Equation 1:

e2 = φee0 + φrr0 (2)
e3 = φee0 + φrr1 (3)
e3 = φee1 + φrr0 (4)
e2 = φee1 + φrr1 (5)

Subtracting (3) from (2), and (5) from (4), we have that:

(e2 − e3) = φr(r0 − r1)

(e3 − e2) = φr(r0 − r1)

which leads to a degenerate solution where φr = 0, r0 = r1, or e3 = e2. This implies that additive
models cannot represent this toy example.

While this is a toy example, it illustrates a more general problem. For instance, consider a case where
we want to learn a different expert model for each relation. This means that given a source entity
and relation, the relation determines which expert to use when processing the source entity. This
example is important because related work in other areas has shown that mixtures of experts—our toy
example is in fact a very simple form of a mixture of experts—can result in significant performance
gains [12]. Methods that combine entities and relations additively cannot learn such a mixtures of
experts. Ideally, we want our model to be expressive enough such that it can learn functions that
are conditional on the relation (such as the above mixture of experts example). The latter case is
important because learning a separate model for each relation may sometimes be impossible. A
common example for large KGs is that for some relations we have a lot of training data, but for most
we have very little. In such cases, we want to be able to leverage the fact that many relations are
similar by sharing information among them. To this end, we propose to use contextual parameter
generation, originally proposed in the context of neural machine translation by [16]. Importantly, as
we show in Appendix B the proposed approach is able to handle the aforementioned toy example as
well as more general mixtures of experts.

B Enhanced Expressive Power with Contextual Parameter Generation

Through the parameter generation component explained in Section 3, CoPER enables link predic-
tion models to learn functions that depend on more complex interactions between the entity and
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relation embeddings. A CPG module as simple as glinear, combined with any typical neural network
architecture for hφ (from a single linear layer to many complex layers followed by element-wise
non-linearities) allows the model to represent multiplicative interactions between source entities and
relations.

For ease of explanation, we will illustrate this increase in representation power with a simple form of
hφ, but it is easy to see that more complex architectures can only increase the expressive power further.
According to the CoPER formulation, hφ now only operates on es. For simplicity, let hφ(es) = φes.
The parameters φ are given by φ = glinear(r) = WRr + b = Wr + b. Thus, we have that:

êt = hφ(es) = hφ(es) = φes = (Wr + b)es. (6)

This result shows that the relation and entity embedding now interact in a multiplicative way, which
means the relation itself affects the weights with which we multiply the entity embedding. This is
more expressive than an additive interaction, as it now allows us to represent dependencies such as
conditionals (i.e., if statements), mixtures of experts, and even the toy example we in Figure 2.

Toy Example. Going back to our toy example that additive interactions cannot represent, we now
show that a CPG module as simple as glinear or glookup can encode this KG example. Applying the
predictor derived in Equation 6 to the KG in Figure 2, the following equations must hold for the toy
example to be representable by the model:

e2 = (Wr0 + b)e0 (7)
e3 = (Wr0 + b)e1 (8)
e2 = (Wr1 + b)e1 (9)
e3 = (Wr1 + b)e0 (10)

Subtracting (7) from (8), and (9) from (10), we have that:

e3 − e2 = (Wr0 + b)(e1 − e0)

e3 − e2 = (Wr1 + b)(e0 − e1)

which, avoiding the degenerate solution where e0 = e1, leads to:

W(r0 − r1) + 2b = 0

Since this equation has an infinite number of solutions, any W and b that satisfy this condition can
represent the subgraph in Figure 2.

Note that although we showed here that CPG leads to multiplicative interactions between es and r for
a particular choice of hφ(x) = φx, the conclusions will stand for most neural network architectures,
from multilayer perceprons to convolutional to recurrent neural networks, since they usually involve
such a projection step on the inputs.

C MINERVA.

MINERVA [2] is a deterministic RL-based multi-hop question-answering agent. The model defines
states as the entities in the KG, and actions as tuples (r, e) consisting of an outgoing relation and its
destination entity, specifying a hop to a neighboring node in the KG. Given a question (es, rq, et),
MINERVA traverses the KG along its relations from es to the most likely target entity et. Each
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step along the graph path iteratively accumulates a history of entities and relations visited, which is
aggregated together through and then stored in a Long Short-Term Memory (LSTM) network [7], as
illustrated in Figure 3 (left). The hidden state of the LSTM is updated as follows:

hi = LSTM(hi−1, [ei; ri−1]), (merge)

where hi denotes the accumulated history representation at the ith time step, hi−1 is the history
representation at the previous step and is the hidden state of the LSTM, ri−1 denotes the embedding
representation of the relation taken in the previous step leading to state ei (represented by the
embedding ei), and [; ] represents vector concatenation. Additionally, [ei; ri−1] denotes the LSTM
input. Because the LSTM module consists of a series of input projections, ei and ri−1 are additively
incorporated into the agent’s history.

At every time step, once the traversal history has been accumulated, the agent next determines the
subsequent action to take as follows:

oi = MLP([hi; ei; rq]), (merge) (11)
aj = Categorical(Aioi), (prediction) (12)

where Ai denotes the embedding representations of each available action from ei, oi represents
the Multi-Layer Perception (MLP) output, Categorical denotes a categorical distribution decision
function—such as a network policy—which operates over action distribution logits given by Aioi,
and aj is the selected action. Since an action is a tuple (r, e) as explained above, we represent aj as
the concatenation of the respective relation embedding and an entity embedding. Ai denotes then the
matrix containing vector representations of all available actions from each state.

Importantly, we observe that the entity and relation embeddings are concatenated as input to the
MLP, which also induces an additive interaction between them in this component. Thus, in both
components where entity and relation information is processed in MINERVA, it is done additively.
As illustrated with our toy example, this limits the impressibility of the network.

C.1 CoPER-MINERVA.

As mentioned above, MINERVA contains two points in the model where a relation embedding is
concatenated with another vector containing entity information. We replace this step in both cases
with a parameter generator, as illustrated in the right of Figure 3. In the fist case, the embedding of the
previous relation in a step, ri−1, is used as input to a parameter generator that outputs the parameters
of the LSTM component. In the second case, the query relation r embedding is used to generate the
parameters of the MLP, which operates over the step history and current entity representations. The
rest of the model remains unchanged.

D Dataset Statistics.

Table 2 displays summary statistics of the benchmark datasets used in our evaluation.

Table 2: Dataset statistics. Here, # Train denotes the number of questions used for training, Ne the
number of distinct entities, Nr the number of distinct relations, N̄a the average number of answers
per question, and d̄ the average degree of the graph nodes in the dataset.

Dataset # Train Ne Nr N̄a d̄

Kinship 8,544 104 25 6.14 82.15
UMLS 5,216 135 46 7.83 26.59

FB15k237 272,115 14,541 237 3.03 17.87
WN18RR 86,835 40,945 11 1.41 2.19

E Further Experimental Details

We use the evaluation strategies presented in both ConvE and MINERVA for CoPER-ConvE and
CoPER-MINERVA, respectively, to generate a ranking over entities at evaluation time. For instance,
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ConvE obtains a distribution over answer entities by computing the dot product between the predicted
entity target embedding and the embeddings of all possible entities in the KG, and then ranks them [3].
Conversely, MINERVA obtains a probability distribution over target entities by performing a beam
search and ranking all possible target entities by their path probabilities [2].

Metrics. We report results for two metrics used throughout prior work: Hits@k and Mean Reciprocal
Rank (MRR). Both assess how a model ranks the correct answer compared to all other possible answers.
Hits@k, also known as recall-at-k, is defined as the proportion of times the correct answer is ranked
among the top-k answers, according to the probabilities assigned by the model. Similar to prior work,
we report the average Hits@1 and Hits@10 over the test set. MRR is defined as the average value of
the reciprocated rank of the correct answer for each test instance. Therefore, MRR is a measure of the
overall quality of a model’s predictions. Note that this evaluation method is also used in MINERVA.

Training. All our experiments were performed on a machine with a single Nvidia Titan X GPU. We
used the AMSGrad optimizer [17] for our CoPER-ConvE and ConvE experiments, and the Adam
Optimizer [9] for our CoPER-MINERVA and MINERVA experiments. Accounting for GPU memory
limits, our batch sizes were 512 and 128 respectively, and we used a learning rate of .001 across all
experiments.

Hyperparameters. For CoPER, we vary the relation embedding size (originally 200) based on
the number of relations in each dataset, which stems from our observations that datasets with few
relations (e.g. Kinship or WN18RR) perform better with smaller embeddings. We choose the dropout
parameters by performing a grid search between [0,1] based on the validation set Hits@1. For the
gMLP, we use a single hidden layer with a ReLU activation and chose the number of hidden units
by also performing a grid search between. The exact hyperparameter values and CPG architecture
utilized in CoPER can be found in our repository at www.github.com/otiliastr/coper.

F Ablation Tests

Table 3 shows results from our ablation experiments. Note that training CoPER-PL-ConvE on
NELL-995 is infeasible with our resource capabilities due to the memory required to store the
parameter lookup table and entity embeddings. While this illustrates an important disadvantage of
CoPER-PL-ConvE, it also highlights CoPER-ConvE’s capability to operate efficiently over large
datasets.

Table 3: Overview of our ablation testing performances on our evaluation datasets. Results for ConvE,
CoPER-PL-ConvE, and CoPER-ConvE are reported according to our own experiments. All numbers
are expressed as percentages. “N/A” denotes experiments outside our resource capabilities.

Dataset Metric Models
ConvE CoPER-PL-ConvE CoPER-ConvE

UMLS
Hits@1 92.89 73.82 95.46
Hits@10 99.70 99.09 99.70
MRR 95.35 85.17 97.08

Kinship
Hits@1 74.21 74.90 83.62
Hits@10 97.86 96.63 98.42
MRR 83.04 83.22 89.52

WN18RR
Hits@1 41.86 44.10 44.05
Hits@10 52.17 51.20 56.12
MRR 45.19 46.63 48.33

FB15k237
Hits@1 30.30 30.72 32.18
Hits@10 60.83 60.04 62.92
MRR 40.51 40.52 42.56

NELL-995
Hits@1 67.04 N/A 70.25
Hits@10 87.96 N/A 88.70
MRR 75.42 N/A 77.48

G Training Speedup

Figure 4 illustrates the significant training time speedups CoPER-ConvE achieves over ConvE.
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Figure 4: Time required for CoPER-ConvE to obtain its best performance on each dataset, as a
fraction of the time it takes ConvE to achieve equivalent performance.

H Comparison with Prior Work

In this section we discuss CPG comparisons to prior work.

Interestingly, glookup is comparable to DistMult, TransR, and the composition network proposed by
[6]. This is because each of these methods also use relations to define distinct mappings over entity
embeddings. However, for single-hop methods: DistMult and TransR, sharing information across
relations is constrained to just through the entity embeddings.

In contrast to CTransR [14] and TransD [8], which like glinear and gMLP also learn relationships
between relations, CPG learns more expressive relationships between them. Based on the choice
of CPG module, the network can learn any arbitrary relation interactions. Furthermore, its abstract
design enables it to fully benefit from the expressive power of neural networks.

The results for TransR and TransD are as reported at https://github.com/thunlp/OpenKE, and
all numbers represent Hits@1. We note that results for CTransR [14] are unavailable due to its
unmaintained1 or unavailable2 implementation. While CoPER-MINERVA performs similarly to
TransR, CoPER-ConvE significantly outperforms all other models on both datasets.

Table 4: Overview of Hits@1 comparisons between CoPER models, TransR and TransD on FB15k237
and WN18RR.

Model Dataset
WN18RR FB15k237

TransR 51.9 51.1
TransD 50.8 48.7
CoPER-ConvE 56.12 62.97
CoPER-MINERVA 50.99 50.39
ConvE 52.27 60.83
MINERVA 51.3 56.4

1Its original implementation: https://github.com/thunlp/KB2E is no longer maintained and we were
unable to train.

2It is missing from the official repository: https://github.com/thunlp/OpenKE.
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