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Abstract—The problem of performing everyday manipulation
tasks robustly in open environments is currently beyond the capa-
bilities of artificially intelligent robots; humans are required. The
difficulty arises from the high variability in open environments;
it is not feasible to program for, or train for, every variation. This
correspondence paper presents the case for a new approach to
the problem, based on three mutually dependent ideas: 1) highly
transferable manipulation skills; 2) choice of representation: a
scene can be modeled in several different ways; 3) top-down
processes by which the robot’s task can influence the bottom-
up processes interpreting a scene. The approach we advocate
is supported by evidence from what we know about humans,
and also the approach is implicitly taken by human designers
in designing representations for robots. We present brief results
of an implementation of these ideas in robot vision, and give
some guidelines for how the key ideas can be implemented more
generally in practical robot systems.

Index Terms—Robot Manipulation, Knowledge Representa-
tion, Commonsense Reasoning

I. INTRODUCTION

The problem of robot manipulation in open environments is
very important for society, e.g., to help the growing population
of elderly people as young populations decline. It is also very
important commercially for the next wave of robots which are
moving out of constrained factory settings and beginning to
tackle tasks such as picking or packing varied items in boxes,
arranging items on shelves, for warehouses, supermarkets, etc.
Current robotics approaches, based on pre-programming or
learning from examples, seem unable to cope with the variabil-
ity of open environments. Yet humans consider the same tasks
to be very easy. Even when humans are constrained to use
robot hardware via teleoperation, they still cope well with open
environments [[1], suggesting that hardware is not the primary
problem. This poses an interesting scientific problem: humans
very easily tackle general manipulation in open environments,
but we do not know how to emulate this ability in robots.
Perhaps some advantage can be gained by new approaches
which borrow from what we know about how humans are
doing it differently, at a cognitive level, rather than focusing
narrowly on improving vision or motion planning.

Our key insight here is that for humans the task that needs
to be done can influence how objects are perceived. A change
of task can cause a change of perspective which results in
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Fig. 1. A crate of bottles. (CCO license from maxpixel.net)

the same scene being represented or modelled differently.
Consider the objects in Fig. [, and how one might model the
scene for five different tasks: 1) If the task is to fill crates
such as this, the detailed geometry of the walls of the crate
can largely be ignored. Each wall could be modeled by its
convex hull. 2) If the task is to lift the crate we look in
detail for a gripping place for the hands, and largely ignore
the detailed geometry of the contents. 3) If we are working
in a constrained space and need to put down a smaller box
temporarily, we look for a suitable surface, and the tops of
these bottles afford such a surface; this requires a grouping
of the bottle tops under top-down pressure from the task, to
see that they approximate a surface. 4) If we are working in
a kitchen and need to roll dough using a suitable roller, we
could borrow one of these bottles. 5) If we need a weapon
a bottle can also serve that purpose. In each case we take
a new perspective on the same objects, modelling them in a
different way: ignoring some aspects, approximating others
and producing a model that facilitates the task. This cannot
work purely from bottom-up perception because there are too
many potential creative uses of objects that lead to a different
way to model them. Nor can it work purely top-down because
we cannot impose a use on an object that contradicts physical
facts. We cannot make a square bottle roll. What is required
is an interaction between bottom-up and top-down processes.

This paper is structured as a series of connected claims in-
tended to convince the reader of the new approach advocated.
Here is a summary of the argument of the following sections:
(IT) Success in open environments means ability to cope with
rare cases. (III) Humans do this very well by transfer; we
can borrow ideas from how they do it. (IV) Humans transfer
by allowing the task to influence perception and to impose a
particular representation on a scene. We call this ‘Task-driven
representation’. (V) This idea is not so radical or strange
and is already implicit in much robotics work. However in
existing work it is the human designers who allow the tasks to
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influence their perceptions and their engineering of a suitable
representation. We need to turn this over to the robot.

II. THE LONG TAIL PROBLEM

This section argues that tackling rare cases is the main stum-
bling block for robot manipulation in open environments, and
that it merits more explicit attention, with specific techniques
targeting this general problem.

Gary Marcus and Ernest Davis [2] described how the ‘long
tail’ phenomenon affects many areas in Artificial Intelligence
(AI) including language, vision, and robotics: The distribution
of scenarios in the real world is such that a small number
of cases are extremely frequent (head of distribution), while
an enormous number of cases are exceedingly rare (tail). The
sum of all the rare cases is so large that a robot will very
frequently be faced with rare cases.

Knowledge engineering, pre-programming, or machine
learning approaches work very well on the head of the
distribution, but more and more training or engineering for
different cases will only drive us slightly further down the
tail; we will still encounter variations we cannot handle, with
unacceptable frequency. Ersen et al. [3] analysed challenges
for robot manipulation in human environments, noting that

“it is not feasible to preprogram robots for all
possible contingencies they may face in human
environments, a considerable amount of knowledge
needs to be figured out by the robots themselves”.

Deep learning has been used with massive datasets to tackle
robot grasping successfully [4], or in-hand manipulation of
a block [5]. However more complex manipulation activities
such as using one object on another (such as tool use in a
kitchen or workshop) or altering objects before use (such as
bending a wire) open up a much higher dimensional space that
would need to be sampled. Deep learning has been applied
to some other manipulations [6], but needs specific training
for each type of manipulation. Lake et al. [7] discuss deep
learning’s limitations for generalisation, which suggests the
need for models, something we discuss further in Sec. It
seems doubtful that this learning approach is the final solution
to tackle a wide variety of rare cases (which don’t appear in
training) for general manipulation in everyday tasks.

Marcus and Davis [2] point out how the long tail phe-
nomenon explains why Al research often shows the pattern of
initially rapid progress followed by slower improvements at a
level which falls short of human performance. For applications
such as shelf replenishment in supermarkets, or assembly in a
workshop, most tasks involve a sequence of operations; even if
accuracy on a single step is e.g. 85%, the chance of completing
the sequence without failure is small, and one failure is often
catastrophic to the sequence. Furthermore, recovering from
a failure requires handling a rare case. Humans, in contrast,
excel at recovering from failures in these applications.

There is another important consideration which also has
the long tail problem, that is the speed of manipulation.
With the robot software company ArtiMinds we looked at
the business case for robots performing shelf replenishment
in supermarkets, over the next ten years. We concluded that

robots need to reach at least half of human speed to be
economically competitive with human employees. In our anal-
ysis of human employees, from video, their speed is striking.
Humans often opportunistically exploit shortcuts. E.g. when
rearranging cans in a tight space: a human moves cans from
one almost empty cardboard tray, to an adjacent one, all in a
shelf. The human moves the can horizontally across, tilting it
on the way to avoid collision with the small vertical cardboard
edge of the trays. One could imagine a robot not seeing the
shortcut opportunity here, and completing this rearranging task
very slowly: extracting the can from the shelf and reinserting
it in the adjacent tray. This would be unacceptably slow
however. To be economically viable, robots will need to exploit
opportunities for shortcuts, and the scenarios faced again have
the long tail distribution.

This suggests that the main problem is how to tackle the
rare cases. We believe it merits a new major branch of research
which would develop new approaches specifically for handling
rare and unexpected cases, rather than pushing existing ap-
proaches (e.g. end to end learning, or pre-programming) to
handle cases further along the tail.

III. HOW DO HUMANS SOLVE IT?

This section makes the claim that humans solve rare cases
by transferring solutions from known cases. Here we use the
words transfer and analogy with the same meaning; whereas
sometimes analogy is taken to mean a more high level
symbolic mapping between entities, for example with abstract
shapes in 1Q tests, we believe the analogy mechanism is at
work in lower level transfers also.

Humans cope very well with the types of rare cases that
robots fail on, and they do this without needing as many
training examples as Al systems. A paper on the limitations
of Al planning in real environments states that:

“An ideal system would be able to behave like
humans do in these sorts of environments; in par-
ticular, it would have to exhibit creativity, devising
new actions that can solve a problem or shorten a
plan; use analogy to transfer solutions from other
problems...” [8]

Whenever an untrained human meets a rare case, they seem
to be able to find some similarity with a familiar example,
and hence to transfer a solution. If a human does not have
extensive training on rare examples it seems hard to account
for their performance without appeal to transfer.

The idea that transfer or analogy is happening in everyday
manipulation tasks is also present in Fitzgerald et al. [9], which
notes that “While a robot can learn to complete a task from
demonstrations, it cannot immediately transfer the learned task
model to perform the task in a new environment.” The required
transfer is described using the language of analogy: ‘a mapping
between objects in the source and target environments’ [9].

In mainstream robotics venues there is almost no work on
analogy applied to robotics; people seem to view analogy as
more relevant to high level cognition, including IQ tests, or
advanced scientific discovery, or artistic pursuits. However
we and the authors cited in this section believe it is very
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prevalent in everyday activities, including manipulation in
open environments.

Analogy is more studied in language, and conceptual rea-
soning [10f], [11] than in manipulation (although some ma-
nipulation examples are noted by Hofstadter [10, p. 279]).
Analogy in manipulation is clear to see in infancy [12, for
examples], because an infant’s repertoire is small, it is easier
to guess where a manipulation skill may have been transferred
from. Human infants build up their manipulation skills like
a branching tree where every newly acquired skill descends
from some others [13]]; no skill appears without precursors.
Consider the task of retrieving an out-of-reach toy across a
table using a rake tool. It is exceedingly difficult for infants
up until about 18 months of age [14]. It is surmised that typical
infants achieve success on the task by transferring from their
knowledge of how to get a spoon behind a piece of food in
order to scoop it up. Infants gain experience of this in the 12-
18 month period when learning to self-feed with a spoon. A
specific study was done on testing this transfer [15]]. Infants
were tested on a task of retrieving an out of reach object first
with a rake and secondly with a large spoon. It was found that
some infants who failed with the rake task succeeded when the
tool was a spoon. Furthermore those infants who succeeded
with the spoon were then able to transfer this back to succeed
with the rake afterwards.

The manipulation skills of human adults build on what they
have learnt in infancy, and already by two years old a child has
an impressive level of widely generalisable skills that robots
cannot yet match. Therefore it is worthwhile to study what
humans are doing differently to robots [[16, from Rod Grupen].

“In general, skills and abilities in infants and robots

are still acquired in quite different ways. Infants

build layer upon layer of support skills by explo-

ration that seems to be independent of any other

purpose than to acquire comprehensive mastery of

increasingly sophisticated relationships to the world.

No task is required. The state of the art in robotics,

however, typically starts with a target task and is

reduced into pieces that are described algorithmi-

cally. Typically, a designer anticipates all the events

and intermediate states and therefore, the robot is

unsupported by the same breadth of contingencies

that the infant spends all of its time constructing

during the sensorimotor stage of development.”
This quote implies a lot of transfer. When the infant attempts a
task and is supported by a breadth of ‘contingencies’ it means
that the infant is able to exploit what must have been learnt
previously across a variety of different contexts. The ‘support
skills’ that the infant acquires during its exploration are highly
transferable. For example the infant learns with small and safe
toys, containers, food substances, water, clothing, etc. As the
infant grows to a toddler it gains access to new materials and
is allowed to explore a wider range of objects and substances,
but already has competence because of the ease with which
the previously learnt skills are transferred to the new contexts.

The message for roboticists is that robust manipulation will
require a lot of ‘support skills’: highly transferable skills
that can help us to solve unexpected problems during a

manipulation. Many of these are simple everyday skills such
as lifting some object out of the way in order to complete a
manipulation, supporting an object with one hand, enlarging
an opening to facilitate insertion or removal. Roboticists rarely
code such skills unless they are a step that the designer has
foreseen as necessary. Furthermore, these skills need to be
transferable to a wider variety of contexts.

The conclusion of this section is that we need highly
transferable skills, and especially ‘support skills’: basic ma-
nipulations which are not directly related to the performance
of a target task in ideal conditions, but which are likely to
help in tackling problems that arise during the execution of
that task in varied environments.

IV. NEW PERSPECTIVE: TASK-DRIVEN REPRESENTATION

In this section we introduce an approach to achieve transfer
and analogy in manipulation skills. We will illustrate the idea
of new perspectives with three concrete examples, and later
explain the general idea in more abstract terms. Finally we
give a brief description of an implementation of the idea.

A. Three Concrete Manipulation Examples

The following are three tasks and corresponding manipu-
lation skills that we assume are part of the skill repertoire
of a robot, then we show how they could be applied in new
ways. These skills could have been acquired by learning from
demonstration, or direct coding.

1) Extract a book from a bookshelf full with books: The
robot may place one finger on the top edge of the book, exert
downward pressure, and pull the book backwards, thereby
causing it to rotate and move backwards. This preliminary
operation exposes the two sides of the book, providing surfaces
to grip and remove the book (see [LL7]).

2) Lay a cloth down flat on a surface: The robot grasps the
cloth at one side (with two hands), lifts it, allowing one side
to fall under gravity, then it brings that lower side in contact
with one side of the surface and drags the grasped part across
to the other side while lowering it, so laying it down flat.

3) Lift a pancake from a pan: The robot grasps a spatula
by the handle, orients it appropriately and slides the tip along
the pan surface, and under the pancake, then lifts.

Now we look at some problem situations a robot may
encounter in a domestic environment, and how the above skills
could be transferred to provide a solution. Consider a pizza
box that needs to be lifted out of a chest freezer, where the
pizza boxes are stacked flat (with the largest surface facing
upwards). Without a suction cup there are no available surfaces
to get a standard gripper around. If the robot attempts to take
a perspective similar to the situation of skill 1) then it can
search for a surface to exert perpendicular pressure on and then
pull. Here the robot is attempting to create a mapping between
the scenario of book extraction and pizza box extraction. The
objects and their important components (in this case surfaces)
are the entities to map, and the motions applied to components
must be adapted appropriately. It can find one exposed side to
exert pressure on, and pull that side upwards, thereby rotating
the box and exposing sides for grasping. We envisage that a
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system would explore several candidate mappings internally,
and apply reasoning and physics simulation to select the most
promising candidate before executing it.

This same skill 1) could also be adapted to apply to other
situations: a cylindrical can in a tightly packed shelf can
be pulled like the book; a long rectangular box set against
a corner between wall and floor does not expose gripping
surfaces, but could be pulled horizontally by pressing on
one end and pulling, hence exposing surfaces; boxes such as
DVD cases, within a larger cardboard box may fall during
manipulation, lying flat in the cardboard box and requiring
the same operation as the pizza box; to remove a slice of
bread from a sliced loaf in a bag the same general operation
of applying pressure on one edge and pulling is employed.

Note that a designer could code a very generic skill to apply
a ‘pull to tilt’ to almost any object. The above examples then
become a more straightforward application of that skill, and
there is no requirement for a new cognitive capability from the
robotp_-] However this approach presumes that the designer has
thought in advance how each skill may be usefully generalised;
i.e. the designer must consider that the surface to be pulled
could be on top or on the side, that the pull could be horizontal
or vertical, etc. This is not the approach we are advocating.
We do not think it feasible that a designer can foresee every
useful generalisation that the robot might profit from. Instead
the robot itself should have the ability to create novel mappings
between scenarios at run-time. We would like to see a more
human-like approach: the robot is taught with demonstrations
on specific instances, but we expect some intelligent ability to
transfer from the robot.

We will proceed to look at adaptations of the two remaining
skills. A robot is tidying a house, picking up books from the
floor to stack them neatly on a table. Suppose that a thin
magazine has been picked by its spine. the other end will
droop down. The motion that would put a book on a stack will
not work now because the drooping edge obstructs the motion
and may become folded. If the robot can adapt skill 2) to this
situation it can allow the magazine to hang under gravity’s
pull, and bring the lower side in contact with one edge of
the stack and drag the grasped part across to the other side
while lowering it, so laying it down on the stack. Originally
the books were abstracted as rectangular blocks, and this was
applied to the magazine, but then the perspective switches to
treat it like a cloth. Skill 2) can also be applied to situations
such as laying a chain or belt out on a worktop, or even a long
rigid body if it is difficult to generate the torque to rotate it
to be horizontal before placing on a surface.

Finally consider a robot who needs to lift a slice of cheese
that is flat on a chopping board. With typical robot fingers it is
not easy to lift it by the edge as human fingers could. The robot
may try to apply the lifting pancake skill 3). With no suitable
thin spatula present the robot may substitute a knife. Here the

TA creative solution to a problem can often seem straightforward after
the fact; the creative solution often brings a new perspective from which the
solution follows straightforwardly, and it can be hard to recall the more limited
perspective that existed before. This is similar to sparse images where it is
difficult to see the object, but once you find the right grouping it is almost
impossible to recall how you perceived it before (see first figure in [18]).

cutting edge of the knife is not important, and the knife will
not be oriented with this edge pointing downward. Instead the
width of the blade is important, affording a suitable surface to
support the cheese. The pan of 3) maps to the chopping board,
the spatula tip maps to the knife tip; the knife can slide along
the board and be inserted between cheese and board.

B. Task-Driven Representation

We see above how a skill can be generalised to a new
situation by seeing it as similar to the old one, e.g. we choose
to see cylindrical cans in a shelf as similar to rectangular books
in a shelf. Once we see the new situation as similar to the old
we can map the old skill to suitably abstracted components
of the new situation. This shows how one skill can apply to
many situations. In the other direction one situation can be
seen in many different ways so that different skills could be
applied. In the book example above we focused on the upper
surface of one target book. However suppose that we have a
low bookcase which is open at the top, and suppose a robot
is carrying a serving tray and needs to set it down somewhere
temporarily to free the manipulators for some other urgent
task. The robot could see the top surfaces of a row of books as
all forming one approximately flat surface that affords support
for a tray. Another task might demand that the robot exploit
the gap between two books to insert an item.

The cheese scenario above is also open to different perspec-
tives: If a “pierce with fork™ skill is in the robot’s repertoire
then it may choose to see the cheese as a peirceable material
and lift it that way. Alternatively we may view the cheese
as flexible material; if a rectangular slice is pushed together
horizontally from the two shorter sides it is likely to bend
upwards in the middle, affording an easy grasping place.

Any real world situation can be represented at multiple
levels of granularity, e.g. each object as a simple convex
hull, or a complex detailed fine grained mesh model. To
have a practical representation to work with we abstract at
a suitable level. At any particular level of granularity we have
multiple ways to abstract the situation, depending on what
approximations we want to make, distorting some aspects (e.g.
treat a curved surface as flat) and ignoring other aspects (e.g.
a handle or inner space might not be relevant). Task-driven
representation means that we allow the demands of the task
to influence how we abstract the situation. We choose to see
it in a way that facilitates the task we want to do.

Definition: In task-driven representation the models chosen
to represent a scene depend on the task to be achieved, and
can change as the need to perform a different task or sub-
task arises. The robot has a mechanism for creating and
searching through different possible representations, to find
one appropriate for the task.

This differs from the typical approach to robot perception
where scenes are processed bottom-up to recognise the objects,
or affordances present in the scene, without any influence from
the task we are trying to achieve. However in humans the task
can exert a top-down influence on visual processing [19]; we
often stretch the boundaries of a category when we make effort
to see an opportunity to apply a particular skill. The idea can
be traced back to William James:
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The same property which figures as the essence of

a thing on one occasion becomes a very inessential

feature upon another. Now that I am writing, it is

essential that I conceive my paper as a surface for

inscription. [...] But if I wished to light a fire,

and no other materials were by, the essential way

of conceiving the paper would be as a combustible

material. [...] The essence of a thing is that one of

its properties which is so important for my interests

that in comparison with it I may neglect the rest.

[...] The properties which are important vary from

man to man and from hour to hour. [20]
The idea is already present in computational models of anal-
ogy, for example in ‘High level perception’ it is argued that
“Our perception of any given situation is guided by constant
top-down influence from the conceptual level. Without this
conceptual influence, the representations that result from such
perception will be rigid, inflexible, and unable to adapt to the
problems provided by many different contexts.” [21]

C. An Implemented Example of the Approach

We have implemented task-driven representation in a robot
vision system for assessing how to use a previously unseen
object as a tool for a particular task [22]. Given a particular
task, and a previously unseen point cloud of an object, our
system can decide on the best way to abstract that object to
identify a part as the handle, and another as the action part, for
performing the task. The system can also be used to inform a
full manipulation system on how to orient the tool and what
point to bring in contact with a target [23]. For example for
the hammering task we can see how different tools can be
abstracted into parts in Figure

Fig. 2. Highlights of our “projection” technique being used to abstract objects
for the task of hammering, to identify the best place to grasp, and the part
that should hit a target. Red indicates the grasping part and green the action
part. We see that when using a screwdriver for hammering (middle tool), the
choice of grasping and action parts are very different to when the screwdriver
is used for screwing.

Our system was trained to assess how good a tool is for
five different tasks: hammering, lifting (e.g. a pancake), rolling
dough, cutting, scooping. It has been tested on a test set
of 3D scans of 50 household objects where ground truth
was provided by humans. The system has outperformed a
competing state-of-the-art system on this test set [22].

Our system works by fitting geometric shapes (su-
perquadrics) into multiple randomly cut segments of a point
cloud. Each pair of geometric shapes constitutes a candidate
handle and action part; i.e. a possible way to abstract the tool.
Each candidate is assessed by a task function to determine
how good a tool with those parts would be for the task. The
winning abstraction is the system’s choice of the best way to
use that object as a tool for the task.

The system can be seen in terms of bottom-up and top-down
processes. Fitting geometric shapes is the bottom-up process in
the perception, while the selection of a pair best for the task is
the exertion of top-down pressure from the task. Our approach
to the problem is inspired by Indurkhya’s theory of ‘projection’
[24], meaning that the system is projecting what it wants to
see in a particular tool when it assesses its effectiveness for
a particular task. In Indurkhya’s theory we would say that in
Fig. |2| the concept of a hammer, and its organisation of parts
(handle, hitting head), has been projected onto the other tools.
In the example of the screwdriver it can be clearly seen how
this top-down pressure causes a particular grouping of the low
level elements of the data (i.e. the points of the point cloud).
Certain points have been grouped together and ‘seen’ as a
suitable hitting head (the green region) for no other reason
than that they could serve the hammering task well. There are
no local visual features in the region to single out those green
points as special; it cannot be determined bottom-up.

To test in isolation the contribution of task-driven represen-
tation to our system’s performance we ran an ablation study
[22]. We ran one version of our system in a purely bottom-up
fashion where the task did not influence the abstraction chosen
to represent the tool, but rather the best fit superquadric was
picked. The resulting system performed significantly worse
in assessing the affordances of tools, relative to the ground
truth (85% accuracy for the bottom-up system, vs. 91% for
the task-driven system), and failed to outperform the baseline
competitor system on two tasks.

The system has some limitations due to the particular way
we have implemented projection: It will not suggest using a
round stone as a hammer, because the system searches for a
handle and a hitting end. The idea that a tool should have
two parts has been hard coded into the system in violation of
the verification principle [25], and becomes a weakness when
moving beyond scenarios envisaged by the designers. Also,
the system could be more efficient if it made more use of top-
down information to guide the search, rather than randomly
generating uniformly distributed candidates, and using the top-
down pressure merely to select among these.

This implemented work is still a long way from the trans-
ferable library of support skills we have advocated in Sect.
but it shows the outline of an approach to tackling it: robot
perception needs to be able to take on board top-down input
from the skill we want to apply, and use it to abstract a new
situation in a way that facilitates application of the skill; i.e.
abstract it such that there are components that can be mapped
to the situation where the support skill has been used before.

V. RELATED WORK AND NEGLECTED ISSUES
A. On Task-Driven Representation

The idea of using representations appropriate to the task
is common in the literature. For example a work on folding
clothing [26] assumes the cloth has infinite flexibility and zero
thickness, so that it always falls flat and can be dealt with
using 2D representations. On the other hand, when the task is
flattening a garment, it is useful to represent the 3D surface in
detail to determine the direction of major wrinkles and decide



DRAFT UNDER CONSIDERATION FOR IEEE TCDS

the direction to pull the cloth to flatten them [27]. Further
examples of hand crafted representations appropriate to the
task can be seen in reinforcement learning in robotics [28), Sec.
4.1]. The typical approach to designing a robotic solution for
a task involves the human designer making a good choice of
representation, which facilitates the task. We want the Al sys-
tem itself to be able to select an appropriate representation at
run-time. This is consistent with the verification principle, and
in particular the principle of subjectivity [25)]. The selection
of an appropriate representation is present to a limited degree
in work on manipulation planning which uses convex hull
representations to simplify computation, but if these collide it
can change representation to a more detailed mesh model [29].
However we would like the system to go further in creating
representations that the designer might not have foreseen; we
allow the system to borrow the representation used in a past
scenario where a skill was successfully applied, and impose
this representation on a new scenario.

One work which is very close to what we advocate involves
warping point clouds from a source object to an unknown
target object [30]. The warping approach can recognise key
features of the target object, such as an aperture to pour into,
or a rim point where liquid exits the pouring container, and the
motor program can be adapted accordingly. This is close to
our ideas because it shows how one can take an uninterpreted
object (i.e. no prior abstraction has been given for the object,
we just have sensor data, e.g. point cloud), and give it an
interpretation that facilitates mapping an action to it.

Our approach has a similar idea to Tenorth and Beetz [31]],
where the robot can compute a symbolic view on sensor
data as needed, but there is no single ‘veridical’ symbolic
representation of the world that is maintained. Both our
approaches share the idea of a particular representation (or
symbolic view) of low level data being useful for a particular
task, and being created and discarded as needed. We take the
idea further in advocating that the robot itself would have
a mechanism for creating novel representations of the data,
under the influence of the demands of the task at hand.

B. On Transfer and Models

Our proposal to solve transfer is model-based in that the
source scenario where a skill has been learned becomes a
model to be imposed (top-down) on new target scenarios (or in
our tool use example (Sec the model is the knowledge
of the geometric shapes and relations that make an effective
tool for a particular task). Models allow for a symbolic type of
reasoning which can explicitly consider model parts and their
relationships, and understand what will happen when parts
appear in different relationships, without needing to see that
particular configuration in a training example. Lake et al. [7]
argue that in order to build machines that learn and think like
people, those machines need to use models to understand the
world, plan actions, etc. They contrast model-building with
the pattern-recognition approach of deep learning. Lake et
al. argue that “human-level transfer learning — is enabled by
having models with the right representational structure”.

They give an example of learning in the computer game
Frostbite: human players can transfer their general world

knowledge and knowledge from previous video games to
understand how to interact with various game animals, and ice.
Transfer is mentioned many times in Lake et al. [7], and they
describe a system to learn models for handwritten characters.
However one thing not addressed is how to apply a model
to a different domain; something which humans are clearly
able to do, e.g. to see how knowledge from previous games
might apply to the current one, or how knowledge about real
world entities might be applied to the in-game entities. We
believe that this cross-domain transfer requires a top-down
process which can structure the lower level data from the new
domain, to form appropriate abstractions which can map to
the previous known models (Indurkhya describes this [24]).
Our proposal is in agreement with Lake et al., but we focus
our attention more on this cross-domain transfer: how to apply
a model to structure the abstraction of a new scenario in a way
that allows transfer. The type of transfer we are concerned
with has a component at the symbolic level, for example to
decide which of several possible object parts (e.g. surfaces
or apertures) should map to others from source to target.
It also has a subsymbolic component when choices at the
symbolic level must be instantiated sometimes by imposing
an abstraction on vision data (what we called task-driven
representation), or by adapting motion trajectories to move
between object parts. This requires that we have compositional
models of objects that can be explicitly reasoned with.

C. Relationship to Affordances

The ‘skills” we have described could equally well be framed
within the language of affordances [32], i.e. with an effect and
behaviour, and in our case a search process to find the situa-
tions where they apply. They could also potentially be learned
through exploration. Just like other work on affordances in
robotics, we also aim to opportunistically exploit affordances
in the environment as they arise. However, the typical approach
to implementing affordances in robotics contrasts with part of
our proposal: typically a vector of visual features determines
whether or not an affordance is present, and this can be
processed rapidly in a feedforward fashion. In contrast for
our proposed task-driven representation it is computationally
costly to determine where and how a particular skill can be
applied, requiring a search involving interaction of top-down
and bottom-up processes. We see no way to avoid this; there
are many different ways in which a skill could be applied in a
scenario; a reasoning step is required to consider the options.
We do not think it feasible for an agent to enter a room and
rapidly have all the affordances ‘pop out’, such that the agent
is aware of them. E.g., in a workshop with a variety of tools
and materials, consider all the ways in which objects can be
put in a relationship, to exploit relational affordances, as well
as the ways objects can be deformed: e.g., a nail can be bent
to form a hook, a paper can be folded to form a container,
operations include folding, tearing, gluing. It is more feasible
that the robot approaches the scene with a task in mind, and
selectively computes affordances likely to be relevant to that
task. This is analogous to a recent model of human image
interpretation [33|] which has a bottom-up process making a
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rough guess of likely object classes, followed by a top-down
process which attempts to validate the guesses. The top-down
process uses a model including relations that are demanding to
compute, and it is found that many relations are class-specific;
hence it is efficient to only compute relations for the object
class which is being tested.

A further contrast is that in typical affordance approaches
the abstraction (from sensor data through to classification) is
entangled with the assessment (how well it affords). This is ef-
fective for generalising to new examples in the neighbourhood
of those in the training set, but not for significantly different
creative applications of a skill. By separating abstraction (i.e.
the models chosen to represent the scene) from assessment, we
enable a different type of search through possible abstractions,
which can consider more diverse transformations of the data,
explicitly reasoning about alternative abstractions.

D. Relationship to Planning

Our proposal is similar in aim to earlier ideas of plan
adaptation [34], [35]. However those works operate at a
coarser level of granularity, where the sequence of planning
steps is revised through additions, deletions or substitutions of
steps. In contrast we focus on the adaptation of a single step
(a step is the application of what we have called a ‘skill’).
Furthermore classical planning approaches abstract the world
state with predicates, and treat this as an incontrovertible
ground truth, whereas our approach emphasises the possibility
of revisiting the world’s data to find alternative descriptions.

Our ‘skill’ above is analogous to a planning operator. The
precondition is flexible in that it can apply in a diversity of
situations depending on how the situation is abstracted. The
postcondition is more straightforward to describe as the effect
achieved, e.g. the exposure of surfaces, or placement of an
object flat on a surface. To decide if a skill is applicable in
a state the system needs to look at the raw data of a scene,
not a version abstracted at a high level. Therefore forward
planning requires a simulator rendering expected future states
(e.g. as point clouds), for task-driven analysis, to determine
what skills could be applied. Backward chaining is more
problematic because there is not a unique precondition of
a skill. Approximate abstractions of the skills can be used
at the abstract level for simpler planning, but this may miss
opportunities to see new perspectives at the sensorimotor level
(and hence apply skills). The solution is to conduct a planning
process at both a low level (e.g. point cloud level) as well as an
abstract level, with a tight integration and interaction between
the processes (as done in Dornhege et al. [29]; see also Beetz
et al. [36] where plans can unfold opportunistically, guided by
perception of what the situation affords).

To fully exploit the ideas of task-driven representation
in a planning system the ideas of top-down and bottom-up
interaction should be extended to the planning system; we
envisage an architecture similar to Copycat [37], but adapted
to planning: Top-down processes would decompose a goal into
a rough sequence of high level steps to achieve it. Bottom-
up processes would analyse scenes in a task-driven way (the
sub-goals being the tasks) and propose skills that could be

applied. These skills are proposed steps in a workspace where
plans are assembled. Partial fragments of plans are developed
in the workspace to achieve subgoals, and assembled to
produce increasingly complete candidate plans. The workspace
also records the future simulated states resulting from plan
fragments, for further bottom-up analysis. Candidate plans
compete for selection and are ranked according to probability
of completing the goal. If one promising partial candidate
eventually (when developed further) leads to a low probability
of success, the system backtracks to try the next best candidate.

E. Physics

Our proposed transferable skills implicitly embody physics
knowledge because application of a skill is associated with an
expected effect. A collection of these skills can make predic-
tions about the effects of a variety of actions and could be seen
as a model for the naive physics that an infant builds during
exploration. Le. each skill corresponds to a ‘schema’ and is re-
fined and spins off new skills when unexpected effects happen
(as described in schema-based account of development [13]).
Further processes of representational redescription [13]], as
yet poorly understood, would need to generalise across skills
to abstract increasingly sophisticated fragments of physical
concepts such as force, momentum, friction, etc. In this way
a physics model to support planning could be learned through
exploration. However this would be a daunting challenge. A
more pragmatic solution available at present is to simply code
in physics knowledge with an accurate physics engine in the
planner to predict the consequences of actions.

VI. SUMMARY, RECOMMENDATION AND CONCLUSION

Let us recap the three connected ideas from the Abstract:
Firstly a manipulation robot should have a library of highly
transferable support skills. These skills allow the robot to cope
with the unforeseen, because their strong ability to generalise
makes it highly likely that there is a skill that can apply to a
situation to achieve a substep bringing the situation closer to
the goal. Secondly the robot should have the ability to model
a scene in several different ways. A robot that is built for
one purpose might do well enough by modelling situations
in only one way, as foreseen by the designer. For general
purpose manipulation it will be necessary to model the same
scene in different ways at different times, depending on the
task at hand. Thirdly the robot should use the task to provide
top-down guidance on how a scene should be modeled. This
helps to direct the search through the many possible ways to
represent the scene, and finds a representation that facilitates
the application of a known skill, that achieves the task.

The approach requires that each skill in the robot’s reper-
toire has an associated representation of the scenario where it
works, and this representation can be ‘projected’ (or imposed)
on new scenarios, producing novel abstractions of situations,
that facilitate the application of manipulation skills in ways
the designer might not have conceived. In this way each of
the robot’s skills can be seen as ‘productive’, in producing
new ways to represent scenes. This helps the robot to op-
portunistically exploit affordances as they arise, because of



DRAFT UNDER CONSIDERATION FOR IEEE TCDS

its ability to shift perspective and see the scene in a different
way. The approach also requires that there is some criterion of
‘goodness’; i.e. how good a particular choice of representation
is for a task. In our tool use example this ‘task function’ was
learned from examples in simulation [22]].

In conclusion task-driven representation offers a way to
achieve human-like transfer, to cope with rare cases, and so to
enable robots to work in less constrained, open environments.
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