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Abstract

Graph autoencoders (AE) and variational autoencoders (VAE) recently emerged as
powerful node embedding methods, with promising performances on challenging
tasks such as link prediction and node clustering. Graph AE, VAE and most of
their extensions rely on graph convolutional networks (GCN) to learn vector space
representations of nodes. In this paper, we propose to replace the GCN encoder
by a simple linear model w.r.t. the adjacency matrix of the graph. For the two
aforementioned tasks, we empirically show that this approach consistently reaches
competitive performances w.r.t. GCN-based models for numerous real-world
graphs, including the widely used Cora, Citeseer and Pubmed citation networks
that became the de facto benchmark datasets for evaluating graph AE and VAE.
This result questions the relevance of repeatedly using these three datasets to
compare complex graph AE and VAE models. It also emphasizes the effectiveness
of simple node encoding schemes for many real-world applications.

1 Introduction

Graphs have become ubiquitous, due to the proliferation of data representing relationships or in-
teractions among entities [13, 37]. Extracting relevant information from these entities, called the
nodes of the graph, is crucial to effectively tackle numerous machine learning tasks, such as link
prediction or node clustering. While traditional approaches mainly focused on hand-engineered
features [2, 21], significant improvements were recently achieved by methods aiming at directly
learning node representations that summarize the graph structure (see [13] for a review). In a nutshell,
these representation learning methods aim at embedding nodes as vectors in a low-dimensional
vector space in which nodes with structural proximity in the graph should be close, e.g. by leveraging
random walk strategies [11, 27], matrix factorization [4, 24] or graph neural networks [14, 19].

In particular, graph autoencoders (AE) [18, 32, 35] and variational autoencoders (VAE) [18] recently
emerged as powerful node embedding methods. Based on encoding-decoding schemes, i.e. on the
design of low dimensional vector space representations of nodes (encoding) from which reconstructing
the original graph structure (decoding) is possible, graph AE and VAE models have been successfully
applied to confront several challenging learning tasks, with competitive results w.r.t. popular baselines
such as [11, 27, 31]. These tasks include link prediction [12, 18, 25, 33, 28, 29], node clustering
[25, 28, 34], matrix completion for inference and recommendation [1, 8] and molecular graph
generation [16, 22, 23, 30]. Existing models usually rely on graph neural networks (GNN) to encode
nodes into the embedding ; more precisely, most of them implement graph convolutional networks
(GCN) encoders [8, 12, 15, 18, 20, 25, 28, 29], a model originally introduced in [19].
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In this paper, we analyse the empirical benefit of including GCN encoders in graph AE and VAE w.r.t.
more simple heuristics. After reviewing key concepts in Section 2, we introduce simpler versions
of graph AE and VAE in Section 3, replacing GCNs by a straightforward linear model w.r.t. the
adjacency matrix of the graph, involving a unique weight matrix. In Section 4, we show that these
models are empirically competitive1 w.r.t. GCN-based graph AE and VAE on link prediction and
node clustering tasks, for numerous real-world datasets. We discuss these results, aiming at providing
insights on settings where GCN encoders should bring (or not) empirical benefits.

2 Preliminaries on Graph (Variational) Autoencoders

Throughout this paper, we consider an undirected graph G = (V, E) with |V| = n nodes and |E| = m
edges. We denote by A the adjacency matrix of G, that is either binary or weighted.

Graph Autoencoders Graph autoencoders (AE) [18, 32, 35] are a family of models aiming at
mapping (encoding) each node i ∈ V to a vector zi ∈ Rd, with d� n, from which reconstructing
(decoding) the graph should be possible. Intuitively, if, starting from the node embedding, the model
is also able to reconstruct an adjacency matrix Â close to the true one, then the zi vectors should
capture some important characteristics of the graph structure. More precisely, the n × d matrix
Z of all zi vectors is usually the output of a graph neural network (GNN) [3, 7, 19] processing
A. To reconstruct the graph, we stack an inner product decoder to this GNN, as in most models
[18]. We have Âij = σ(zTi zj) for all node pairs (i, j), with σ(·) denoting the sigmoid function:
σ(x) = 1/(1 + e−x). Therefore, the larger the inner product zTi zj in the embedding, the more likely
nodes i and j are connected in G according to the AE. To sum up, we have Â = σ(ZZT ) with
Z = GNN(A). Weights of the GNN are trained by gradient descent [9] to minimize a reconstruction
loss capturing the similarity of A and Â, usually formulated as a weighted cross entropy loss [18].

Graph Variational Autoencoders [18] also extended the variational autoencoder (VAE) frame-
work [17] to graph structures. Authors designed a probabilistic model involving latent variables zi of
length d� n for each node i ∈ V , interpreted as node representations in an embedding space. The
inference model, i.e. the encoding part of the VAE, is defined as:

q(Z|A) =
n∏
i=1

q(zi|A) where q(zi|A) = N (zi|µi, diag(σ2
i )).

Gaussian parameters are learned from two GNNs, i.e. µ = GNNµ(A), with µ the matrix stacking
up mean vectors µi ; likewise, log σ = GNNσ(A). Latent vectors zi are samples drawn from this
distribution. From these vectors, a generative model aims at reconstructing (decoding) A, leveraging
inner products: p(A|Z) =

∏n
i=1

∏n
j=1 p(Aij |zi, zj), where p(Aij = 1|zi, zj) = σ(zTi zj). During

training, GNN weights are tuned by maximizing a tractable variational lower bound (ELBO) of the
model’s likelihood (see [18] for details) by gradient descent, with a Gaussian prior on the distribution
of latent vectors, and using the reparameterization trick from [17].

Graph Convolutional Networks While the term GNN encoder is generic, a majority of successful
applications and extensions of graph AE and VAE [8, 12, 15, 18, 20, 25, 28, 29] actually relied on
graph convolutional networks (GCN) [19] to encode nodes, including the seminal models from [18].
In a GCN with L layers (L ≥ 2), with input layer H(0) = In and output layer H(L) (H(L) = Z for
AE, and µ or log σ for VAE), embedding vectors are iteratively updated, as follows:

H(l) = ReLU(ÃH(l−1)W (l−1)), for l ∈ {1, ...L− 1} and H(L) = ÃH(L−1)W (L−1),

where Ã = D−1/2(A+ In)D
−1/2. D is the diagonal degree matrix of A+ In, and Ã is therefore its

symmetric normalization. At each layer, each node averages representations from its neighbors (that,
from layer 2, have aggregated representations from their own neighbors), with a ReLU activation:
ReLU(x) = max(x, 0). MatricesW (0), ...,W (L−1), whose dimensions can vary, are weight matrices
to tune. GCN became a popular encoding scheme, thanks to its relative simplicity w.r.t. [3, 7] and
thanks to the linear complexity w.r.t. m of evaluating each layer [19]. Last, GCN models can also
leverage node-level features, summarized in an n× f matrix X , in addition to the graph structure. In
such setting, the input layer becomes H(0) = X instead of the identity matrix In.

1We publicly release the code of these experiments at: https://github.com/deezer/linear_graph_autoencoders
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Table 1: Link prediction on Cora, Citeseer and Pubmed. Performances of linear graph AE/VAE are
underlined when reaching competitive results w.r.t. GCN-based models from [18] (± 1 st. dev.).

Cora Citeseer Pubmed
Model (n = 2 708, m = 5 429) (n = 3 327, m = 4 732) (n = 19 717, m = 44 338)

AUC (in %) AP (in %) AUC (in %) AP (in %) AUC (in %) AP (in %)

Linear AE (ours) 83.19 ± 1.13 87.57 ± 0.95 77.06 ± 1.81 83.05 ± 1.25 81.85 ± 0.32 87.54 ± 0.28
2-layer GCN AE 84.79 ± 1.10 88.45 ± 0.82 78.25 ± 1.69 83.79 ± 1.24 82.51 ± 0.64 87.42 ± 0.38
3-layer GCN AE 84.61 ± 1.22 87.65 ± 1.11 78.62 ± 1.74 82.81 ± 1.43 83.37 ± 0.98 87.62 ± 0.68

Linear VAE (ours) 84.70 ± 1.24 88.24 ± 1.02 78.87 ± 1.34 83.34 ± 0.99 84.03 ± 0.28 87.98 ± 0.25
2-layer GCN VAE 84.19 ± 1.07 87.68 ± 0.93 78.08 ± 1.40 83.31 ± 1.31 82.63 ± 0.45 87.45 ± 0.34
3-layer GCN VAE 84.48 ± 1.42 87.61 ± 1.08 79.27 ± 1.78 83.73 ± 1.13 84.07 ± 0.47 88.18 ± 0.31

Cora, with features Citeseer, with features Pubmed, with features
Model (n = 2 708, m = 5 429, f = 1 433) (n = 3 327, m = 4 732, f = 3 703) (n = 19 717, m = 44 338, f = 500)

AUC (in %) AP (in %) AUC (in %) AP (in %) AUC (in %) AP (in %)

Linear AE (ours) 92.05 ± 0.93 93.32 ± 0.86 91.50 ± 1.17 92.99 ± 0.97 95.88 ± 0.20 95.89 ± 0.17
2-layer GCN AE 91.27 ± 0.78 92.47 ± 0.71 89.76 ± 1.39 90.32 ± 1.62 96.28 ± 0.36 96.29 ± 0.25
3-layer GCN AE 89.16 ± 1.18 90.98 ± 1.01 87.31 ± 1.74 89.60 ± 1.52 94.82 ± 0.41 95.42 ± 0.26

Linear VAE (ours) 92.55 ± 0.97 93.68 ± 0.68 91.60 ± 0.90 93.08 ± 0.77 95.91 ± 0.13 95.80 ± 0.17
2-layer GCN VAE 91.64 ± 0.92 92.66 ± 0.91 90.72 ± 1.01 92.05 ± 0.97 94.66 ± 0.51 94.84 ± 0.42
3-layer GCN VAE 90.53 ± 0.94 91.71 ± 0.88 88.63 ± 0.95 90.20 ± 0.81 92.78 ± 1.02 93.33 ± 0.91

3 Simplifying the Encoding Scheme

Linear Graph AE In this section, we propose to replace the GCN encoder by a simple linear
model w.r.t. the normalized adjacency matrix of the graph. In the AE framework, we have:

Z = ÃW then Â = σ(ZZT ).

Embedding vectors are obtained by multiplying the n× n normalized adjacency matrix Ã by a single
n × d weight matrix W , tuned by gradient descent in a similar fashion w.r.t. standard AE. This
encoder is a straightforward linear mapping. Contrary to standard GCN encoders (as L ≥ 2), nodes
only aggregate information from their one-step neighbors. If data include node-level features X , the
encoding step becomes Z = ÃXW , and W is of dimension f × d.

Linear Graph VAE We adopt the same approach to replace the encoder of graph VAE by:

µ = ÃWµ and log σ = ÃWσ then ∀i ∈ V, zi ∼ N (µi, diag(σ2
i )),

with similar decoder w.r.t. standard graph VAE. We refer to this simpler model as linear graph VAE,
and optimize the standard ELBO bound [18] w.r.t. weight matrices Wµ and Wσ by gradient descent.
If data include node-level features X , we compute µ = ÃXWµ and log σ = ÃXWσ .

4 Empirical Analysis and Discussion
To compare linear graph AE and VAE to GCN-based models, we first focus on link prediction, as in
[18] and most subsequent works. We train models on incomplete versions of graphs where 15% of
edges were randomly removed. Then, we create validation and test sets from removed edges (resp.
from 5% and 10% of edges) and from the same number of randomly sampled pairs of unconnected
nodes. We evaluate the model’s ability to classify edges from non-edges, using the mean Area Under
the Receiver Operating Characteristic (ROC) Curve (AUC) and Average Precision (AP) scores on
test sets, averaged over 100 runs with different random train/validation/test splits.

Table 1 reports results for the Cora, Citeseer and Pubmed citation graphs from [10], with and
without node features corresponding to bag-of-words vectors. These three graphs were used in the
original experiments of [18] and then in the wide majority of recent works [12, 15, 18, 20, 25, 26,
28, 29, 33, 34], becoming the de facto benchmark datasets for evaluating graph AE and VAE. For
standard AE and VAE, we managed to reproduce performances from [18] ; for all models, we detail
hyperparameters in annex. In Table 1, we show that linear models consistently reach competitive
performances w.r.t. with 2 and 3-layer GCN encoders, i.e. they are at least as good (± 1 standard
deviation). In some settings, linear AE/VAE are even slightly better (e.g. +1.25 points in AUC for
linear VAE on Pubmed with features). We did not report performances of deeper models, due to
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Table 2: Link prediction on alternative real-world datasets. Performances of linear graph AE/VAE
are underlined when reaching competitive results w.r.t. GCN-based models from [18] (± 1 st. dev.).

WebKD WebKD, with features Hamsterster
Model (n = 877, m = 1 608) (n = 877, m = 1 608, f = 1 703) (n = 1 858, m = 12 534)

AUC (in %) AP (in %) AUC (in %) AP (in %) AUC (in %) AP (in %)

Linear AE (ours) 77.20 ± 2.35 83.55 ± 1.81 84.15 ± 1.64 87.01 ± 1.48 93.07 ± 0.67 94.20 ± 0.58
2-layer GCN AE 77.88 ± 2.57 84.12 ± 2.18 86.03 ± 3.97 87.97 ± 2.76 92.07 ± 0.63 93.01 ± 0.69
3-layer GCN AE 78.20 ± 3.69 83.13 ± 2.58 81.39 ± 3.93 85.34 ± 2.92 91.40 ± 0.79 92.22 ± 0.85

Linear VAE (ours) 83.50 ± 1.98 86.70 ± 1.53 85.57 ± 2.18 88.08 ± 1.76 91.08 ± 0.70 91.85 ± 0.64
2-layer GCN VAE 82.31 ± 2.55 86.15 ± 2.03 87.87 ± 2.48 88.97 ± 2.17 91.62 ± 0.60 92.43 ± 0.64
3-layer GCN VAE 82.17 ± 2.70 85.35 ± 2.25 89.69 ± 1.80 89.90 ± 1.58 91.06 ± 0.71 91.85 ± 0.77

DBLP Cora-larger Arxiv-HepTh
Model (n = 12 591, m = 49 743) (n = 23 166, m = 91 500) (n = 27 770, m = 352 807)

AUC (in %) AP (in %) AUC (in %) AP (in %) AUC (in %) AP (in %)

Linear AE (ours) 90.11 ± 0.40 93.15 ± 0.28 94.64 ± 0.08 95.96 ± 0.10 98.34 ± 0.03 98.46 ± 0.03
2-layer GCN AE 90.29 ± 0.39 93.01 ± 0.33 94.80 ± 0.08 95.72 ± 0.05 97.97 ± 0.09 98.12 ± 0.09
3-layer GCN AE 89.91 ± 0.61 92.24 ± 0.67 94.51 ± 0.31 95.11 ± 0.28 94.35 ± 1.30 94.46 ± 1.31

Linear VAE (ours) 90.62 ± 0.30 93.25 ± 0.22 95.20 ± 0.16 95.99 ± 0.12 98.35 ± 0.05 98.46 ± 0.05
2-layer GCN VAE 90.40 ± 0.43 93.09 ± 0.35 94.60 ± 0.20 95.74 ± 0.13 97.75 ± 0.08 97.91 ± 0.06
3-layer GCN VAE 89.92 ± 0.59 92.52 ± 0.48 94.48 ± 0.28 95.30 ± 0.22 94.57 ± 1.14 94.73 ± 1.12

Blogs Proteins Google
Model (n = 1 224, m = 19 025) (n = 6 327, m = 147 547) (n = 15 763, m = 171 206)

AUC (in %) AP (in %) AUC (in %) AP (in %) AUC (in %) AP (in %)

Linear AE (ours) 91.71 ± 0.39 92.53 ± 0.44 94.09 ± 0.23 96.01 ± 0.16 96.02 ± 0.14 97.09 ± 0.08
2-layer GCN AE 91.57 ± 0.34 92.51 ± 0.29 94.55 ± 0.20 96.39 ± 0.16 96.66 ± 0.24 97.45 ± 0.25
3-layer GCN AE 91.74 ± 0.37 92.62 ± 0.31 94.30 ± 0.19 96.08 ± 0.15 95.10 ± 0.27 95.94 ± 0.20

Linear VAE (ours) 91.34 ± 0.24 92.10 ± 0.24 93.99 ± 0.10 95.94 ± 0.16 91.11 ± 0.31 92.91 ± 0.18
2-layer GCN VAE 91.85 ± 0.22 92.60 ± 0.25 94.57 ± 0.18 96.18 ± 0.33 96.11 ± 0.59 96.84 ± 0.51
3-layer GCN VAE 91.83 ± 0.48 92.65 ± 0.35 94.27 ± 0.25 95.71 ± 0.28 95.10 ± 0.54 96.00 ± 0.44

significant scores deterioration. These results emphasize the effectiveness of the proposed simple
encoding scheme, limiting to linear and first-order interactions, on these datasets. In supplementary
materials, we report two additional tables, consolidating our results by reaching similar conclusions
when replacing inner products by more complex decoders [12, 29], and for a node clustering task.

In addition to Cora, Citeseer and Pubmed, Table 2 reports experiments on eight other real-world
graphs with various characteristics. Hyperparameters details are reported in annex. Overall, the linear
graph AE and VAE are competitive in six cases out of nine : for the WebKD [10] hyperlinks web
graph, with and without node features (1703-dim bag of words vectors), the Hamsterster [5] social
network, a larger version of Cora [5], and the DBLP [5] and Arxiv-HepTh [6] citation networks.
Such results confirm the empirical effectiveness of simple node encoding schemes, that might appear
as a suitable alternative to complex encoders for many real-world applications.

Nonetheless, GCN-based models are outperforming on the Blogs [5] graph of hyperlinks between
blogs from the 2004 US election (for VAE on link prediction, and for both AE/VAE on node
clustering), on the Proteins [5] network of proteins interactions, and on the Google [5] hyperlinks
network of web pages within Google’s sites. These datasets are relatively dense ; among dense graphs,
the benefit of GCN encoders also increases with the size of the graph. Last, the nature of the graph
seems crucial. In citation graphs, if a reference A in an article B cited by some authors is relevant
to their work, authors will likely also cite this reference A (creating a first order link); therefore, in
such graphs the impact of high-order interactions is empirically limited (even on the quite dense
Arxiv-HepTh graph). As a consequence, we conjecture that larger and denser graphs with intrinsic
high-order interactions (e.g. some web graphs) should be better suited that the sparse medium-size
Cora, Citeseer and Pubmed citation networks, when comparing and evaluating complex encoders.

5 Conclusion

We highlighted that, in graph AE/VAE, simple first-order linear encoders are as effective as the
popular GCNs on numerous real-world graphs. Theses results are consistent with recent efforts, out
of the AE/VAE unsupervised frameworks, to simplify GCNs [36]. Arguing that current benchmark
datasets might be too simple, we hope that our analysis will initiate further discussions on the training
and evaluation of graph AE/VAE that should, in the future, lead towards their improvement.
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Supplementary Material

This supplementary material provides details on our experiments and two complementary tables.

Annex A - Experimental Setting and Hyperparameters Details

For link prediction experiments (Tables 1, 2 and 3), we followed the setting of [18] and trained models
on incomplete versions of graphs where 15% of edges were randomly removed. We created validation
and test sets from respectively 5% and 10% removed edges and from the same number of randomly
sampled pairs of unconnected nodes. As [18], we ignored edges directions when initial graphs were
directed. The link prediction task is a binary classification task, consisting in discriminating edges
from non-edges in the test set. We note that, due to high performances on the Proteins graph [5] (AUC
and AP scores above 99.5% for all models), we complicated the learning task, by only including 10%
of edges (resp. 25%) to the training (resp. test) set for this graph.

All models were trained for 200 epochs. For Cora, Citeseer and Pubmed, we set identical hyperpa-
rameters w.r.t. [18] in order to reproduce their results, i.e. we had d = 16, GCNs included 32-dim
hidden layers, and we used Adam optimizer with a learning rate of 0.01. We indeed managed to reach
similar scores as [18] when training 2-layer GCN-based AE and VAE with, however, larger standard
errors. This difference comes from the fact that we report average scores on 100 different and random
train/validation/test splits, while they used fixed dataset splits for all runs (randomness in their results
comes from initialization). For other datasets, validation set was used for hyperparameters tuning.
We adopted a learning rate of 0.1 for Arxiv-HepTh ; of 0.01 for Blogs, Cora-larger, DBLP, Google
and Hamsterster and Proteins (AE models) ; of 0.005 for WebKD (except linear AE and VAE where
we used 0.001 and 0.01) and Proteins (VAE models). All models learned 16-dim embeddings i.e.
d = 16, with 32-dim hidden layers and without dropout.

While running time is not the main focus of this paper, we also note that linear AE and VAE models
tend to be 10% to 15% faster than their GCN-based counterparts, as the proposed simple encoders
include fewer matrix operations: e.g. 6.03 seconds (vs 6.73 seconds) mean running time for linear
graph VAE (vs 2-layer GCN-based graph VAE) on the featureless Citeseer dataset, on an NVIDIA
GTX 1080 GPU. As the standard inner-product decoder has a O(dn2) quadratic time complexity
[28], we focused on medium-size datasets (with roughly < 30K nodes) in our experiments ; we
nonetheless point out the existence of recent works [28] on scalable graph autoencoders.

Annex B - Experiments on Link Prediction with Alternative Decoders

In Table 3, we report complementary link prediction experiments, on variants of graph AE and VAE
where we replaced the inner product decoder by two more complex decoding schemes from existing
literature: the Graphite model from [12] and the gravity-inspired asymmetric decoder from [29].

We draw similar conclusions w.r.t. Tables 1 and 2, consolidating results from Section 4. For the
sake of brevity, we only report results for the Cora, Citeseer and Pubmed graphs, where linear
models are mostly competitive, and for the Google graph, were GCN-based graph AE and VAE are
outperforming. We stress out that scores from Graphite and gravity-inspired models are not directly
comparable, as the former ignores edges directionalities while the latter processes directed graphs
(i.e. the learning task becomes a directed link prediction problem).

Annex C - Experiments on Node Clustering

In Table 4, we report node clustering experiments on datasets that include node-level ground-truth
communities. We trained models on complete graphs, then ran k-means algorithms (with k-means++
initialization) in node embedding spaces. We compared output clusters to ground-truth communities
by computing adjusted mutual information (AMI) scores, averaged over 100 runs.

Overall, linear AE and VAE models are competitive w.r.t. their GCN-based counterparts from
[18] on the Cora, Cora-larger, Citeseer and Pubmed citation graphs, in which nodes are documents
clustered in respectively 6, 70, 7 and 3 topic classes. However, 2-layer and 3-layer GCN-based
models are significantly outperforming on the dense Blogs graph, where political blogs are classified
as either left-leaning or right-leaning. This is consistent w.r.t. insights from Section 4 that GCN-based
encoding should bring larger empirical benefits on dense graphs.
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Table 3: Link prediction with alternative decoding schemes [12, 29]. Performances of linear graph
AE/VAE are underlined when reaching competitive results w.r.t. GCN-based models (± 1 st. dev.).

Cora Citeseer Pubmed Google
Model (n = 2 708, m = 5 429) (n = 3 327, m = 4 732) (n = 19 717, m = 44 338) (n = 15 763, m = 171 206)

AUC (in %) AP (in %) AUC (in %) AP (in %) AUC (in %) AP (in %) AUC (in %) AP (in %)

Linear Graphite AE (ours) 83.42 ± 1.76 87.32 ± 1.53 77.56 ± 1.41 82.88 ± 1.15 80.28 ± 0.86 85.81 ± 0.67 94.30 ± 0.22 95.09 ± 0.16
2-layer Graphite AE 81.20 ± 2.21 85.11 ± 1.91 73.80 ± 2.24 79.32 ± 1.83 79.98 ± 0.66 85.33 ± 0.41 95.54 ± 0.42 95.99 ± 0.39
3-layer Graphite AE 79.06 ± 1.70 81.79 ± 1.62 72.24 ± 2.29 76.60 ± 1.95 79.96 ± 1.40 84.88 ± 0.89 93.99 ± 0.54 94.74 ± 0.49

Linear Graphite VAE (ours) 83.68 ± 1.42 87.57 ± 1.16 78.90 ± 1.08 83.51 ± 0.89 79.59 ± 0.33 86.17 ± 0.31 92.71 ± 0.38 94.41 ± 0.25
2-layer Graphite VAE 84.89 ± 1.48 88.10 ± 1.22 77.92 ± 1.57 82.56 ± 1.31 82.74 ± 0.30 87.19 ± 0.36 96.49 ± 0.22 96.91 ± 0.17
3-layer Graphite VAE 85.33 ± 1.19 87.98 ± 1.09 77.46 ± 2.34 81.95 ± 1.71 84.56 ± 0.42 88.01 ± 0.39 96.32 ± 0.24 96.62 ± 0.20

Linear Gravity AE (ours) 90.71 ± 0.95 92.95 ± 0.88 80.52 ± 1.37 86.29 ± 1.03 76.78 ± 0.38 84.50 ± 0.32 97.46 ± 0.07 98.30 ± 0.04
2-layer Gravity AE 87.79 ± 1.07 90.78 ± 0.82 78.36 ± 1.55 84.75 ± 1.10 75.84 ± 0.42 83.03 ± 0.22 97.77 ± 0.10 98.43 ± 0.10
3-layer Gravity AE 87.76 ± 1.32 90.15 ± 1.45 78.32 ± 1.92 84.88 ± 1.36 74.61 ± 0.30 81.68 ± 0.26 97.58 ± 0.12 98.28 ± 0.11

Linear Gravity VAE (ours) 91.29 ± 0.70 93.01 ± 0.57 86.65 ± 0.95 89.49 ± 0.69 79.68 ± 0.36 85.00 ± 0.21 97.32 ± 0.06 98.26 ± 0.05
2-layer Gravity VAE 91.92 ± 0.75 92.46 ± 0.64 87.67 ± 1.07 89.79 ± 1.01 77.30 ± 0.81 82.64 ± 0.27 97.84 ± 0.25 98.18 ± 0.14
3-layer Gravity VAE 90.80 ± 1.28 92.01 ± 1.19 85.28 ± 1.33 87.54 ± 1.21 76.52 ± 0.61 80.73 ± 0.63 97.32 ± 0.23 97.81 ± 0.20

Table 4: Node Clustering on graphs with communities. Performances of linear graph AE/VAE are
underlined when reaching competitive results w.r.t. GCN-based models [18] (± 1 st. dev.).

Cora Citeseer Pubmed Cora-larger
Model (n = 2.708, m = 5 429) (n = 3 327, m = 4 732) (n = 19 717, m = 44 338) (n = 23 166, m = 91 500)

AMI (in %) AMI (in %) AMI (in %) AMI (in %)

Linear AE (ours) 26.31 ± 2.85 8.56 ± 1.28 10.76 ± 3.70 40.34 ± 0.51
2-layer GCN AE 30.88 ± 2.56 9.46 ± 1.06 16.41 ± 3.15 39.75 ± 0.79
3-layer GCN AE 33.06 ± 3.10 10.69 ± 1.98 23.11 ± 2.58 35.67 ± 1.76

Linear VAE (ours) 34.35 ± 1.42 12.67 ± 1.27 25.14 ± 2.83 43.32 ± 0.52
2-layer GCN VAE 26.66 ± 3.94 9.85 ± 1.24 20.52 ± 2.97 38.34 ± 0.64
3-layer GCN VAE 28.43 ± 2.83 10.64 ± 1.47 21.32 ± 3.70 37.30 ± 1.07

Cora, with features Citeseer, with features Pubmed, with features Blogs
Model (n = 2 708, m = 5 429, f = 1 433) (n = 3 327, m = 4 732, f = 3 703) (n = 19 717, m = 44 338, f = 500) (n = 1 224, m = 19 025)

AMI (in %) AMI (in %) AMI (in %) AMI (in %)

Linear AE (ours) 47.02 ± 2.09 20.23 ± 1.36 26.12 ± 1.94 46.84 ± 1.79
2-layer GCN AE 43.04 ± 3.28 19.38 ± 3.15 23.08 ± 3.35 72.58 ± 4.54
3-layer GCN AE 44.12 ± 2.48 19.71 ± 2.55 25.94 ± 3.09 72.72 ± 1.80

Linear VAE (ours) 48.12 ± 1.96 20.71 ± 1.95 29.74 ± 0.64 49.70 ± 1.08
2-layer GCN VAE 44.84 ± 2.63 20.17 ± 3.07 25.43 ± 1.47 73.12 ± 0.83
3-layer GCN VAE 44.29 ± 2.54 19.94 ± 2.50 24.91 ± 3.09 70.56 ± 5.43
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