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Abstract

Graphs are frequently used to organize and represent information in various real-
world domains such as social sciences, medicine, and language. Unfortunately,
generating realistic graphs and evaluating them quantitatively is often notoriously
difficult due to the complex structural dependencies inherent to graphs. In this
paper, we make two central contributions: first, we propose a novel classifier-based
evaluation method to measure graph generation quality and diversity. Secondly,
we demonstrate empirically that our attention-based Transformer models achieve
competitive performance in terms of generation quality compared to state of the art
recurrent models.

1 Introduction

Graph generation is an important problem across a wide range of application domains, such as
modeling interactions between physical objects or finding new chemical structures to facilitate drug
design. Much of the recent progress in this field have been driven largely by the successes of deep
learning. For example, deep generative models have been utilized in both molecular generation [22, 7]
and community networks [4]3. While these approaches work relatively well on small graph datasets,
they struggle severely when the size of the graphs increase. An ongoing challenge has been to develop
a graph generation method which is both flexible (in domains with complicated dependencies) and
scalable (in the number of edges and nodes).

The recent paper of Graph Recurrent Neural Networks (GraphRNN) [27] provides a promising
approach towards flexible and scalable graph generation. The main idea behind GraphRNN is to
formulate graph generation as a sequential generation problem and use recurrent-based models to
generate graphs. Building off of this philosophy, we propose to improve GraphRNN by replacing
the recurrent architecture with an attention-based Transformer model, as the latter is better suited to
handle long-term dependencies than recurrence. We verify empirically that Transformer’s attention
mechanism helps to capture the long-term dependencies inherent in sequential graph generation.

Another major issue in graph generation is the lack of meaningful metrics available to quantitatively
evaluate the generated graphs. Previous works have mostly relied on comparing the distribution of
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graph statistics such as degree sequence, clustering, or number of orbits [2, 24, 27]. Unfortunately,
these proposed metrics tend to correspond poorly with human visualization and in addition, they
often fail to capture the diversity within the generated graphs.

To this end, we introduce a new classifier-based method using the Graph Isomorphic Network (GIN)
from [25]. The intuition of this approach is motivated by the Fréchet Inception Distance [9]; a metric
commonly used in the study of image generation, where image quality and diversity are evaluated
using the deep features of the Inception Network. In our setting, GIN plays the role of the Inception
Network and learns an embedding which captures topological similarities between graphs in the
embedding space. As a consequence, metrics derived from GIN embeddings can be expected to
correlate better with human perception as compared to graph statistics-based metrics.

Main Contributions. 1) We introduce a novel classifier-based evaluation method based on GIN
for graph generation, which is empirically verified to correlate better with human judgement on
generation quality and diversity than previous evaluation metrics. 2) We propose a new self attention-
based Transformer graph generative model. Under our new evaluation method, the proposed model
achieves competitive performance across a range of graph types, and outperforms GraphRNN by a
large margin in some cases.

2 Sequential Graph Generation

2.1 Modeling Graph as Sequences

An undirected graph G = (V,E) is specified by its set of vertices V and the set of edges between
vertices, E ⊂ V × V . The graph can be turned into a sequence by choosing an ordering π on the
nodes. Denote the ordered vertices by V π = {v1, ..., vn}. The edge information is then represented
by a symmetric binary adjacency matrix Aπ where Aπi,j = 1[(vi, vj) ∈ E]. Two graphs are said to
be isomorphic to each other if the corresponding adjacency matrices coincide after reordering of the
vertices. We write the sequence of adjacency vectors as

seq(G, π) = (Ãπ1 , ..., Ã
π
n),

where each Ãπi = (Ãπi,1, ..., Ã
π
i,i−1) ∈ {0, 1}i−1 records the edge relation from the node vi to its

previous nodes.

The key idea of GraphRNN [27] is to generate graphs in a sequential manner. More precisely, an
autoregressive model is trained to approximate the distribution p(Ãπi |Ãπi−1, ..., Ãπ1 ), so that we can
generate graphs by sampling sequentially from p(seq(G, π)) =

∏n
i=2 p(Ã

π
i |Ãπi−1, ..., Ãπ1 ).

The architecture of GraphRNN composes of two parts: a graph-state model fstate and an output model
fout. The graph-state model is an RNN which at each time step i takes as input the vector Ãπi and
maintains a hidden state hi recording the state of the graph generated so far. The output model is
again an RNN which, at time step i, initiates its hidden state as hi from the graph-state model, and
autoregressively generates one edge Ãπi+1,j at a time. The entire procedure can be summarized as:

hi = fstate(hi−1, Ã
π
i ), Ãπi+1 = fout(hi). (1)

A simplified version of GraphRNN (termed GraphRNN-S in [27]) generates edges for a given node
non-autoregressively. In this case fout is a multi-layer perceptron (MLP) which outputs the Bernoulli
parameters for each edge Ãπi+1,j .

2.2 Graph Transformer

The vanilla Transformer in [23] is an encoder-decoder model designed for machine translation tasks.
Unlike traditional recurrent architectures employed in these tasks, the Transformer model is fully
attention-based, with scaled dot-product attention mechanism.

Our Graph Transformer model, which we denote by RNN-Transf, replaces the edge-output RNN
model in the GraphRNN architecture with a vanilla Transformer decoder. More precisely, the output
model fout contains self-attention sublayers and graph-state attention sublayers with memory from
the hidden state of fstate. We reformulate (1) as

hi = fstate(hi−1, Ã
π
i ), Ãπi+1,j = Transfout(Ã

π
i+1,<j ,m = (h1, ..., hi)), (2)
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where m denotes the graph-state attention memory. We use the same input positional encoding for
Transformers as described in [23]. Further details of the architecture can be found in Appendix B.

3 Evaluation

3.1 Evaluation Based on Graph Statistics

Previous graph generative models have primarily been evaluated using graph statistics. The baseline
metric we use for comparative purposes is from [27] where the Maximum Mean Discrepancy (MMD)
between generated graphs and the dataset is computed over degree, clustering, and orbit statistics.

However, in Figure 1, we observe inconsistencies between graph visualizations and the numbers
evaluated from the MMD metrics. Additionally, graph statistics-based metrics are generally incapable
of distinguishing diversity within generated graphs. Hence, a numerical evaluation method which can
assess both generation quality and diversity is highly desirable.

RNN-Transf
epoch 200

Training
Set

degree: 0.036
cluster: 0.0
orbits4: 0.013

degree: 0.017
cluster: 0.0064
orbits4: 0.012

Grid-small

acc: 0.077  
var: 0.083  
IS: 1.27    

FID: 525.31

acc: 0.37    
var: 0.067  
IS: 1.99    

FID: 201.94

MMD GIN

acc: 0.97
var: 0.10
 IS: 1.20

RNN-Transf
epoch 1900

GraphRNN
epoch 1800

degree: 0.10
cluster: 1.18
orbits4: 0.006

acc: 0.081      
var: 5.5e-13   
IS: 1.19        

FID: 708.70    

Figure 1: We show sample graphs generated by different generative models trained for different number of
epochs on the Grid-small dataset. Examining the visualization shows that RNN-Transf at epoch 1900 generates
the most grid-like graphs with more diversity than the other two models. However, MMD metrics using different
graph statistics favor different models and hence are inconclusive.

3.2 Evaluation Based on a Graph Classifier

We propose a novel evaluation method which leverages the discriminative power of Graph Neural
Networks (GNN) [19]. The expressive power of GNNs were recently studied in [25] and moreover, it
was theoretically shown that the maximal expressive power is bounded by the Weisfeiler-Lehman
(WL-) graph isomorphism test. As a corollary, the authors in [25] developed the Graph Isomorphism
Network (GIN), a prototypical GNN that attains as much discriminative capacity as the WL-test in
theory.

We devise our metrics based on the GIN graph classifier to demonstrate the effectiveness of the
classifier-based approach. The advantage of using GIN over the traditional WL-subtree kernel method
lies in the fact that GIN learns a graph embedding which expresses the similarity among graphs
that are non-isomorphic but with similar topological structure. A visualization of the learned graph
embeddings using t-SNE is given in Figure 4 in Appendix D.

We propose two GIN-based metrics to measure the quality and diversity of graph generations:

• Accuracy: We measure the quality of graph generation conditioned on a given class by the
classification accuracy of a GIN pre-trained on a training set consisting of multiple classes.

• Fréchet Inception Distance (FID): FID computes a distance in the embedding space
between two multivariate Gaussian distributions fitted to a generated set and a reference set,
the latter of which in our case is the entire dataset of the respective class. A lower FID value
indicates better generation quality and diversity. In our setting, we estimate the means µ and
covariance matrices Σ for the GIN graph embeddings of the generated set X and the testing
set test, and compute: FID(X, test) = ||µX −µtest||22 + Tr(ΣX +Σtest−2(ΣXΣtest)

1/2)
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4 Experiments

4.1 Training Graph Generative Models

All graph generative models are trained on the small graph datasets containing both synthetic and real
datasets from [27]: Community-small, Grid-small and Ego-small. Descriptions and visualizations
of sample graphs from each datasets can be found in Appendix A. We also use an auxiliary dataset
Ladder-small only for training GIN, also from [27].

For GraphRNN and GraphRNN-S baselines, we use the public official implementation available
on Github [26]. The GraphRNN+Attn is a variant of GraphRNN with attention mechanism in the
output level RNN, taking the last M hidden states of the graph level RNN as context for additive
attention [3]. RNN-Transf is our Graph Transformer model introduced in Section 2.2. We follow
the same experimental set up as in [27], and refer the reader to Appendix B for details. We note that
the number of parameters in our RNN-Transf model is comparable to that of GraphRNN with the
hyperparameters given in Appendix B.

4.2 Evaluation Results

We evaluate our proposed self-attention based models, GraphRNN+Attn and RNN-Transf, with
the GIN metric we developed earlier in the paper. Details on the training of GIN can be found in
Appendix B.

We plot the value of the GIN and MMD based (comparing the generated graphs against the full
dataset) metrics over the course of training in Figure 2 for the Grid-small dataset. For GIN based
metrics, we observe generally monotonic behavior improving in the desired direction as training
progresses, in contrast to the MMD based metric which appears to be less correlated.

In Table 1, we show train/test accuracies for each trained classifier. We select the models of highest
accuracies among all epochs and report the GIN metrics of these models. The GIN evaluation metrics
show that the proposed architecture RNN-Transf outperforms the baseline GraphRNN by a large
margin on the Community-small and Grid-small datasets. Visualizations of the graphs generated by
the models reported in Table 1 are shown in Appendix H. For completeness, we report evaluations
using the MMD metrics in Appendix F.
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Figure 2: (1st/2nd) Our GIN based metrics (Accuracy and Fréchet Inception Distances (FID)) and (3rd to 5th)
MMD based metrics [27] (Degree, Clustering, Orbit) over training epochs for the GraphRNN and RNN-Transf
architecture on the Grid-small dataset. The curve indicates the mean over 3 sets of samples at each epoch and
shaded area represents one standard deviation in each direction. See Appendix E for the plots for other datasets.
Visualizations of graphs generated by RNN-Transf at epochs 200 and 1900 (indicated by the dotted vertical lines
in the plots) are shown in Figure 1.

Table 1: GIN evaluation metrics. Accuracies (Acc.) and Fréchet Inception Distances (FID) are reported on
models which achieve best accuracies among all epochs, where FID is computed with reference to entire dataset
of respective class. The ↑/↓ symbol indicates that higher/lower is better, respectively.

Community-small Ego-small Grid-small

Train/Test Acc. 0.98/0.91 0.99/0.97 0.99/0.97

Acc. ↑ FID ↓ Acc. ↑ FID ↓ Acc. ↑ FID ↓

GraphRNN (reprod.) 0.36 55.55 0.60 65.16 0.16 375.24

GraphRNN+Attn (ours) 0.34 79.23 0.20 246.28 0.10 829.12

RNN-Transf (ours) 0.84 16.98 0.18 255.05 0.51 57.08
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5 Discussion and Future Work

We demonstrated that combining Transformer architecture with recurrent networks for graph genera-
tion can be as competitive or even better than a solely recurrence-based approach. We believe that
our Graph Transformer model can be further improved by considering a custom relative positional
encoding [21, 10], and other sparse attention mechanisms [6]. In addition, we illustrated the short-
comings of existing graph generation evaluation metrics. Our proposed GIN metrics highlights the
potential of classifier-based methods in evaluating graph generation. An interesting avenue to pursue
in the future is to examine how GIN metrics or other classifier-based evaluation metrics perform on
large-scale graph datasets.
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A Datasets

We train our graph generative models on the following datasets. Their descriptions are given here and
sample visualizations can be found in Appendix H.

Community-small. 100 two-community graphs with 12 ≤ |V | ≤ 20, M = 20. Each community
is generated by the Erdős-Rényi model (E-R) [8] with n = |V |/2 nodes and p = 0.8. We then add
0.05|V | inter-community edges with uniform probability.

Grid-small. 12 standard 2D grid graphs with 4 ≤ |V | ≤ 20, M = 15, ranging from 2× 2 to 4× 5
arrangements.

Ego-small. 200 1-hop ego networks extracted from the Citeseer network [20] with 4 ≤ |V | ≤ 18,
M = 15. Nodes represent documents and edges represent citation relationships.

B Architecture and Experiment Details

B.1 Graph generative models

1

2

3

4
5

0
1
1
0
0

1
0
0
1
1

1
0
0
0
0

0
1
1
0
1

0
0
0
1
0

M=2

1
SOS 0

0
1

1
1

1
1

2

1

2

3 1

2

3

4

h0 h1 h2
h3 h4
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Figure 3: (a) An example graph and its corresponding ad-
jacency matrix. Highlighted are the relevant parts of each
column as the adjacency vector Ãπi (reversed order). Due
to BFS node ordering scheme, we can limit the dimension
of Ãπi to M = 2. (b) One of our proposed model, RNN-
Transformer at inference time. The first four nodes have
been generated. We use an RNN to encode the graph state
in its hidden vector hi. An edge-output Transformer uses the
last M RNN hidden states as memory context to predict the
adjacency vector Ãπ5 for node 5 (Sec 2.2).

The Gated Recurrent Unit architecture is
chosen for all RNNs in the experiments,
following the official open sourced imple-
mentation of GraphRNN [26]. Our Trans-
former implementation is adapted from
OpenNMT [13].

A layer in our Transformer edge out-
put model consists of a multi-head self-
attention sublayer and a multi-head inter-
attention sublayer with context from the
hidden state of the graph state RNN, fol-
lowed by a fully-connected feed-forward
sublayer, with residual connection and
layer normalization applied to the output
of each of the sublayers.

Following the notation in Section 2.1, we il-
lustrate the generation process of our Graph
Transformer model (RNN-Transf) at infer-
ence time in Figure 3.

To cut down on complexity, Breadth First
Search (BFS) is used to determine the node
ordering of the graph. Doing so reduces the
length of Ãπi when i is large, to a maximum
length M ≤ n for many cases. Figure 3
illustrates the maximum length M = 2
for the corresponding graph when using
BFS ordering. Moreover, BFS reduces the
number of possible ways to order isomorphic graphs.

We use 80% of the graphs in each dataset for training and the remainder for test. The objective is to
maximize the log-likelihood of the training dataset. We train for a fixed budget of 3000 epochs with
each 32 batches in each epoch and batch size 32, using the Adam optimizer [12].

In all our experiments involving Transformer models we use the vanilla Transformer with the
following modifications and specifications:

• We pass the input through an MLP (instead of an input linear embedding) before feeding
into the Transformer. This is the same practice employed in GraphRNN.

• We set the dimension of the feed-forward fully-connected sublayer in Transformer equal to
the hidden unit size.
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Hyperparameters Transformer RNN

Hidden units dim 16 64(graph-state); 16(output)
Input MLP dim 8 32(graph-state); 8(output)
Number of layers 2 4(graph-state); 4(output)
Number of heads 4 -
Dropout rate 0.1 -
Optimizer Adam(β1 = 0.9, β2 = 0.98, ε = 10−9) Adam(β1 = 0.9, β2 = 0.999, ε = 10−8)
Learning rate Scheduled according to formula (3) 0.003, decay by 0.3 at epoch 400,1000

Table 2: Hyperparameters for graph generative models

• Dropout with dropout rate 0.1 is applied to each sublayer output and the sum of positional
encoding and input, as in vanilla Transformer.

• We adopt the same learning rate schedule as in vanilla Transformer:

lr = d−0.5 ·min(step−0.5, step−0.5 · 400−1.5), (3)

where d is the hidden unit size and step is the step number.

For the GraphRNN+Attn variant, we implement an additive attention mechanism in the output-level
RNN, taking the last M hidden states of the graph level RNN as context vectors hgraph−staten−M,n ∈
Rd×M for n generated nodes. If n < M , then we only take the last n timesteps. We still initialize
the initial hidden state of the output-level RNN with the current hidden state of the graph-level RNN
hidden state. We compute the attention weights at time t (for the t-th edge output by the output RNN)
α(t) ∈ RM by concatenating the flattened context vectors and the current output RNN hidden state
houtputt ∈ Rd×1 and pass through a single layer MLP with d = 16 hidden units:

α̃
(t)
i = W2(max(0,W1[houtputt ;hgraph−staten−M,n ] + b1)) + b2 (4)

α
(t)
i = softmax(α̃(t))i, (5)

ct =

M∑
i=1

α
(t)
i hgraph−staten−M,n (6)

Note that while the hidden state for the graph-state RNN is typically larger than the hidden state for
the output RNN, we first apply a linear projection to the former so that the dimension matches.

Other hyperparameter configurations are shown in Table 2.

B.2 GIN

Hyperparameters GIN

Hidden units dim 64
Number of layers 5
Number of MLP layers 2
Final layer dropout rate 0.5
Optimizer Adam(β1 = 0.9, β2 = 0.999, ε = 10−8)
Learning rate 0.01 with decay rate 0.5 and step size 50

Table 3: GIN hyperparameters

We use the vanilla 5-layer GIN, where in each layer we use a 2-layer MLP of hidden dimension 64.
We set the node features as one-hot vectors representing degrees of the respective nodes. The GIN
outputs graph embedding vectors and we pass the embedding vectors through a linear embedding,
followed by a final layer Dropout with rate 0.5 to get the logits for classification. We train GIN for 60
epochs on 4 classes of small graphs: Grid-small, Ladder-small, Ego-small, and Community-small,
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plus a class of ‘bad’ graphs sampled from generated graphs by GraphRNN-S at epoch 100. We
use 90% of the graphs in each dataset for training and the remainder for test, following [25]. Other
hyperparameter configurations are shown in Table 3.

C Architecture Computational Complexity Comparison

As in the GraphRNN paper [27], we use teacher forcing during training. Since Transformer models are
non-sequential in nature (avoiding recurrences), they are much more parallelizable than RNNs when
training on longer sequences. However, at inference time, using a Transformer requires recomputing
attentions for all previous positions in a sequence at each time step, thus resulting in higher time
computational complexity than using an RNN.

Table 4 summarizes the inference time computational complexity of various architecture variants
when generating a graph from start to finish. We denote n to be the number of nodes,M the maximum
number of previous nodes to be connected to after BFS ordering, k the number of hidden units in the
layer, and d the number of layers.

The first term refers to the complexity for the graph-state model. The O(Mk) term is for embedding
the binary adjacency vector to the hidden dimension. The RNN is linear in number of nodes (if we
ignore the O(Mk) factor).

The second term refers to the overall complexity for the edge-output model. The factor of O(n) is for
repeating the forward pass of the edge-output n times. We see that Transformer model is in between
the RNN approach and Additive Attention RNN in terms of complexity, while MLP is the cheapest.

Model Name Graph Edge Inference

GraphRNN-S RNN MLP O(n(Mk + k2d)) +O(nk2d)
GraphRNN RNN RNN O(n(Mk + k2d)) +O(nMk2d)
GraphRNN+Attn RNN AttnRNN O(n(Mk + k2d)) +O(nM2k2d)
RNN-Transf RNN Transf O(n(Mk + k2d)) +O(n(M2k +Mk2)d)

Table 4: Computational complexity comparison between different architecture variants

9



D tSNE Visualization of GIN graph embeddings

Figure 4: t-SNE visualization of GIN graph embeddings used to evaluate generated Ego-small graphs. GIN is
trained to epoch 60 with datasets specified in the figure legend. Graphs of similar structure are clustered in the
embedding space. Notably, similarities between grid and ladder graphs, as well as some overlaps of real and
‘bad’ Ego-small graphs, are observed.
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E Comparison of GIN and MMD Metrics
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Figure 7: (1st/2nd column) Our GIN based metrics (Accuracy and Fréchet Inception Distances (FID)) and (3rd
to 5th column) MMD based metrics [27] (Degree, Clustering, Orbit) over training epochs for the GraphRNN
and RNN-Transf architecture on the Community-small (top) and Ego-small dataset (bottom). Visualizations of
graphs generated by RNN-Transf at epochs 2100 (Community-small) and 2200 (Ego-small) for (indicated by the
dotted vertical lines in the plots) are shown in Figure 5 and Figure 6, respectively.

We further illustrate the shortcoming of the statistics-based MMD metrics used in You et al. [27]
on the Community-small dataset. As shown in Figure 5, the Community-small graphs generated by
GraphRNN trained to epoch 2100 contains more (3) communities than specified (2) in the training
and testing graphs. On the contrary, most graphs generated by RNN-Transf trained to epoch 2100
faithfully represent graphs of 2 communities. However, the MMD orbits metric strongly favors the
generation of poorer quality, leading to an overall inconclusive evaluation.

Then we assess the MMD metrics on Ego-small. From visualizations in Figure 6, GraphRNN is able
to generate a variety of graphs shapes close to the testing graphs in structure, whereas RNN-Transf
can only generate a specific type (the star-shaped) of graph with some glitch. In this case MMD
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metrics are able to distinguish the generation quality difference, but it is not clear whether MMD
evaluations measure the diversity within the generated samples.

In Figure 7 we compare the MMD metrics with our proposed GIN metrics (Accuracy and FID) on
Community-small and Ego-small, all measured every 100 epochs from epoch 100 up to epoch 3000.
Again, the MMD metrics generally have higher variance than GIN metrics and appear to be less
correlated with human perception of generation quality on Ego-small, whereas our GIN metrics are
more in line with human judgement.

F Additional Tables

Table 5 reports the MMD evaluation metrics of the epoch on the entire dataset (train and test), for
baselines and our proposed self-attention based variants for the three datasets. For each MMD metric,
we find the epoch with the lowest MMD value for that metric on the validation set, then report
the corresponding full dataset MMD performance (i.e. early stopping). Table 7 reports the MMD
evaluation metrics on the test set, as done by You et al. [27]. The conclusion on the best models
based on MMD are different depending on which sets of data are used to report the final performance.
Using the test set MMD value corresponds to measuring generalization to out of training examples,
while using the entire dataset corresponds to matching the distribution in general.

Table 5: MMD metrics on the full dataset (train and test) of models chosen according to best validation MMD
metric value among epochs.

Community-small Ego-small Grid-small

Deg. Clust. Orbit Deg. Clust. Orbit Deg. Clust. Orbit

GraphRNN (reprod.) 0.148 0.134 0.042 0.025 0.079 0.004 0.075 0.036 0.018
GraphRNN+Attn (ours) 0.229 0.225 0.020 0.080 0.411 0.003 0.062 0 0.012
RNN-Transf (ours) 0.017 0.047 0.014 0.065 0.237 0.001 0.015 0 0.004

Table 6: MMD metrics of models chosen according to best GIN accuracies among epochs. The models selected
agree with those selected in Table 1.

Community-small Ego-small Grid-small

Deg. Clust. Orbit Deg. Clust. Orbit Deg. Clust. Orbit

GraphRNN (reprod.) 0.18 0.26 0.034 0.16 0.31 0.0034 0.15 0.36 0.034

GraphRNN+Attn (ours) 0.64 0.19 0.60 0.053 0.50 0.0035 0.088 0 0.065
RNN-Transf (ours) 0.030 0.077 0.17 0.019 0.14 0.0021 0.014 0 0.0044

Table 7: MMD metrics for published and reproduced results for GraphRNN, compared to our proposed
architectures. Note: there was no published results for Grid-small dataset.

Community-small Ego-small Grid-small

Deg. Clust. Orbit Deg. Clust. Orbit Deg. Clust. Orbit

GraphRNN [27] 0.03 0.03 0.01 0.0003 0.05 0.0009 - - -

GraphRNN (reprod.) 0.080 0.088 0.010 0.063 0.214 0.004 0.328 0 0.103

GraphRNN+Attn (ours) 0.016 0.011 0.002 0.051 0.256 0.001 0.328 0 0.093
RNN-Transf (ours) 0.020 0.057 0.004 0.014 0.051 0.006 0.328 0 0.103

G Additional Related Works

Graph Generation. Generative modeling for graphs have a long history and are well-studied.
Notable early work in this area include Barabási-Albert model [1], small-world model [24], Kronecker
graphs [14], and Exponential Random Graph Models [18]. Such models are rather restrictive in their
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scope: they are hand-designed to learn very specific families of graphs and typically incapable of
modeling real-world examples.

Recent advances in deep learning have led to a number of neural network based approaches towards
graph generation. Graph neural networks were used in [15] to learn probabilistic dependencies of
the nodes and edges in a graph. GraphVAE [22] applied variational autoencoders (VAEs) towards
the molecule generation task while MolGAN [7] took an implicit, likelihood-free approach by using
Generative Adversarial Networks (GANs) for the same problem.

Transformer Models. While Transformer architectures have largely been used for neural machine
translation, there have been a number of applications on generation tasks. Huang et al. [10] modified
the vanilla Transformer with relative attention mechanism to generate musical compositions with
long-term structure. For image generation tasks, Parmar et al. [16] restricted the self-attention
mechanism in Transformers to attend to local neighborhoods, achieving state-of-the-art performance
on ImageNet. Our work is similar in the sense that we found a use case external to natural language
processing and one where applying Transformer yielded considerable improvements.

Evaluation Metrics. Finding an appropriate metric to quantitatively evaluate generated graphs
is a notoriously challenging problem. Previous proposals have mostly focused on using graph
statistics. [14] made comparisons based on degree distribution and diameter of a graph. Building on
this work, You et al. [27] evaluated the MMD over degrees, clustering coefficients, and orbit counts
for a wide range of graph datasets. In a similar spirit, Bojchevski et al. [4] utilized link prediction
performance to evaluate the generalization power of their proposed model. The common drawbacks
to statistics-based metrics are that they often have difficulties capturing generation diversity and tend
to correlate poorly with human perception. On the contrary, our classifier-based method using GIN
accurately captures diversity and agrees with human perception in many settings as shown earlier.

In molecular generation, evaluation measures based on validity, novelty, and uniqueness have been
used in [7]. Brown et al. [5] conducted a more systematic study on benchmarking generative models
for de novo molecular design using distribution-learning and goal-directed benchmarks. Among the
metrics considered in [5], the Fréchet ChemNet Distance [17] also takes inspiration from FID and
utilizes ChemNet, which takes the SMILES string representation of a molecular graph and passes it
into a neural network composed of 1D convolution, max-pooling, and LSTM layers. Unfortunately,
the SMILES representation is not unique [11], and the ChemNet architecture does not remedy the non-
uniqueness problem. On the other hand, the GIN network that we use is completely invariant under
graph isomorphisms; which is in fact one of the defining components of the GIN architecture [25].
Additionally, these evaluation methods are very domain-specific; as they depend on node and edge
features in a molecular graph, or a specific form of representation, e.g. SMILES. Our method in this
paper is general purpose and can be applied towards any type of graph.

H Additional Graph Visualizations

We visualize the graphs generated by each of our models on the three datasets in Figure 8. The
graphs presented here are cherry-picked to show that all model variants (except GraphRNN-S) can
generate at least one graph of decent quality. However, on generation of grid graphs we observed
that our RNN-Transf variant was able to generate a variety of width/height combinations, while the
GraphRNN baseline only generates 4×5 grid graph when the generated graph is indeed of grid shape.
The generation diversity improvement in our RNN-Transf is further confirmed by our proposed GIN
evaluation method in Section 4.2.
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Figure 8: Visualization of graphs for Community-small (top), Ego-small (middle), and Grid-small (bottom)
dataset for several architecture variants. The first column shows training set graph, second column group shows
baseline GraphRNN and GraphRNN-S, and the third column group contains our proposed self attention-based
variants. We use the spring visualization layout for all graph datasets.
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