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Abstract

The popular assumption of ignorability simplifies analyses with incomplete data, but if
it is not satisfied, results may be incorrect. One can evaluate the dependence of inferences
on this assumption by measuring their sensitivity to its violation. One tool for such an
analysis is the index of local sensitivity to nonignorability (ISNI), which evaluates the rate
of change of model estimates in the neighborhood of an ignorable model. Computation
of ISNI avoids the need to estimate any nonignorable model or to posit a specific magni-
tude of nonignorability. In this article we introduce a new R package, named isni, that
implements the method for some common data structures and corresponding statistical
models. Specifically, our package computes ISNI in the generalized linear model for in-
dependent data, and in the marginal multivariate Gaussian model and the linear mixed
model for longitudinal/clustered data. isni allows for arbitrary patterns of missingness in
the regression outcomes caused by dropout and/or intermittent missingness. Examples
illustrate its use and features.

Keywords: Coarse data; exponential family; longitudinal data; missing not at random; se-
lection model.

1. Introduction

Ignorability is the primary working assumption in the analysis of data with missing obser-
vations. When the data are missing at random (MAR) and the parameters of the ideal-data
model and missing-data model are distinct (PD), the missingness mechanism is ignorable in
the sense that one can generate valid inferences from straightforward likelihood/Bayesian ana-
lyses that do not require further modeling of it (Rubin 1976; Heitjan and Rubin 1991). This
greatly simplifies analyses, because the missing data process can be difficult to model and is
rarely of primary interest. Yet in practice we often suspect that the underlying missing data
mechanism is nonignorable, typically because MAR does not hold. For example, if the absence
of treatment effects, or the presence of excessive toxicity, gives rise to missing observations,
the missingness may be related to the unobserved data values, even after conditioning on all
available information. This constitutes a violation of MAR, and therefore calls ignorability
into question. When ignorability does not hold, straightforward likelihood/Bayesian analyses
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can yield inferences that incorrectly summarize the information in the data.

Because we cannot test MAR robustly using only the observed data (Little, D’Agostino,
Cohen, Dickersin, Emerson, Farrar, Frangakis, Hogan, Molenberghs, Murphy, Neaton, Rot-
nitzky, Scharfstein, Shih, Siegel, and Stern 2012), it is critical to have the means to conduct
an analysis of sensitivity to departures from ignorability (Little et al. 2012; Daniels and Hogan
2008). Indeed, an expert panel convened to study the issue has declared that “[s]ensitivity
analyses should be part of the primary reporting of findings from clinical trials. Examining
sensitivity to the assumptions about the missing data mechanism should be a mandatory com-
ponent of reporting.” (on Handling Missing Data in Clinical Trials; National Research Council
2010) Moreover, “[s]ensitivity analysis is a relatively new area, and further research on the
best methods is needed.” (Little et al. 2012)

Estimating nonignorable models of missingness is conceptually and computationally challen-
ging, thus limiting the number and types of sensitivity analyses that one can perform (Xie
2012; Xie and Qian 2012). One simple approach to evaluating sensitivity to nonignorable mis-
singness is to compute the index of local sensitivity to nonignorability, or ISNI. Troxel, Ma,
and Heitjan (2004) proposed ISNI as a tool to evaluate the potential effect of nonignorable
missingness when the outcome follows a generalized linear model. The ISNI method utilizes
the local sensitivity approach that examines the effect on inferences of minor departures from
ignorability (Copas, JB, and Li, HG 1997; Copas, JB, and Eguchi, S 2001; Verbeke, Molen-
berghs, Thijs, Lesaffre, and Kenward 2001). The method has since been extended to a range
of statistical models and missing data patterns (Xie and Heitjan 2004; Ma, Troxel, and Hei-
tjan 2005; Xie and Heitjan 2009; Xie 2008, 2009, 2010, 2012; Xie, Qian, and Qu 2011; Xie and
Qian 2012; Gao, Hedeker, Mermelstein, and Xie 2016). ISNI overcomes the computational
problems of sensitivity analysis by requiring only the readily-available model computations
under MAR, thereby avoiding the estimation of complicated nonignorable models.

The absence of general software for computing ISNI has hampered its widespread adoption.
This article describes a new R package, denoted isni, that performs ISNI computations for
some common models and data structures. isni currently computes sensitivity analyses for
three types of popular statistical models: Generalized linear models for cross-sectional data,
and marginal multivariate Gaussian models and linear mixed-effects models for longitudi-
nal/clustered data.

We organize the article as follows: Section 2 describes the ISNI approach to sensitivity ana-
lysis. Section 3 describes the use of isni. Section 4 illustrates the application of isni and the
interpretation of its outputs in real-data examples. Section 5 offers a summary and discussion.
An Appendix presents further computational details.

2. Review of the ISNI Method

Let Y be a vector of outcomes, and G be the vector of missingness indicators with the same
length as Y , where each element of G takes the value of 0(1) when the corresponding element
of Y is observed(missing). We further define Y = (Y obs, Y mis), where Y obs, Y mis denote
the observed and missing elements in Y , respectively. We specify the joint distribution of
Y and G with a selection model; that is, the marginal density of Y is fθ(y), indexed by
parameter θ, and the conditional probability mass function of G given Y = y is fγ0,γ1(g|y),
indexed by parameters γ0 and γ1. We further assume that we can write the conditional
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probability function of G given Y = y as fγ0,γ1(g|yobs, ymis), such that the parameter γ0

associates the probability of missingness with a set of fully observed missingness predictors
and the parameters γ1 associates the probability of missingness with the unobserved outcomes
Y mis. We denote the conditional distribution of the missingness indicator to be the missing
data mechanism (MDM). Under these conditions, we define the observed data (yobs, g) to be
missing at random (MAR) if, for every possible value of the parameters, fγ0,γ1(g|yobs, ymis)
takes the same value for all ymis. For example, if there are no missing observations, the
observed data are MAR by default, even if the MDM stipulates a strong correlation of Y and
G. The MDM is MAR if every possible data set generated under it is MAR.

Following common practice, we formulate the MDM in such a way that it reduces to MAR
when γ1 = 0. When γ1 6= 0, the missingness probability depends on unobserved data,
ymis, even after conditioning on the observed data. Because γ1 captures the magnitude of
nonignorability, we denote it the nonignorability parameter. Under the general selection
model, the loglikelihood L(θ, γ0, γ1; yobs, g) is

L(θ, γ0, γ1; yobs, g) = ln

∫
Ω
Ymis

fθ(y
obs, ymis)fγ0,γ1(g|yobs, ymis)dymis, (1)

where ΩY mis denotes the sample space of Y mis, and fθ(y
obs, ymis) is fθ(y) evaluated at the

observed data yobs and for posited values ymis; the completeness indicator g dictates the
identities of the observed and missing y values. Note that if we assume an MAR mechanism
(i.e., that γ1 = 0), we have fγ0,γ1(g|yobs, ymis) = fγ0,γ1=0(g|yobs), because this conditional
probability has no dependence on values of ymis. Thus we can move this term out of the
integration in Eqn (1), resulting in the simpler loglikelihood

LI(θ, γ0, γ1; yobs, g) = ln

[∫
Ω
Ymis

fθ(y
obs, ymis)dymis

]
fγ0,γ1=0(g|yobs)

= ln fθ(y
obs) + ln fγ0,γ1=0(g|yobs). (2)

Under MAR and the additional assumption of parameter distinctness — i.e., that θ and γ
are independent (for Bayesian inference) or have parameter spaces that factor (for likelihood
inference) — ln fθ(y

obs) contains the correct information on θ, and therefore it is unnecessary
to to estimate the MDM. We denote such an analysis the ignorability analysis. The more
general analysis that does not assume ignorability bases inferences on Eqn (1), which requires
positing the MDM in detail. Because observed data alone provide no robust information to
assess the dependence of the missingness probability on ymis, such a nonignorable model is
difficult to identify and estimate without additional data or other untestable assumptions.

Thus, practical analyses typically assume MAR and base inference on Eqn (2). To evaluate
the robustness of such an inference, one can perform a sensitivity analysis; that is, one posits
a range of values of γ1 and determines the extent to which an estimate of θ, such as the MLE
given γ1, θ̂(γ1), depends on the values of γ1. The ISNI approach is to execute this analysis in
a neighborhood of the MAR model by determining the rate of change of θ̂(γ1) as a function
of γ1 at γ1 = 0. That is, ISNI calculates the derivative of θ̂(γ1) with respect to γ1, evaluated
locally at the ignorable model (Troxel et al. 2004). As we show in Appendix A, a general
formula for ISNI is

ISNI =
∂θ̂(γ1)

∂γT1

∣∣∣∣∣
γ1=0

= −∇2L−1
θ,θ∇

2Lθ,γ1 ,
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where

∇2Lθ,θ =
∂2L(θ, γ0, γ1)

∂θ∂θT

∣∣∣∣
θ̂(0),γ̂0(0),γ1=0

=
∂ ln fθ(y

obs)

∂θ∂θT

∣∣∣∣
θ̂(0),γ̂0(0),γ1=0

,

∇2Lθ,γ1 =
∂2L(θ, γ0, γ1)

∂θ∂γT1

∣∣∣∣
θ̂(0),γ̂0(0),γ1=0

,

and L(θ, γ0, γ1) denotes the loglikelihood of Eqn (1). The computation of ISNI thus involves
two parts: First one computes ∇2L−1

θ,θ, which is the inverse of the observed information matrix
of θ under the MAR outcome model; this is readily available from standard statistical software.
Second, one computes ∇2Lθ,γ1 , which measures the lack of orthogonality of θ and γ1. Below
we show ISNI formulas for some popular statistical models.

2.1. ISNI for Independent data

We first consider the case where Y follows a generalized linear model (GLM) (McCullagh and
Nelder 1989) that assumes that scalar Yi, given predictors xi, i = 1, · · · , N , are independent
draws from the exponential family

fθ(yi|xi) = exp

{
yiΨi(β, xi)− b(Ψi(β, xi))

a(τ)
+ c(yi, τ)

}
, (3)

where Ψi is the canonical parameter as a function of the regression coefficient parameter β;
functions b(·) and c(·, ·) determine a particular distribution in the exponential family; and
a(τ) = τ/wi, with the dispersion parameter τ and a known weight wi. We further assume
that the MDM is a logistic regression

P (Gi = 1|si, yi) = h(γT0 si + γ1yi) =
1

1 + exp
[
−(γT0 si + γ1yi)

] , (4)

where Gi = 0(1) if the ith observation is observed(missing), and si includes a set of observed
predictors. Throughout this paper and in the isni package, we assume the inverse logit form
for h(·), as it is popular and robust, and it simplifies interpretation (Xie and Heitjan 2009).

Following Troxel et al. (2004), under independence over units i we have

∇2Lθ,θ =
∂2L(θ, γ0, γ1)

∂θ∂θT

∣∣∣∣
θ̂(0),γ̂0(0),γ1=0

=
∑
i:gi=1

∂ ln fθy(y
obs
i |xi)

∂θ∂θT

∣∣∣∣∣∣
γ1=0

,

∇2Lθ,γ1 =
∂2L(θ, γ0, γ1)

∂θ∂γT1

∣∣∣∣
θ̂(0),γ̂0(0),γ1=0

=
∑
i:gi=0

(1− hi)
∂E(Y mis

i |xi)
∂θ

∣∣∣∣∣∣
γ1=0

,

and ISNI for θ = (β, τ) is

ISNI =

(
−
[∑

i gi

(
yi
∂2Ψi
∂β2 − ∂2b

∂β2

)]−1
a(τ)

∑
i(1− gi)(1− hi)

∂2b
∂Ψi∂β

0

)
β̂(0),τ̂(0)

, (5)

where hi = h(γ̂T0 si) is the predicted probability of being missing under MAR, and β̂(0) and
τ̂(0) are MLEs under MAR. This formula is the same as that presented in Troxel et al. (2004)
except that we reverse the signs to reflect the reversed role of the indicator G.
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2.2. ISNIs for Longitudinal/clustered data

We now consider the case where Yi, the datum for unit i, consists of a vector of potentially
correlated observations Yi1, · · · , Yini , and distinct units are independent. Several authors
have described generalizations of ISNI to longitudinal/clustered data (Ma et al. 2005; Xie
and Heitjan 2009; Xie 2008, 2009, 2012; Xie and Qian 2012). We describe below the ISNI
method for the setting of longitudinal data with non-monotone missingness; one can adapt it
to other types of clustered data in a straightforward way.

2.2.1. Models for the notional complete data

Let Yi = (Yi1, ..., Yini) denote the notional complete data for subject i, where Yij is the
outcome at measurement occasion j, i = 1, ..., N , j = 1, ..., ni. We assume that the density
function of Yi is fθ(yi|xi), where θ is the vector of the parameters of interest with length pθ,
and xi is a matrix of fully observed predictors. We describe below the ISNI analysis of two
popular classes of models for data of this form.

Marginal multivariate Gaussian model (MMGM). We define the MMGM for a continuous
outcome as

Yi|xi
ind∼ MVN (xiθ1,Σi(θ2)) , (6)

where θ1 and θ2 are parameters of the population mean model and the variance-covariance
model, respectively. The matrix Σi(θ2) must be symmetric and positive definite. Under
ignorable missingness, one typically estimates this model by generalized least-squares, for
example with the R function gls().

Linear mixed model (LMM). The LMM for a continuous outcome is (Laird and Ware 1982)

Yi|bi, xi, zi
ind∼ MVN(xiβ + zibi,Λi), bi ∼ N(0, Vb). (7)

Here β is a vector of p fixed population parameters; bi is a vector of q random effects associated
with individual i; xi and zi are predictor matrices for the fixed and random effects, respectively,
where zi is a subset of xi; and Vb and Λi are variance-covariance matrices for the random effects
and residuals, respectively. Λi depends on i only in that its size is ni × ni. Marginally,

Yi|xi, zi
ind∼ MVN

(
xiβ,Λi + ziVbz

T
i

)
.

We set θ = (β,D) where D denotes the parameters in the variance-covariance matrices Λi
and Vb. One can estimate the LMM using R function lme().

2.2.2. An MDM for non-monotone missing data

In longitudinal studies, one typically experiences two types of missingness: Intermittently
missing observations, for example from missed visits; and dropout, from subjects who leave
the study permanently before completing follow-up. We therefore define an MDM that allows
for both types of missingness by means of a general transitional model (Xie 2012). Let
Gi = (Gi1, . . . , Gini) denote the vector of missingness status variables for subject i, where
Gij , j = 1, . . . , ni denotes the missingness status of subject i at occasion j, and

Gij =


O if subject i is observed at occasion j,
I if subject i is intermittently missing at occasion j,
D if subject i drops out at occasion j.
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Xie (2012) described an approach that writes the MDM as a product of transition probabilities:

fγ(gi1, . . . , gini |yi, xi) = f(gi1|yi, xi)
ni∏
j=2

fγ(gij |gi1, . . . , gi,j−1, yi, xi).

We typically assume that all units are observed at baseline and so f(O|yi, xi) = 1. One
can then model each of the remaining univariate conditional distributions separately. We
first note that each conditional probability potentially includes all past missingness status
variables, thereby naturally incorporating information on how past missingness behaviors
affect current missingness status. Second, one needs to decide what variables in Yi enter
each conditional distribution. Let sij = (yobs

i(j), xi) be a matrix containing fully observed

predictors for missingness up to visit j for subject i, where yobs
i(j) includes all observed outcome

measurements prior to visit j for subject i. Because we condition on all the past missingness
status variables within each past missingness pattern, yobs

i(j) can include all past observed
outcomes. If any future outcome, yiJ , where J > j, is observed for all the subjects with the
same past missingness pattern, yiJ can also be included in yobs

i(j) for those observations with
that same past missingness pattern.

We further let a numerical variable u index the status of missingness with u = 0, 1, 2 repre-
senting O, I,D, respectively. Our MDM then assumes that the conditional distribution of Gij
is as follows:[

Gij |Sij = sij , Yij = yij , Gi(j) = gi,(j)
]
∼ Multinomial

(
1,
[
P

0gi(j)
ij , P

1gi(j)
ij , P

2gi(j)
ij

])
, (8)

where gi(j) = (gi,j−1 · · · , gi1) denotes the past missingness pattern prior to visit j, and the

cell probabilities
[
P

0gi(j)
ij , P

1gi(j)
ij , P

2gi(j)
ij

]
are specified as

P
ugi(j)
ij =

φ
ug(j)
ij∑2

U=0 φ
Ug(j)
ij

, u = 0, 1, 2;

and φ
ug(j)
ij (sij , yij) = exp

(
γ
ug(j)
0 sij + γ

ug(j)
1 yij

)
. (9)

When γ
ug(j)
1 = 0 for all values of u and g(j), the MDM does not depend on the potentially

unobserved outcome and thus is MAR. When γ
ug(j)
1 6= 0 for some u and g(j), the model allows

that, given the missingness pattern prior to time j and the other fully observed predictor sij ,
the missingness status depends on the potentially unobserved outcomes through the contem-
poraneous outcome Yij . An alternative MDM specification would let the missingness depend
on both past and future unobserved outcomes. We chose the former model for two reasons:
First, it reduces the number of parameters for nonignorable missingness, allowing us to more
easily interpret the sensitivity analysis. As others (e.g., Vansteelandt, Rotnitzky, and Robins
(2007)) have noted, parsimony is desirable in sensitivity analysis. Second, one can always
take the integration of the latter model with respect to past and future unobserved outcomes
so that the resulting selection model depends only on the outcome at the current visit. In this
sense, our model can be viewed as an approximation to the model in which the probability of
missingness depends also on past and future unobserved outcomes; see Xie (2012).

Xie (2012) applied the transitional MDM to a longitudinal dataset with non-monotone mis-
singness arising from a design with ni = n; this enables conditioning on the entire past
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missingness vector gi(j). In the setting with varying ni, conditioning on gi(j) may be im-
possible. In this case, a convenient alternative is a first-order transition model, where one
assumes that, conditional on (sij , yij , gi,j−1), the missingness status Gij at the current visit
is independent of missingness status at all other prior visits; thus Eqn (8) reduces to

Gij |Sij = sij , Yij = yij , Gi,j−1 = v ∼ Multinomial(1,
[
P 0v
ij , P

1v
ij , P

2v
ij

]
);

P uvij =
φuvij∑2
U=0 φ

Uv
ij

, where u = 0, 1, 2; v = 0, 1,

and φuvij (sij , yij) = exp(γuv0 sij + γuv1 yij). (10)

By the definition of dropout, Gij = 2 deterministically when Gi,j−1 = 2 (the prior visit is a
dropout); by the definition of intermittent missingness, φ21

ij = 0; and because the response

probabilities must add up to unity, for identification purposes φ00
ij = φ01

ij = 1. Here sij is a
vector of fully observed predictors for missingness at time j for subject i, which commonly in-
cludes the history of the predictors x in the ideal-data model up to and including time j as well
as the history of the observed prior outcomes (i.e., the observed elements in (Yi1,...,Yi,j−1)).

The conditional probability fγ(gij |sij , yij , gi,j−1) then takes the form

fγ(gij |sij , yij , gi,j−1)

=



1
1+exp(γ100 sij+γ101 yij)+exp(γ200 sij+γ201 yij)

if gi,j−1 = 0, gij = 0,

exp(γ
gij0

0 sij+γ
gij0

1 yij)

(1+exp(γ100 sij+γ101 yij)+exp(γ200 sij+γ201 yij)
if gi,j−1 = 0, gij 6= 0,

1
1+exp(γ110 sij+γ111 yij)

if gi,j−1 = 1, gij = 0,

exp(γ110 sij+γ
11
1 yij)

1+exp(γ110 sij+γ111 yij)
if gi,j−1 = 1, gij = 1,

0 if gi,j−1 = 1, gij = 2,

0 if gi,j−1 = 2, gij 6= 2,

1 if gi,j−1 = 2, gij = 2.

(11)

The package isni allows computation of ISNI statistics under both the general transitional
MDM and the simpler first-order transitional MDM.

2.2.3. ISNI with the transitional MDM

In general, we have

ISNI(θ̂) =
∂θ̂(γ1)

∂γT1

∣∣∣∣∣
γ1=0

= −∇2L−1
θ,θ∇

2Lθ,γ1 .

The term ∇2Lθ,θ is the observed Hessian matrix under the MAR model and can be readily
obtained as a by-product of estimating the MAR model. The second term, ∇2Lθ,γ1 , measures
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the lack of orthogonality of θ and γ1 and has been derived for longitudinal data with monotone
missingness patterns (Ma et al. 2005) and with non-monotone missingness patterns (Xie 2012;
Xie and Qian 2012). We include its derivation in Appendix B. For our longitudinal models
with the first-order transitional MDM described above, we have γ1 = (γ10

1 , γ20
1 , γ11

1 ) and

∇2Lθ,γ1 =
∂2L

∂θ∂γT1

∣∣∣∣
θ̂(0),γ̂0(0),γ1=0

(12)

=

(
∂2L

∂θ∂γ10
1

,
∂2L

∂θ∂γ20
1

,
∂2L

∂θ∂γ11
1

)∣∣∣∣
θ̂(0),γ̂0(0),γ1=0

=
∑

i:Ki<ni

∂E((Y mis
i )T |yobs

i )

∂θ

∣∣∣∣∣∣
γ1=0

·
[
A10
i , A

20
i , A

11
i

]
,

Ki is the length of yobs
i and θ̂(0) and γ̂0(0) are MLEs of θ and γ0 under the MAR assumption.

In∇2Lθ,γ1 , ∂E((Y mis
i )T |yobs

i )/∂θ is a pθ×di matrix where di is the number of missing outcomes
for subject i. Under MAR and for the complete-outcome models considered in Section 2.2.1,
(Y mis
i )T |yobs

i is a Gaussian distribution involving θ parameters only and ∂E((Y mis
i )T |yobs

i )/∂θ
can be derived in a closed form involving matrix multiplication and differentiation as shown
in Appendix C.

Finally, Ai =
[
A10
i , A

20
i , A

11
i

]
is a di × 3 matrix. For the lth (l = 1, ..., di) component of ymis

i

that corresponds to the jth element of yi, it can be shown that (Xie 2012; Xie and Qian 2012)

A10
il = I(gi,j−1 = 0)

[
I(gi,j = 1)− P 10

ij

]
γ̂0(0),γ1=0

,

A20
il = I(gi,j−1 = 0)

[
I(gi,j = 2)− P 20

ij

]
γ̂0(0),γ1=0

,

A11
il = I(gi,j−1 = 1)

[
P 01
ij

]
γ̂0(0),γ1=0

.

In the above, P 10
ij , P

20
ij and P 01

ij are the missingness status transitional probabilities defined
in Eqn (10), calculated under MAR (i.e., setting γ1 = 0). We note that because dropout and
intermittent missingness are competing causes of missingness, the quantities, A10

il and A20
il are

of opposite sign given that gi,j−1 = 0.

When γ1 is a scalar, ISNI approximates the changes of the estimates when γ1 is perturbed from
0 to 1. In our model, the nonignorability parameter γ1 is the vector with (γ10

1 , γ20
1 , γ11

1 ). Thus,
ISNI is a vector of three elements where each approximates the changes in estimates when only
the corresponding element in γ1 is perturbed from 0 to 1. We suggest the following strategies
to produce a parsimonious sensitivity analysis with multiple nonignorability parameters. To
summarize the joint effects of all three nonignorable parameters, one can approximate the

change in the MAR estimates, θ̂(γ1)− θ̂(0) by ∂θ̂(γ1)

∂γT1

∣∣∣
γ1=0

γ1. When one is willing to assume

that intermittent missingness and dropout have roughly the same nonignorability mechanism,
we can fix γ10

1 , γ20
1 and γ11

1 at the same largest perturbation value. In this scenario, γ1 becomes
a scalar and Ai become a vector where Ai = A10

i +A20
i +A11

i and the components of Ai become

P
0,gi,j−1

ij , the estimated probability of being observed for the missing observations predicted
under the ignorability assumption. For its simplicity and ease of interpretation, this is the
default method implemented in our package.

Alternatively, one could consider all perturbations of the elements of γ1 that are within a
hypercube of size 1 from the origin in the space. These perturbations include scenarios under
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which dropout and intermittent missingness can have different or even opposite nonignorable
missingness mechanisms. For this strategy, we suggest the following way to examine the
sensitivity using the ISNI vector associated with multiple nonignorability parameters:

MISNI(θ̂) =

q∑
i=1

∣∣∣∣∣∂θ̂(γ1)

∂γ1i

∣∣∣∣∣
θ̂(0),γ̂0(0),γ1=0

, (13)

where q = 3 is the length of γ1. MISNI, as defined in the above, has the interpretation of
maximum sensitivity, max|γ1i|=1,i=1,...,q(θ̂(γ1) − θ̂(0)), when each element of γ1 is perturbed
between −1 and 1. Our package also produces MISNI. Xie and Heitjan (2004) consider a
perturbation scheme when the nonignorability parameter lies on a hyperball of radius

√
q

around the origin, that is, ||γ1|| =
√
q. A potential issue with this scheme is that elements

in the nonignorability parameter vector can have extreme and implausible values, especially
when q, the dimension of the nonignorability parameter, is large. An alternative is to consider
a hyperball of size that is independent of q (Gao et al. 2016). We note that a hypercube of
size r as used here contains a hyperball of radius r.

One can extend these strategies to the general transitional MDM. Recall that under the general

model of Eqn (9), the nonignorability parameter γ1 =
⋃
j,gi(j−1)

(γ
10gi(j−1)

1 , γ
20gi(j−1)

1 , γ
11gi(j−1)

1 ),

and the dimensionality of γ1 depends on the number of unique past missing data patterns
and can be large. For a more parsimonious sensitivity analysis, one sensible strategy is to

reduce the number of nonignorability parameters such that γ
10gi(j−1)

1 = γ10
1 , γ

20gi(j−1)

1 = γ20
1

and γ
11gi(j−1)

1 = γ11
1 ,∀j and gi(j−1). This reduces γ1 to (γ10

1 , γ20
1 , γ11

1 ), and we can then use
the strategies described for the first-order transitional model.

We note moreover that in the special case of no intermittent missingness, the equations further
simplify: A10

i = A11
i = 0 and ∂E((Y mis

i )T |yobs
i )/∂θ reduces to a pθ× 1 vector. The calculation

of ∇2Lθ,γ1 then reduces to that of Ma et al. (2005) and Xie (2008).

2.3. Calibrating ISNI

With a logit link in the MDM, a scalar γ1 is the log odds ratio in the probability of being
missing associated with a one-unit change in y; when γ1 = 1, a one-unit change in y is
associated with an increase of 2.7-fold in the odds of being missing. For outcomes with
a single natural scale, such as the Poisson and binomial, one can interpret ISNI directly
in this manner. For continuous Y , this interpretation is inadequate because the value of
ISNI depends on the scale of measurement, which may be arbitrary. We describe below two
calibration approaches that facilitate interpretation by creating a scale-free index.

The first approach evaluates changes in estimates of θ for a magnitude of nonignorability
where a one-SD change in Y is associated with an odds ratio of e1 = 2.7 in the probability of
being missing, i.e., when γ1 = ±1/σY , or one standardized unit of nonignorability.

The second approach is to approximate the minimum standardized magnitude of nonigno-
rability that is needed for the change in θ̂ to equal one standard error (SE). One can then
assess sensitivity by evaluating whether this level of nonignorability is plausible. Specifically,
note that for θj (the jth element of θ) we have θ̂j(γ1)− θ̂j(0) ≈ γ1ISNIY (θ̂j), where ISNIY (·)
refers to the ISNI for a parameter, computed with data on the Y scale. We compute the
smallest absolute value of γ1 that gives a 1-SE change as γ̃1 = SE

ISNI . To put the magnitude of
nonignorability in the scale of standardized magnitude of nonignorability defined above, we
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define a sensitivity transformation c statistic as

c = |γ̃1 × σY | =
∣∣∣∣σY SE

ISNI

∣∣∣∣ . (14)

The c statistic informs us that in order for selection bias to be as large as the sampling error,
the magnitude of nonignorability needs to be at least as large as that with which 1

cSD change
in Y is associated with an odds ratio of 2.7 in the probability of being missing. For MISNI from

Eqn (13), c =
∣∣∣ σY SE

MISNI

∣∣∣. The MISNI c statistic informs us that for selection bias to be as large

as the sampling error, the vector nonignorability parameter γ1 needs to lie on a hypercube
with its size from the origin at least as large as c standardized unit of nonignorability as
defined above; the hypercube of this size implies that 1

cSD change in Y is associated with an
odds ratio of 2.7 for dropout (or intermittent missingness) versus being observed.

When c is large, only extreme nonignorability can make the estimate change substantially, and
consequently sensitivity to nonignorability is of little concern. For example, c = 10 implies
that in order for the error in an MAR estimate to be the same size as its sampling error,
the nonignorability needs to be strong enough that a 0.1-SD change in Y causes a significant
change in the odds of being missing. When c is small, modest departure from MAR can cause
the estimate to change substantially. For example, c = 0.1 implies that when even a 10-SD
change in Y causes a significant change in the odds of being missing, the estimate may change
substantially. As such a degree of nonignorability is plausible in many applications, this small
c value signals sensitivity. Following (Troxel et al. 2004), we suggest using c < 1 as a rule of
thumb to signal significant sensitivity.

Because ISNI is a derivative, we have in general that ISNI(A · θ) = A · ISNI(θ) for any matrix
A that has the same number of columns as there are elements in θ (where · here represents
matrix multiplication). Thus, we can readily conduct a separate ISNI analysis (including
computation of c) for any element of θ.

3. Program Description and Usage

The package isni implements the methods described above. In the following subsections, we
describe the use of the three main functions: isniglm(), isnimgm(), and isnilmm().

3.1. Interface of ISNI functions

The three primary ISNI functions share a common interface structure that permits specifica-
tion of the complete-data model for y, the MDM, and the data.

We begin with function isniglm(), which computes ISNI for the GLM for a univariate y:

isniglm = function(formula, family=gaussian, data, weights, subset,

start=NULL, offset)

formula an object of model formulas: at a minimum a two-sided formula that specifies the
complete-data model using the variable names for the outcome yi and the predictors xi in
Eqn (3). Alternatively one can specify a two-equation model formula that additionally
specifies the MDM using the variable name for the missingness indicator gi and the
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missingness predictor si in Eqn (4). More details of model specification are given under
the subsection 3.2.

family a description of the error distribution to be used in the GLM for the outcome y in
Eqn (3).

data the name of the data frame containing the model variables; the y element must include
both the non-missing and missing observations, the latter indicated by NA.

weights an optional vector of ”prior weights”to be used in the fitting process for the complete-
data model and the missing data mechanism model.

subset an optional vector specifying a subset of observations to be used in the fitting process
for the outcome model and the missing data mechanism model.

start starting values for the parameters in the linear predictor of the outcome model.

offset an optional vector to specify an a priori known component to be included in the linear
predictor during fitting the GLM for the outcome. This should be NULL or a numeric
vector of length equal to the number of observations.

Function isnimgm() computes ISNI for the MMGM:

isnimgm = function(formula, data, cortype="CS", id, subset, weights,

predprobobs, misni=FALSE)

formula an object of model formulas: at a minimum a two-sided formula that specifies the
complete-data model using the variable names for the outcome yi and the predictors xi
in Eqn (6). Alternatively one can specify a two-equation model formula that additionally
specifies the MDM using the variable names for the missing status variable gij and the
missingness predictor sij in Eqn (10). More details of model specification are given
under the subsection 3.2.

data the name of the data frame containing all the variables in the model; the y element
must include both the non-missing and missing observations, the latter indicated by NA.

cortype a description of the within-subject correlation structure of Σi in Eqn (6).

id the name of variable for the level-2 clustering variable.

subset an optional vector specifying a subset of observations to be used in the fitting process
for the outcome model and the missing data mechanism model.

weights frequency weights to be assigned to each id. When supplied, indicates differential
weights are used; otherwise each id is weighted equally.

predprobobs NULL if using the built-in multinomial first-order transitional logistic model
to obtain predicted probabilities of being observed; otherwise, the user can supply the
name of the variable in data that gives these probabilities via this argument.

misni FALSE if using the default approach to computing ISNI with a scalar nonignorability
parameter; TRUE when computing ISNI with multiple nonignorability parameters.
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Function isnilmm() computes ISNI for the LMM:

isnilmm = function(formula, data, random, id, weights, subset, predprobobs,

misni=FALSE)

formula an object of model formulas: at a minimum a two-sided formula that specifies the
complete-data model using the variable names for the outcome yi and the predictors xi
in Eqn (7). Alternatively one can specify a two-equation model formula that additionally
specifies the MDM using the variable names for the missing status variable gij and the
missingness predictor sij in Eqn (10). More details of model specification are given
under the subsection 3.2.

data the name of the data frame containing all the variables in the model; the y element
must include both the non-missing and missing observations, the latter indicated by NA.

random a one-sided formula that specifies the random-effects part of the linear mixed-effects
complete-data model using the variables names for zi in Eqn (7).

id the name of the level-2 clustering variable.

subset an optional vector specifying a subset of observations to be used in the fitting process
for the complete-data model and the missing data mechanism model.

weights frequency weights to be assigned to each id. When supplied, indicates differential
weights are used; otherwise each id is weighted equally.

predprobobs NULL if using the built-in multinomial first-order transitional logistic model
to obtain predicted probabilities of being observed; otherwise, the user can supply the
name of the variable in data that gives these probabilities via this argument.

misni FALSE if using the default approach to computing ISNI with a scalar nonignorability
parameter; TRUE when computing ISNI with multiple nonignorability parameters.

3.2. Model Specification

The ISNI analysis is based on a joint selection model and requires specifying variables in
two model equations: the complete-data model and the missing data mechanism model.
The model specification is achieved primarily via the formula argument for the above three
functions. At a minimum, the user should supply a single-equation for the complete-data
model in the typical form: response ∼ Xterms where response is the (numeric or factor)
vector for the outcome of interest and Xterms is a series of terms, separated by + operators,
which specify a linear predictor for response. With the single-equation specification, the
isniglm function will by default use (is.na(response)) as the missingness indicator gi and
Xterms as the missingness predictor si in Eqn (4). For longitudinal data setting, both isnimgm

and isnilmm will by default use the utility function definemissingstatus provided in the
package to generate the missingness status variables gij and then use Xterms as the predictors
si for fitting a first-order transitional missing data mechanism model in Eqn (10). In this case,
it is important to sort beforehand within-id observations by time so that the missingness
status variable can be defined correctly. The ISNI functions then compute the MAR estimates
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and conduct ISNI computation to evaluate the rate of change of model estimates in the
neighborhood of the MAR model and the missingness probability is allowed to depend on the
unobserved value of response, even after conditioning on the other missingness predictors in
si.

The above single-equation model specification assumes xi in the complete-data model and
si in the missing data mechanism model use the same set of predictors. To use different
sets of predictors, one can explicitly specify a two-equation formula. For this purpose, the
specification and processing of the “formula” argument in the above three ISNI functions
make use of the R package ”Formula” designed for handling model equations with multiple
responses and multiple sets of predictors (Zeileis and Croissant 2010). For isniglm, this
can be specified as: response | is.na(response) ∼ Xterms | Sterms, which specifies the
formula for the complete-data model as response ∼ Xterms and that is.na(response) and
Sterms are the missingness indicator gi and the missingness predictor si in the missing data
mechanism model as specified in Eqn (4), and Xterms and Sterms can be different. For both
isnimgm and isnilmm, this can be specified as: response | miss + missprior ∼ Xterms |
Sterms, which specifies the formula for the outcome model as response ∼ Xterms and that
in the missing data mechanism model as specified in Eqn (10), miss and missprior are the
variable names in data denoting the missingness status at the current visit and at the prior
visit, respectively, and Sterms are the missingness predictor si, and Xterms and Sterms can
be different,

For isnilmm, response ∼ Xterms specifies the fixed-effect part of the linear mixed-effects
model for the outcome. The random-effect part of the model is specified as a one-sided
formula via the argument random.

3.3. Preparing Data for ISNI analysis: Format of data

The ISNI functions use the argument data to supply the input data frame. The user must
observe two rules when preparing the data for input: First, except for the missingness status
variables, the columns in the master dataset should include all the variables (i.e., response and
explanatory variables) in both the complete-data model and MDM. For convenience, users
can rely on the ISNI functions to generate the missingness status variables automatically
inside the functions. For independent data, the missingness status variable is simply an
indicator variable for missingness and is generated as is.na(response) inside isniglm if not
provided via the formula argument. For longitudinal data, the missingness status variable
Gij can have three categories: “O” (being observed), “I” (intermittently missingness) and “D”
(dropout). Users can define and supply the missingness status variables at the current and
the prior visit as two separate columns in data and pass them into function via the formula

argument to fit a first-order transitional MDM. The package isni provides a utility function
definemissingstatus to generate these two missingness status variables for users. If users do
not supply missing status variables, the isnimgm and isnilmm will call definemissingstatus
inside these functions to generate them. Again in this case, it is important to sort beforehand
within-id observations by time so that the missingness status variable can be defined correctly.

Second, as shown in the ISNI formula, observations with missing outcomes contribute to the
sensitivity analysis through ∇2Lθ,γ1 . Thus, the master dataset must include places for all
the planned observations, present or missing. This differs from standard ignorable analy-
sis, in which one simply omits the missing observations. An exception to the second point
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occurs in the case of dropout with longitudinal data; we will explain this in the Longitudi-
nal/clustered data section below.

Here we describe the data format in greater detail.

Independent data. We array the data in a rectangular matrix, where each row is an
independent unit. The fields include the main outcome of interest with the missing values
denoted as “NA”, the predictors x for the outcome model, the predictors s in the MDM, and
optionally the missingness indicator variable.

Longitudinal/clustered data. The data consist of multiple level-1 observations (e.g., re-
peated measures) within a level-2 unit. The name of the level-2 variable is passed into function
via the argument id. The level-1 observations for a level-2 unit must appear on different rows
and take up as many records as the number of planned measurements for that level-2 unit.
Missing values in the outcome are denoted “NA”.

As mentioned above, in principle all planned observations should appear in the master dataset.
An exception occurs for dropouts in longitudinal data. When a subject leaves the study and
never returns, the probability of observing outcomes becomes 0 for all subsequent times.
Thus all the visits after the dropout visit are missing ignorably and do not contribute to the
sensitivity analysis; one can therefore omit them from the database.

The fields in the master dataset for longitudinal/clustered data consist of the level-2 variable,
the dependent variable y, the predictors x for the outcome model and s for the MDM, and
optionally the variables for missingness status at the current and the prior visit; the order is
irrelevant. Both models include an intercept by default; there is no need to include a column
of ones.

If users supply the missingness status variable in the master dataset, it should be of a cha-
racter or factor, with permitted values “O”(observed), “I” (intermittently missing), and “D”
(dropout). Because the built-in MDM employs a first-order Markov model that depends on
the previous missingness status, users should also supply a variable that denotes missingness
status at the prior visit; this is a character/factor variable taking values of “O”, “I”, “D”, or
“U” for the baseline observation (which has no prior visit).

4. Examples

In this section we describe some applications of the isni package.

4.1. ISNI analysis of a GLM for a cross-sectional survey

Raab and Donelly (1999) analyzed a cross-sectional survey of sexual practices among students
at the University of Edinburgh. The response variable is the students’ answer to the question
“Have you ever had sexual intercourse?”. Because of the sensitivity of this question, many
students declined to answer, leading to substantial missing data. We consider a simplified data
set consisting of the answer to this question, with the student’s sex and faculty as predictors.

# load the library and data set

> library(isni)
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> data(sos)

> sos[sample(nrow(sos),10),]

sexact gender faculty

2845 <NA> male other

1249 yes male other

5406 <NA> female other

3132 <NA> male mdv

225 yes male other

5812 <NA> female other

5115 <NA> female other

769 yes male other

2366 <NA> male other

2622 <NA> male other

The R code above loads the library isni and the data frame sos, displaying a random subs-
ample of 10 records. sos includes the following factor variables: sexact is the response
to the question “Have you ever had sexual intercourse?” (two levels: no (reference level),
yes); gender is the student’s sex (two levels: male (reference level), female); faculty is the
student’s faculty (medical/dental/veterinary, all other faculty categories (reference level)).

Assuming ignorability, one can fit a logistic model (using responders only) to predict the
outcome by sex, faculty and their interaction. We estimated the model with function glm():

> ymodel= sexact ~ gender*faculty

> summary(glm(ymodel,family=binomial, data=sos))

Call:

glm(formula = ymodel, family = binomial, data = sos)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.6713 -1.3282 0.7540 0.7642 1.0338

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.08153 0.05561 19.448 < 2e-16 ***

genderfemale 0.03081 0.07958 0.387 0.699

facultymdv -0.73389 0.14921 -4.918 8.73e-07 ***

genderfemale:facultymdv 0.10213 0.20670 0.494 0.621

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 4450.3 on 3827 degrees of freedom

Residual deviance: 4408.2 on 3824 degrees of freedom

AIC: 4416.2
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Number of Fisher Scoring iterations: 4

The estimates show that students in a medical faculty were less likely to report having had
sexual intercourse. Because only 62.4% responded to the sexual practice question, there is
concern that this analysis is sensitive to the assumption of ignorability. Thus Troxel et al.
(2004) conducted an ISNI analysis for this model. Below we replicate their analysis with
the function isniglm(). We posit a nonignorable selection in the form of Eqn (4) with
the observed missingness predictor si including gender, faculty and their interaction and
perform ISNI analysis as follows:

> sos.isni<-isniglm(ymodel, family=binomial, data=sos)

> sos.isni

Call:

isniglm(formula = ymodel, family = binomial, data = sos)

ISNIs:

(Intercept) genderfemale facultymdv genderfemale:facultymdv

0.410141 -0.038983 -0.169859 0.027542

c statistics:

(Intercept) genderfemale facultymdv genderfemale:facultymdv

0.13559 2.04146 0.87846 7.50482

The summary function in the package expresses the isniglm() object:

> summary(sos.isni)

Call:

isniglm(formula = ymodel, family = binomial, data = sos)

MAR Est. Std. Err ISNI c

(Intercept) 1.081531 0.055611 0.410141 0.1356

genderfemale 0.030808 0.079583 -0.038983 2.0415

facultymdv -0.733886 0.149215 -0.169859 0.8785

genderfemale:facultymdv 0.102133 0.206696 0.027542 7.5048

The columns “MAR Est.” and “Std. Err” denote the logistic model estimates and their
standard errors under MAR; “ISNI” and “c” denote ISNI values and c statistics. The ISNIs
are equal in absolute values to those reported in Troxel et al. (2004), but with opposite signs
because our package models the probability that an observation is missing rather than the
probability that it is observed (Troxel et al. 2004). Recall that ISNI denotes the approximate
change in the MLEs when γ1 in the selection model is changed from 0 to 1. Under our
nonignorable selection model, assuming that γ1 = 1 means that a student whose answer
is “yes” has an increase of 2.7-fold in the odds of nonresponse. Thus, subjects whose true
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value is “yes” would be more likely to have a missing value, and the näıve MAR estimate for
(Intercept) should be less than the (Intercept) estimate under the correct nonignorable
model. The positive sign of the ISNI value for (Intercept) is consistent with this prediction.
The ISNI for the faculty predictor is −0.17, indicating that if, as is more plausible here,
γ1 = 1, the MLE for the estimate should change from −0.73 to −0.90. If γ1 = −1, the estimate
would change from −0.73 to −0.56. The c statistics for (Intercept) and faculty are both
less than 1, suggesting that these coefficients are sensitive to nonignorability, confirming the
original analyses (Raab and Donelly 1999). Raab and Donnelly also found that neither the
gender nor the interaction term between gender and faculty should be sensitive, as our
findings confirm.

In the above we do not explicitly specify an MDM via formula argument. The same analysis
can be replicated by explicitly specifying an MDM model using a two-equation model for-
mula. The two-equation formula sexact | is.na(sexact) ~ gender*faculty | gender

*faculty uses the operator | to separately specify variables used in the complete-data mo-
del and MDM. The two-equation formula means that the complete-data model is sexact ∼
gender*faculty and that is.na(sexact) and gender*faculty are the missingness indicator
gi and the missingness predictor si in the missing data mechanism model as specified in Eqn
(4),

> ygmodel= sexact | is.na(sexact) ~ gender*faculty | gender *faculty

> summary(isniglm(ygmodel, family=binomial, data=sos))

Call:

isniglm(formula = ygmodel, family = binomial, data = sos)

MAR Est. Std. Err ISNI c

(Intercept) 1.081531 0.055611 0.410141 0.1356

genderfemale 0.030808 0.079583 -0.038983 2.0415

facultymdv -0.733886 0.149215 -0.169859 0.8785

genderfemale:facultymdv 0.102133 0.206696 0.027542 7.5048

Because all the covariates in sos are categorical variables, one can also analyze the data using
a grouped binomial regression with the weight argument in isniglm as below.

> gender <- c(0,0,1,1,0,0,1,1)

> faculty <- c(0,0,0,0,1,1,1,1)

> gender <- factor(gender, levels = c(0, 1), labels =c("male", "female"))

> faculty <- factor(faculty, levels = c(0, 1), labels =c("other", "mdv"))

> SAcount <- c(NA, 1277, NA, 1247, NA, 126, NA, 152)

> total <- c(1189,1710,978,1657,68,215,73,246)

> sosgrp <- data.frame(gender=gender, faculty=faculty, SAcount=SAcount, total=total)

> ymodel <- SAcount/total ~gender*faculty

> sosgrp.isni<-isniglm(ymodel, family=binomial, data=sosgrp, weights=total)

> summary(sosgrp.isni)

Call:

isniglm(formula = ymodel, family = binomial, data = sosgrp, weights = total)
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MAR Est. Std. Err ISNI c

(Intercept) 1.081531 0.055611 0.410141 0.1356

genderfemale 0.030808 0.079583 -0.038983 2.0415

facultymdv -0.733886 0.149215 -0.169859 0.8785

genderfemale:facultymdv 0.102133 0.206696 0.027542 7.5048

4.2. ISNI analysis of an MMGM for longitudinal data

We consider here the qualify-of-life (QoL) example of Ma et al. (2005). The data are from
a randomized trial comparing flutamide with a placebo in the treatment of prostate cancer.
A sub-study collected QoL outcome data using a SWOG questionnaire at four time points
(baseline, 1, 3, and 6 months after randomization). We focus here on the emotional functioning
(EF) scale. Below is a sample of the data set qolef.

> qolef[1:12,]

id y time group perf sever yp g gp basey

1 117938 8.485281 0 0 0 1 0.000000 O U 8.485281

2 117938 8.485281 1 0 0 1 8.485281 O O 8.485281

3 117938 NA 3 0 0 1 8.485281 I O 8.485281

4 117938 8.717798 6 0 0 1 8.485281 O I 8.485281

5 124149 10.000000 0 1 0 1 0.000000 O U 10.000000

6 124149 10.000000 1 1 0 1 10.000000 O O 10.000000

7 124149 8.000000 3 1 0 1 10.000000 O O 10.000000

8 124149 9.797959 6 1 0 1 8.000000 O O 10.000000

9 124674 9.591663 0 0 0 1 0.000000 O U 9.591663

10 124674 9.380832 1 0 0 1 9.591663 O O 9.591663

11 124674 NA 3 0 0 1 9.380832 I O 9.591663

12 124674 9.165151 6 0 0 1 9.380832 O I 9.591663

The variables in qolef are as follows:

id — patient id

y — EF score

time — time in months since randomization

group — placebo (0) or flutamide (1).

perf — baseline performance score

sever — baseline disease severity

yp — most recently observed prior outcome

g — missingness status (“O”=observed, “D”=dropout, “I”=intermittently missing)

gp — missingness status in the prior visit (“O”=observed, “D”=dropout, “I”=intermittent
missingness, “U”=undefined)
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basey — EF at baseline

We seek to evaluate the drug effect on EF over time. The original EF is on a scale of 0
(worst) to 100 (best). Because preliminary analysis showed that normality is more nearly
satisfied on the square-root scale, we transformed the data accordingly, and the EF values
in the data lie in the range [0, 10]. Table 1 presents the mean and SD of the transformed
EF variable, together with the fraction observed, by treatment arm and visit. We see that
missingness percentages are comparable between arms but increase over time, with almost a
quarter missing data by the end of study. Our analysis excludes a small number of patients
(≈ 3%) whose EF data were missing at baseline. Table 2 presents missing data patterns for
the longitudinal EF outcomes (omitting subjects with missing baseline) and shows that there
are both dropouts and intermittently missing items.

Table 1: Summary Statistics in the Prostate Cancer QoL Dataset.

Placebo (n = 367) Flutamide (n = 370)
Month Mean (SD) n observed (%) Mean (SD) n observed (%)

0 8.31 (1.50) 352 (96) 8.28 (1.46) 363 (98)
1 8.76 (1.22) 315 (86) 8.54 (1.23) 325 (88)
3 8.83 (1.26) 301 (82) 8.57 (1.20) 313 (85)
6 8.76 (1.20) 274 (75) 8.43 (1.37) 291 (79)

Xie (2012) presents an ISNI analysis of the impact of nonignorable nonmonotone missingness
on the MAR estimates for this dataset. Here we conduct an ISNI analysis for the marginal
multivariate Gaussian model, using function isnimgm(). We take the predictor vector to be

xi = (Intercept,perf, sever,

T1.0(pb),T3.0(pb),T6.0(pb),

T0(fl)− T0(pb),T1.0(fl)− T1.0(pb),T3.0(fl)− T3.0(pb),T6.0(fl)− T6.0(pb))i.

The two predictors “perf” and “sever” are baseline covariates. The predictor T0(a) is an
indicator for the baseline observation in arm a. The predictors Tt.0(a) are contrasts of time
t vs. baseline in arm a, t = 1, 3, 6. Thus the third line of predictors gives contrasts of these
contrasts between arms. The complete-data model can be specified in R as y∼ perf + sever+

as.factor(time) + group + as.factor(time):group. To evaluate the robustness of the
MAR analysis to nonignorable missingness, we assume the first-order transitional model of
Eqn (10), where the missingness status variables at the current visit and at the prior visit are
g and gp in qolef, respectively; the missingness predictors si is as.factor(time) * group

+ yp + perf + sever and yp is the most recently observed outcome prior to the current
visit. We apply isnimgm() to perform the ISNI analysis:

> models= y | g+gp ~ perf + sever + as.factor(time) + group +

as.factor(time):group | group* as.factor(time) + yp+ perf + sever

> qolef.isni=isnimgm(models, data=qolef, id=id)

# weights: 36 (22 variable)
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Table 2: Missing Patterns in the Prostate Cancer QoL Dataset.

Placebo (n = 352) Flutamide (n = 363)
EF0 EF1 EF2 EF3 Freq Percent Freq Percent

P P P P 239 67.8 258 71.1
P P P A 38 10.8 37 10.2
P P A A 19 5.4 14 3.8
P A A A 20 5.6 22 6.1
P P A P 13 3.7 13 3.6
P A P P 11 3.1 15 4.1
P A P A 7 2.0 1 0.3
P A A P 5 1.4 3 0.8

Note: “P” indicates presence in the visit and “A” indicates absence in the visit.

initial value 2144.491187

iter 10 value 797.136438

iter 20 value 780.985037

iter 30 value 779.568898

final value 779.561688

converged

# weights: 12 (11 variable)

initial value 52.679186

iter 10 value 19.792933

iter 20 value 19.572566

iter 30 value 19.570615

iter 40 value 19.570445

final value 19.570432

converged

We summarize the results as follows:

> summary(qolef.isni)

Call:

isnimgm(formula = models, data = qolef, id = id)

MAR Est. Std. Err ISNI c

(Intercept) 8.430605 0.103039 -0.0268853 5.1162

perf -0.271034 0.219967 0.0876716 3.3494

sever -0.146618 0.100374 0.0307667 4.3552

as.factor(time)1 0.452170 0.070674 0.1418210 0.6652

as.factor(time)3 0.493918 0.071813 0.1368454 0.7005

as.factor(time)6 0.362126 0.074198 0.1797166 0.5511

group -0.020183 0.099961 -0.0011857 112.5434

as.factor(time)1:group -0.220686 0.099022 -0.0144972 9.1182

as.factor(time)3:group -0.220806 0.100413 -0.0210812 6.3586
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as.factor(time)6:group -0.226098 0.103316 -0.0310013 4.4489

sigma 1.331936 0.025508 -0.0073885 4.6088

rho 0.548913 0.019775 -0.0077351 3.4128

isnimgm() calls gls() in R package nlme to estimate the MMGM under MAR. The ignorable
analysis suggests that placebo gives statistically significantly better EF at all three follow-up
visits (i.e., the three coefficient estimates for as.factor(time)1:group, as.factor(time)3:group,
and as.factor(time)6:group are all significant and negative), after adjusting for the base-
line performance score and severity status.

The“ISNI”values quantify the potential change from the MAR estimates when setting γ1 = 1.
The scale-independent c statistics suggest that the time effect estimates as.factor(time)1,
as.factor(time)3, and as.factor(time)6 are sensitive to nonignorable missingness. The
treatment comparisons at the follow-up visits, as.factor(time)1:group, as.factor(time)3:group,
and as.factor(time)6:group, are insensitive, with c > 1.

If the data do not contain the missingness status variable, one can specify the model formula
without specifying missingness status variable. In this case, users should first sort data by id

and the variable(s) defining time so that the missingness status variables can be generated
correctly. An example code is given below.

> qolef <- qolef[order(qolef$id, qolef$time), ]

> models1= y ~ + perf + sever + as.factor(time) + group +

as.factor(time):group | as.factor(time) * group + yp+ perf + sever

> qolef.isni <- isnimgm(models1, data=qolef, id=id)

To posit an MDM other than the model of Eqn (10), one can supply predicted probabilities
of being observed under the desired model through the optional argument predprobobs. The
R code below uses function tmdm() to obtain the predicted probabilities of being observed
for all observations and passes them as a vector through the argument predprobobs. The
function isnimgm() then refrains from fitting the default first-order missing data model and
instead uses predprobobs for the ISNI evaluation:

> predprobobs= tmdm(g+gp ~ as.factor(time) * group + yp+ perf + sever,

data=qolef)$obsprob

> summary(isnimgm(models, data=qolef, id=id, predprobobs=predprobobs))

Call:

isnimgm(formula = models, data = qolef, id = id, predprobobs = predprobobs)

MAR Est. Std. Err ISNI c

(Intercept) 8.430605 0.103039 -0.0268853 5.1162

perf -0.271034 0.219967 0.0876716 3.3494

sever -0.146618 0.100374 0.0307667 4.3552

as.factor(time)1 0.452170 0.070674 0.1418210 0.6652

as.factor(time)3 0.493918 0.071813 0.1368454 0.7005

as.factor(time)6 0.362126 0.074198 0.1797166 0.5511

group -0.020183 0.099961 -0.0011857 112.5434

as.factor(time)1:group -0.220686 0.099022 -0.0144972 9.1182
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as.factor(time)3:group -0.220806 0.100413 -0.0210812 6.3586

as.factor(time)6:group -0.226098 0.103316 -0.0310013 4.4489

sigma 1.331936 0.025508 -0.0073885 4.6088

rho 0.548913 0.019775 -0.0077351 3.4128

By default, isnimgm() uses the compound symmetry correlation structure in the outcome mo-
del of Eqn (6). One can specify alternative correlation structures via the argument cortype.
The current implementation permits two other correlation models: AR1 and unstructured.
The code below illustrates the use of this optional argument in the QoL example.

> qolef.isni.ar=isnimgm(models, id=id, cortype='AR1', data=qolef)

> qolef.isni.un=isnimgm(models, id=id, cortype='UN', data=qolef)

> summary(qolef.isni.ar)

Call:

isnimgm(formula = models, data = qolef, cortype = "AR1", id = id)

MAR Est. Std. Err ISNI c

(Intercept) 8.428061 0.102340 -0.0303458 4.5021

perf -0.233958 0.217404 0.0978705 2.9654

sever -0.154252 0.097506 0.0348082 3.7395

as.factor(time)1 0.455752 0.064620 0.1161464 0.7427

as.factor(time)3 0.488722 0.082711 0.1399436 0.7890

as.factor(time)6 0.384941 0.094432 0.2070506 0.6088

group -0.012404 0.101573 -0.0014319 94.6939

as.factor(time)1:group -0.227717 0.090564 -0.0075759 15.9583

as.factor(time)3:group -0.211955 0.115787 -0.0195638 7.9008

as.factor(time)6:group -0.243135 0.131756 -0.0327193 5.3756

sigma 1.353818 0.024842 -0.0108687 3.0512

rho 0.634755 0.015832 -0.0095759 2.2071

> summary(qolef.isni.un)

Call:

isnimgm(formula = models, data = qolef, cortype = "UN", id = id)

MAR Est. Std. Err ISNI c

(Intercept) 8.434475 0.105291 -0.02615320 5.3744

perf -0.310572 0.224938 0.09172831 3.2736

sever -0.150371 0.102682 0.02929663 4.6789

as.factor(time)1 0.456745 0.074694 0.13558115 0.7354

as.factor(time)3 0.474511 0.077934 0.13015864 0.7993

as.factor(time)6 0.350500 0.081979 0.17355412 0.6306

group -0.019578 0.102050 -0.00099533 136.8699

as.factor(time)1:group -0.226505 0.104696 -0.00832823 16.7818

as.factor(time)3:group -0.203429 0.109134 -0.01529192 9.5271

as.factor(time)6:group -0.213808 0.114406 -0.02439221 6.2613

sigma 1.359323 0.026155 -0.00680810 5.1285

cor(1,2) 0.509384 0.024820 -0.00664830 4.9837
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cor(1,3) 0.473068 0.026213 0.00163081 21.4578

cor(1,4) 0.446263 0.028393 -0.00071445 53.0518

cor(2,3) 0.707996 0.018596 -0.00800573 3.1009

cor(2,4) 0.599994 0.028020 -0.00936507 3.9942

cor(3,4) 0.735079 0.016536 -0.00444708 4.9639

Our results suggest that the choice of correlation structure has little impact on either the
MAR regression parameter estimates or the sensitivity to nonignorability.

The QoL dataset had both intermittent missingness (≈10%) and dropout (≈20%). In some
applications, the missingness can only be of one type or the other, and thus the MDM reduces
to a special case of the more general multinomial transitional MDM used in our package.
To demonstrate the use of isnimgm() in these situations, we conduct ISNI analysis on two
subsamples of QoL datasets; the first contains only complete observations and dropouts, and
the second data only contains complete observations and those with intermittent missingness.

> ## Run ISNI analysis on the subset that excludes intermittent missingness

> qolefD.isni=isnimgm(models, id=id, data=qolef, subset= g !="I")

> summary(qolefD.isni)

Call:

isnimgm(formula = models, data = qolef, id = id, subset = g !=

"I")

MAR Est. Std. Err ISNI c

(Intercept) 8.430605 0.103039 -0.02728549 5.0412

perf -0.271034 0.219967 0.10227827 2.8710

sever -0.146618 0.100374 0.03041236 4.4059

as.factor(time)1 0.452170 0.070674 0.07582711 1.2442

as.factor(time)3 0.493918 0.071813 0.08529092 1.1240

as.factor(time)6 0.362126 0.074198 0.18277508 0.5419

group -0.020183 0.099961 -0.00097846 136.3811

as.factor(time)1:group -0.220686 0.099022 0.00082897 159.4621

as.factor(time)3:group -0.220806 0.100413 -0.01436401 9.3321

as.factor(time)6:group -0.226098 0.103316 -0.02862151 4.8188

sigma 1.331936 0.025508 -0.00836098 4.0727

rho 0.548913 0.019775 -0.00876222 3.0128

> ## Run ISNI analysis on the subset that excludes dropouts.

> qolefI.isni=isnimgm(models, id=id, data=qolef, subset= g != "D")

> summary(qolefI.isni)

Call:

isnimgm(formula = models, data = qolef, id = id, subset = g !=

"D")

MAR Est. Std. Err ISNI c

(Intercept) 8.430605 0.103039 -0.00139330 98.7235

perf -0.271034 0.219967 -0.00978302 30.0157

sever -0.146618 0.100374 0.00246935 54.2629
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as.factor(time)1 0.452170 0.070674 0.07502499 1.2575

as.factor(time)3 0.493918 0.071813 0.05856584 1.6369

as.factor(time)6 0.362126 0.074198 -0.00056741 174.5654

group -0.020183 0.099961 -0.00030367 439.4307

as.factor(time)1:group -0.220686 0.099022 -0.01653700 7.9935

as.factor(time)3:group -0.220806 0.100413 -0.00872364 15.3658

as.factor(time)6:group -0.226098 0.103316 -0.00322665 42.7446

sigma 1.331936 0.025508 0.00030275 112.4753

rho 0.548913 0.019775 0.00025840 102.1635

The results show that ISNIs from both summary(qolefD.isni) and summary(qolefI.isni)

are generally smaller than those from the original dataset as shown in summary(qolef.isni).
This is expected because sensitivity tends to increase when the proportion of missingness in
a dataset increases.

Last we illustrate the computation of MISNI. As compared with summary(qolef.isni), which
considers a scalar γ1, MISNI shows a slight increase in sensitivity.

> qolef.misni=isnimgm(models, id=id, data=qolef, misni=T)

> summary(qolef.misni)

Call:

isnimgm(formula = models, data = qolef, id = id, misni = T)

MAR Est. Std. Err ISNI c

(Intercept) 8.430605 0.103039 0.0270835 5.0788

perf -0.271034 0.219967 0.1159199 2.5332

sever -0.146618 0.100374 0.0307667 4.3552

as.factor(time)1 0.452170 0.070674 0.1418210 0.6652

as.factor(time)3 0.493918 0.071813 0.1368454 0.7005

as.factor(time)6 0.362126 0.074198 0.1860771 0.5323

group -0.020183 0.099961 0.0011857 112.5434

as.factor(time)1:group -0.220686 0.099022 0.0172965 7.6425

as.factor(time)3:group -0.220806 0.100413 0.0210812 6.3586

as.factor(time)6:group -0.226098 0.103316 0.0319254 4.3201

sigma 1.331936 0.025508 0.0093732 3.6329

rho 0.548913 0.019775 0.0098674 2.6753

4.3. ISNI analysis of an LMM for longitudinal data

We will illustrate the LMM analysis using the SWOG QoL data. We first consider a random
intercept model with the output below. This model is equivalent to the marginal multivariate
model with compound symmetry correlation structure illustrated above. Consequently they
produce similar MAR inference and ISNI analysis results.

> data(qolef)

> models= y | g+gp ~ perf + sever + as.factor(time) + group +

as.factor(time):group | group* as.factor(time) + yp+ perf + sever
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## Random intercept model

> result=isnilmm(models, random=~1, id=id, data=qolef)

> summary(result)

Call:

isnilmm(formula = models, data = qolef, random = ~1, id = id)

MAR Est. Std. Err ISNI c

(Intercept) 8.430611 0.102761 -0.0267777 5.1229

perf -0.270986 0.219351 0.0874180 3.3497

sever -0.146629 0.100085 0.0306377 4.3609

as.factor(time)1 0.452168 0.070555 0.1413020 0.6666

as.factor(time)3 0.493949 0.071709 0.1363900 0.7019

as.factor(time)6 0.362189 0.074101 0.1791559 0.5522

group -0.020181 0.099713 -0.0011793 112.8717

as.factor(time)1:group -0.220661 0.098839 -0.0144065 9.1587

as.factor(time)3:group -0.220821 0.100255 -0.0210332 6.3630

as.factor(time)6:group -0.226147 0.103170 -0.0309658 4.4477

sigmav 0.983684 0.033229 -0.0135647 3.2702

sigmae 0.893093 0.014957 0.0036156 5.5222

We next consider a model with random effects for both intercept and time slope. The ISNI
analysis shows that the time estimate has c < 1, suggesting sensitivity to nonignorable
missingness. It also shows that the time:group estimate for measuring the treatment group
differences over time has a c > 1, suggesting that sensitivity to nonignorability is not of
concern for this estimate. These results echo our findings under the MMGM.

## Random intercept and slope model

> models1=y |g+gp~ time*group + perf + sever

> result1=isnilmm(models1,random= ~ 1+time, id=id, data=qolef)

> summary(result1)

Call:

isnilmm(formula = models1, data = qolef, random = ~1 + time,

id = id)

MAR Est. Std. Err ISNI c

(Intercept) 8.633868 0.099125 0.0134140 9.8648

time 0.047974 0.013094 0.0294745 0.5930

group -0.103960 0.092752 -0.0033128 37.3758

perf -0.263945 0.221257 0.1001395 2.9495

sever -0.152619 0.099815 0.0326422 4.0820

time:group -0.032053 0.018209 -0.0064265 3.7824

sigmav1 1.043033 0.039745 -0.0124504 4.2614

sigmav2 0.118714 0.014123 0.0025849 7.2935

rho12 -0.327000 0.080491 -0.0344655 3.1176

sigmae 0.855890 0.017576 0.0045477 5.1592
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5. Discussion

Because ignorability is a critical but unverifiable assumption in the analysis of incomplete
data, there is a pressing need for general-purpose statistical software for sensitivity analysis.
This article has described a new R package isni that can measure the impact of nonignorable
missingness on the standard MAR analysis. The current version of the program provides
functionality to compute the ISNI in the GLM for independent data, as well as the MMGM
and LMM for longitudinal/clustered data. We intend that the availability of this software
will make the analysis of sensitivity to nonignorability a routine part of statistical practice.

It is not always possible to distinguish intermittent missing observations from true dropouts.
For example, if in the SWOG study a subject had missed the visit at Month 1 but returned
for Month 3, then clearly Month 1 was an intermittent missing observation. But for a subject
who missed the Month 1 visit with the full intention of returning for Month 3, but then ended
up leaving the study before Month 3, we would (incorrectly) classify the Month 1 missing
observation as the beginning of a dropout sequence. Accurate modeling of the MDM thus
depends on correctly gleaning the reasons for missed visits. It is better to get this information
directly from the subjects than to try to infer it from the pattern of missing observations (Xie
2012).

Currently, the package isni has functions that can compute ISNI for any GLM with inde-
pendent, univariate outcomes, and for continuous longitudinal outcomes that are normally
distributed with a linear mean structure. We plan to extend it to cover the case of the ge-
neralized linear mixed model, which includes several models for non-normal clustered and
longitudinal data (Xie 2008). In this model, the computation of ISNI is more complex, as it
requires numerical integration with respect to the random effects.

Another potential extension of the software would be to the analysis of local sensitivity to
nonignorability under the general coarse-data model of Heitjan and Rubin (1991). Examples
of such analyses for censored event-time outcomes appear in Zhang and Heitjan (2005, 2006,
2007); Liu and Heitjan (2012).
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Appendix A: Derivation of ISNI

For fixed γ1, the conditional maximum likelihood estimates θ̂(γ1) and γ̂0(γ1) satisfy

∂L(θ̂(γ1), γ̂0(γ1), γ1)

∂(θT , γT0 )T
= 0,

where L(θ, γ0, γ1) is the loglikelihood for the selection model (Eqn 1). Differentiating both
sides with respect to γ1 and noting that θ̂(γ1), and γ̂0(γ1) are implicit functions of γ1, we have

∂2L(θ̂(γ1), γ̂0(γ1), γ1)

∂(θT , γT0 )T∂γT1
+
∂2L(θ̂(γ1), γ̂0(γ1), γ1)

∂(θT , γT0 )T∂(θT , γT0 )

∂(θ̂T (γ1), γ̂T0 (γ1))T

∂γT1
= 0.

Thus for any γ1, we have

∂(θ̂T (γ1), γ̂T0 (γ1))T

∂γT1
= −

[
∂2L(θ̂(γ1), γ̂0(γ1), γ1)

∂(θT , γT0 )T∂(θT , γT0 )

]−1
∂2L(θ̂(γ1), γ̂0(γ1), γ1)T

∂(θT , γT0 )T∂γT1
. (15)

In our local sensitivity analysis, the primary interest is to investigate sensitivity around the
MAR model, i.e., γ1 = 0. This local sensitivity can be captured by the derivatives at this
point. In particular, we define the first derivative evaluated at γ1 = 0 as ISNI and

ISNI =
∂
(
θ̂T (γ1), γ̂T0 (γ1)

)T
∂γT1

∣∣∣∣∣∣∣
γ1=0

= −
[
∇2Lθ,θ ∇2Lθ,γ0
∇2Lγ0,θ ∇2Lγ0,γ0

]−1 [ ∇2Lθy ,γ1
∇2Lγ0,γ1

]
,

where ∇2La,b = ∂2L(θ(γ1),γ0(γ1),γ1)
∂a∂b

∣∣∣
θ̂(0),γ̂0(0),0

. Under MAR, we have ∇2Lθ,γ0 = 0, and thus the

ISNI for θ̂, the parameter estimates of primary interest, is

∂θ̂(γ1)

∂γT1

∣∣∣∣∣
γ1=0

= −∇2L−1
θ,θ∇

2Lθ,γ1 ,

where

∇2Lθ,θ =
∂2L(θ, γ0, γ1)

∂θ∂θT

∣∣∣∣
θ̂(0),γ̂0(0),γ1=0

=
∂ ln fθ(y

obs)

∂θ∂θT

∣∣∣∣
θ̂(0),γ̂0(0),γ1=0

and

∇2Lθ,γ1 =
∂2L(θ, γ0, γ1)

∂θ∂γT1

∣∣∣∣
θ̂(0),γ̂0(0),γ1=0

.

Appendix B: Derivation of ∇2Lθ,γ1

To derive the likelihood of the nonignorable selection model for longitudinal data, adopt the
notation of Yi = (Y obs

i , Y mis
i ), where Y obs

i refers to the components of Yi that are observed,
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and Y mis
i refers to the components of Yi that are missing. Let Ki be the length of Y obs

i . If
subject i completed all the intended visits of the study, then Ki = ni, and Y mis

i vanishes;
otherwise, Ki < ni. Let L be the correct loglikelihood for (θ, γ0, γ1) under the nonignorable
selection model specified in Sections 2.2.1 and 2.2.2. Then

L(θ, γ0, γ1) =

N∑
i=1

Li

(
θ, γ0, γ1; yobs

i , gi

)

=

N∑
i=1

ln

∫ ni∏
j=1

fγ (gij |sij , yij , gi,j−1) fθ(y
obs
i , ymis

i |xi)dymis
i


=

N∑
i=1

ln fθ(y
obs
i |xi) +

N∑
i=1

∑
j:gij=0

ln fγ(gij |sij , yij , gi,j−1) +

∑
i:Ki<ni

ln

∫ ∏
j:gij 6=0

fγ(gij |sij , yij , gi,j−1)fθ(y
mis
i |yobs

i , xi)dy
mis
i

 , (16)

where gi = (gi1, ..., gini) is a vector of discrete variables for the missingness status of subject i;
fθ(y

obs
i , ymis

i |xi) is the density function of the outcome model defined above; fγ (gij |sij , yij , gi,j−1)
is the probability mass function of the missing-data model defined in Eqn (11), and if the ge-
neral transitional model as specified in Eqn (8) is used for modeling Gij , fγ (gij |sij , yij , gi,j−1)
is then replaced with fγ

(
gij |sij , yij , gi(j)

)
. We intend the integral sign to refer to summation

with discrete outcomes.

It is readily seen that the components of ymis
i after dropout do not enter the integral in

Eqn (16), because these outcomes are deterministically missing. Thus, the dimensionality
of the integration for the ith unit is di =

∑
j I(gij = 1) + I(any of gij is 2). Henceforth,

the notation ymis
i includes only the intermittent missing outcomes and the outcome at the

time of dropout. With nonignorable missingness, the integral with respect to ymis
i does not

have a closed form, and we require a numerical method for its evaluation. The computational
workload for such integration increases exponentially with the number of intermittent missing
outcomes, rendering the evaluation of L difficult with even moderate intermittent missingness.
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To derive ∇2Lθ,γ1 , we note that ∇2Lθ,γ1 = (∇2Lθ,γ10 ,∇2Lθ,γ20 ,∇2Lθ,γ11), where

∇2Lθ,γ101 =
∑

i:Ki<ni

∂2

∂θ∂γ10
1

ln

∫ ∏
j:gij 6=0

fγ(gij |sij , yij , gi,j−1)fθ(y
mis
i |yobs

i , xi)dy
mis
i

∣∣∣∣∣∣
γ1=0

=
∑

i:Ki<ni

∂

∂θ


∫ ∂

∏
j:gij 6=0 fγ(gij |sij ,yij ,gi,j−1)

∂γ101
fθ(y

mis
i |yobs

i , xi)dy
mis
i∫ ∏

j:gij 6=0 fγ(gij |sij , yij , gi,j−1)fθ(y
mis
i |yobs

i , xi)dymis
i

∣∣∣∣∣∣∣
γ1=0



=
∑

i:Ki<ni

∂

∂θ

∫ ∑
j:gij 6=0

I(gi,j−1 = 0)
∂P

gij ,gi,j−1
ij

∂φ
1,gi,j−1
ij

φ
1,gi,j−1

ij

P
gij ,gi,j−1

ij

yijfθ(y
mis
i |yobs

i , xi)dy
mis
i

∣∣∣∣∣∣∣∣
γ1=0


=

∑
i:Ki<ni

∂

∂θ
E((Y mis

i )TA10
i |yobs

i , xi)

∣∣∣∣∣∣
γ1=0

=
∑

i:Ki<ni

∂E((Y mis
i )T |yobs

i , xi)

∂θ

∣∣∣∣∣∣
γ1=0

·A10
i . (17)

If the lth component of ymis
i corresponds to the jth element of yi, the lth element of A10

i is

A10
il =

I(gi,j−1 = 0)
∂P

gij ,gi,j−1
ij

∂φ
1,gi,j−1
ij

φ
1,gi,j−1

ij

P
gij ,gi,j−1

ij

∣∣∣∣∣∣∣∣
γ̂0(0),γ1=0

= I(gi,j−1 = 0)
[
I(gi,j = 1)− P 10

ij

]
γ̂0(0),γ1=0

.

∇2Lθ,γ201 and ∇2Lθ,γ111 are derived similarly to Eqn (17) with A10
i replaced by A20

i and A11
i ,

respectively, where

A20
il = I(gi,j−1 = 0)

[
I(gi,j = 2)− P 20

ij

]
γ̂0(0),γ1=0

,

A11
il = I(gi,j−1 = 1)

[
P 01
ij

]
γ̂0(0),γ1=0

.

Appendix C: Derivation of ∂E((Ymis
i )T |yobsi ,xi)

∂θ

∣∣∣
γ1=0

We note that ymis
i is a vector of length di =

∑
j I(gij = 1) + I(any of gij is 2).

C.1 MMGM. Because

E((Y mis
i )T |yobs

i , xi)
∣∣∣
γ1=0

= θT1 x
T
i,M + ((yobs

i )T − θT1 xTi,O)Σ−1
i,OOΣi,OM ,
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by vector differentiation, we have

∂E((Y mis
i )T |yobs

i , xi)

∂θ1

∣∣∣∣
γ1=0

= xTi,M − xTi,OΣ−1
i,OOΣi,OM

∂E((Y mis
i )T |yobs

i , xi)

∂θ2

∣∣∣∣
γ1=0

= −((yobs
i )T − θT1 xTi,O)Σ−1

i,OO

∂Σi,OO

∂θ2
Σ−1
i,OOΣi,OM

+((yobs
i )T − θT1 xTi,O)Σ−1

i,OO

∂Σi,OM

∂θ2
,

where xi,O and xi,M are the predictor matrices for Y obs
i and Y mis

i , respectively, and

Var(Y obs
i , Y mis

i |Xi) =

(
Σi,OO Σi,OM

Σi,MO Σi,MM

)
.

C.2 LMM. The linear mixed-effect model as specified in Eqn (7) can be re-expressed in a
marginal multivariate normal model, where Σi = Λi +ZiVbZ

T
i . Then we can apply the above

result for multivariate normal model, where

∂Σi

∂θ2
=
∂Λi
∂θ2

+ Zi
∂Vb
∂θ2

ZTi
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