Java线程池是如何保证核心线程不被销毁的

610 阅读7分钟

对于Java中 Thread 对象,同一个线程对象调用 start 方法后,会在执行完run 后走向终止(TERMINATED)状态,也就是说一个线程对象是不可以通过多次调用 start 方法重复执行 run 方法内容的。

详情可通过该链接了解:Java同一个线程对象能否多次调用start方法

问题:那 Java 线程池中是如何保证核心线程不会终止的呢?

接下来将通过源码分析线程池是如何保证核心线程不被终止的,在分析前需要了解 ThreadPoolExecutor​中几个重要成员变量和方法,便于下面源码阅读:

ThreadPoolExecutor 成员变量和方法介绍

  1. ctl 原子整型变量
 private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
  • ctl 包含两个字段

    • workerCount:表示线程池中实际生效的线程数;

    • runState:表示线程池运行状态(注意和线程状态进行区分),线程池状态包括以下几种:

      • RUNNING:可以接收新任务并可执行队列中的任务;
      • SHUTDOWN:不接收新任务,但可执行队列中的任务;
      • STOP:不接收新任务,不执行队列任务并且中断正在执行的任务;
      • TIDYING:所有任务已终止,workerCount 为0,将会运行钩子方法 terminated;
      • TERMINATED:terminated 方法调用完成的状态。
  1. 线程池中实际生效线程的最大容量
 //Integer.SIZE等于32
 private static final int COUNT_BITS = Integer.SIZE - 3;
 //实际有效线程的最大容量
 private static final int CAPACITY   = (1 << COUNT_BITS) - 1;
  • 实际生效最大线程数为 2 29 − 1 2^{29} - 1 229−1
  • 为何使用int类型是因为相对于long运行的更快一点,如果将来int不够用,可以使用AtomicLong代替。
  1. 线程池运行状态
 // runState is stored in the high-order bits
 private static final int RUNNING    = -1 << COUNT_BITS;
 private static final int SHUTDOWN   =  0 << COUNT_BITS;
 private static final int STOP       =  1 << COUNT_BITS;
 private static final int TIDYING    =  2 << COUNT_BITS;
 private static final int TERMINATED =  3 << COUNT_BITS;

这里我们仅需要知道只有运行(RUNNING)状态是小于0的,其他状态下都是大于等于0的。

  1. 获取线程池运行状态
private static int runStateOf(int c)     { return c & ~CAPACITY; }

方法入参 c 即为 ctl,通过该方法位运算可以得到线程池的状态值,并与 3 中的状态进行比较来进行逻辑处理。

  1. 获取线程池中当前实际有效的线程数量
private static int workerCountOf(int c)  { return c & CAPACITY; }

同上,方法入参 c 为 ctl 原子整形变量,通过位运算得到线程池中实际的线程数 workCount。

  1. 工作线程集合
private final HashSet<Worker> workers = new HashSet<Worker>();

线程池中每一个有效线程都会被包装为 Worker 对象。

  1. Worker 内部类
private final class Worker extends AbstractQueuedSynchronizer implements Runnable
  • 类 Worker 主要用于维护运行任务线程的中断控制状态;
  • 继承 AQS 实现了一个简单的不可重入互斥锁,而不是使用可重入锁,因为不希望工作任务在调用setCorePoolSize之类的池控制方法时能够重新获取锁;
  • 为了在线程真正开始运行任务之前禁止中断,将锁状态初始化为负值,并在启动时清除它(runWorker中)。
  1. 其他如 corePoolSize、maximumPoolSize、threadFactory、workQueue等就不做赘述了。

案例分析

该案例不执行 shutdown 方法,这样可以保证线程池一直处于运行状态(RUNNING)

 public static void main(String[] args) {
     ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(2, 2,
             0, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<>(6),
             Executors.defaultThreadFactory(), new ThreadPoolExecutor.AbortPolicy());
     for (int i = 0; i < 8; i++) {
         int num = i;
         threadPoolExecutor.execute(() -> {
             String threadName = Thread.currentThread().getName();
             System.out.println(threadName + " - " + num);
             System.out.println(threadName + " 开始睡眠...");
             try {
                 //暂缓线程执行
                 TimeUnit.MILLISECONDS.sleep(5000);
             } catch (InterruptedException e) {
                 e.printStackTrace();
             }
             System.out.println(threadName +" 结束睡眠...");
         });
     }
 
     //threadPoolExecutor.shutdown();
 }

跟踪 execute 方法源码,查看核心线程是如何被加添到池中的:

 public void execute(Runnable command) {
     if (command == null)
         throw new NullPointerException();
     //获取线程池控制状态
     int c = ctl.get();
     //通过workerCountOf计算出实际线程数
     if (workerCountOf(c) < corePoolSize) {
         //未超过核心线程数,则新增 Worker 对象,true表示核心线程
         if (addWorker(command, true))
             return;
         c = ctl.get();
     }
 
     //核心线程满了,如果线程池处于运行状态则往队列中添加任务
     if (isRunning(c) && workQueue.offer(command)) {
         int recheck = ctl.get();
         //双重检测池是否处于运行状态
         if (! isRunning(recheck) && remove(command))
             reject(command);
         else if (workerCountOf(recheck) == 0)
             addWorker(null, false);
     } else if (!addWorker(command, false))//添加非核心线程
         reject(command);
 }

根据方法内容和断点跟踪可以得出以下结论:

  1. 核心线程数未超过 corePoolSize,每添加新的任务(command),都会创建新的线程(Worker中创建),即使有空闲线程存在;
  2. 核心线程数等于corePoolSize后,如果继续添加新的任务(command),会将任务添加到阻塞队列 workQueue 中,等待调度;
  3. 如果添加到队列失败,则检查 corePoolSize 是否小于 maximumPoolSize,如果小于则创建新的线程执行任务,直到线程总数 等于 maximumPoolSize;
  4. 当线程数等于 maximumPoolSize 并且队列已满了,后续新增任务将会触发线程饱和策略。

上面代码中我们关心 addWorker 方法,它有两个参数,第一个是 Runnable 对象,第二参数是标记是否核心线程,true为核心线程,接下来看下源码:

 private boolean addWorker(Runnable firstTask, boolean core) {
     retry:
     for (;;) {
         int c = ctl.get();
         // 省略部分代码
         ......
         for (;;) {
             //core主要用于判断是否继续创建新线程
             int wc = workerCountOf(c);
             //workCount 大于总容量或者workCount大于核心线程或最大线程将直接返回
             if (wc >= CAPACITY ||
                 wc >= (core ? corePoolSize : maximumPoolSize))
                 return false;
             //通过CAS将c加1,也就是将workCount加1             if (compareAndIncrementWorkerCount(c))
                 break retry;
             c = ctl.get();  // Re-read ctl
             if (runStateOf(c) != rs)
                 continue retry;
              retry inner loop
         }
     }
 
     boolean workerStarted = false;
     boolean workerAdded = false;
     Worker w = null;
     try {
         //创建新线程
         w = new Worker(firstTask);
         final Thread t = w.thread;
         if (t != null) {
             final ReentrantLock mainLock = this.mainLock;
             mainLock.lock();
             //省略部分代码
             ......
             workers.add(w);
             int s = workers.size();
             if (s > largestPoolSize)
                 largestPoolSize = s;
             workerAdded = true;
             ......
             if (workerAdded) {
                 //启动线程
                 t.start();
                 workerStarted = true;
             }
         }
     } finally {
         if (! workerStarted)
             addWorkerFailed(w);
     }
     return workerStarted;
 }

从 addWorker 方法中,可以看到从 Worker 对象中获取到线程对象 t ,并调用 start 方法启动线程,那这个 t 线程是如何来的呢? 扩展:java retry:详解

接下来要看下 Worker 是如何创建线程的:

 private final class Worker extends AbstractQueuedSynchronizer implements Runnable {
     final Thread thread;
     /**初始执行任务,有可能为空*/
     Runnable firstTask;
     /**使用firstTask和来自线程工厂中的线程创建了 Worker 对象*/
     Worker(Runnable firstTask) {
         setState(-1); // inhibit interrupts until runWorker
         this.firstTask = firstTask;
         this.thread = getThreadFactory().newThread(this);
     }
 
     /**将run方法委托给runWorker执行*/
     public void run() {
         runWorker(this);
     }
 }

Worker 类实现 Runnable 接口, Worker 类的构造方法中 this.thread = getThreadFactory().newThread(this)​比较关键,这行代码的意思是说使用当前 Worker 对象创建了一个线程,那其实也就是说 thread 对象和 当前 Worker 对象中调用的 run 方法是一样的。到这一步我们可以得出上一步 addWorker 方法中的 t.start 调用的其实就是 Worker 类中的 run方法。

那 runWorker 又是如何运行的呢?

 final void runWorker(Worker w) {
     Thread wt = Thread.currentThread();
     //获取要执行的任务
     Runnable task = w.firstTask;
     w.firstTask = null;
     w.unlock(); // allow interrupts
     boolean completedAbruptly = true;
     //轮询调用 getTask 用于获取任务
     while (task != null || (task = getTask()) != null) {
         w.lock();
         //省略部分代码
             ......
         //执行run方法
         task.run();
         //省略部分代码
             ......
     }
 }

runWorker 中使用 while 循环,不断调用 getTask 去获取新任务。

最后看下 getTask 方法做了哪些事:

 private Runnable getTask() {
     boolean timedOut = false;
     //无限循环
     for (;;) {
         int c = ctl.get();
         int rs = runStateOf(c);
         // 检查队列是否为空
         if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
             decrementWorkerCount();
             return null;
         }
         //获取运行线程数,根据allowCoreThreadTimeOut决定是否允许定时等待
         int wc = workerCountOf(c);
         boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
         //线程超时并且队列为空时通过CAS将实际运行线程数减1
         if ((wc > maximumPoolSize || (timed && timedOut))
                 && (wc > 1 || workQueue.isEmpty())) {
             if (compareAndDecrementWorkerCount(c))
                 return null;
             continue;
         }
 
         try {
             //允许超时则调用队列的poll方法定时等待
             //否则调用take获取任务
             Runnable r = timed ?
                     workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                     workQueue.take();
             //获取任务,返回结果
             if (r != null)
                 return r;
             //继续循环,并且置超时标识为true
             timedOut = true;
         } catch (InterruptedException retry) {
             timedOut = false;
         }
     }
 }

通过以上源码可以看出:

  1. 在for无限循环中,通过不断的检查线程池状态和队列容量,来获取可执行任务;

  2. 在 Runnable r = timed ? workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) : workQueue.take();​代码中,分为两种情况

    1. timed 为 true,允许淘汰 Worker,即实际运行的线程,则通过 workQueue.poll的方式定时等待拉取任务,如果在指定keepAliveTime时间内获取任务则返回,如果没有任务则继续for循环并直到timed等于false;
    2. timed 为 false,则会调用 workQueue.take 方法,队列中 take 方法的含义是当队列有任务时,立即返回队首任务,没有任务时则一直阻塞当前线程,直到有新任务才返回。

下面简单画了一下核心线程的序列图:

结论

线程池当未调用 shutdown 方法时,是通过队列的 take 方法阻塞核心线程(Worker)的 run 方法从而保证核心线程不被销毁的。