Abstract
Population and institution-based data sources have traditionally been the source of data for measuring national development plans including the sustainable development goals. There is an ever increasing need to improve the assessment of the health of people and the social determinants of health, especially as it relates to where people live by national statistical offices (NSOs). Knowledge from these investigations help in understanding diseases, planning for interventions and mitigating the impact of various health risks. NSOs are having difficulty meeting the data needs for the measurement of various health and development interventions including the sustainable development goals. Non-traditional data sources may hold the key in addressing the shortcomings of currently known methods but are still not well embedded in data generation processes by NSOs in low-income and middle-income countries, especially Africa. The non-traditional/emerging data sources include citizen science/crowdsourced data, search engine queries, social media data, mobile phone records and data from sensors. These non-traditional data sources can redefine the measurement of health and development interventions in Africa and require additional attention by stakeholders.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- CDR:
-
Call detail records
- CSD:
-
Citizen science data
- LMICs:
-
Low-income and middle-income countries
- NSOs:
-
National Statistics Offices
- SDGs:
-
Sustainable development goals
References
Abebe, R., Hill, S., Vaughan, J. W., Small, P. M., & Schwartz, H. A. (2019). Using search queries to understand health information needs in Africa. Proceedings of the International AAAI Conference on Web and Social Media, 13, 3–14.
Adewoyin, Y., & Adeboyejo, A. T. (2016). People, places, and health variations: A case of malaria incidence in Ibadan, Nigeria. African Population Studies, 30(2), 201609.
Aiello, A. E., Renson, A., & Zivich, P. (2020). Social media- and internet-based disease surveillance for public health. Annual Review of Public Health, 41, 101–118. https://doi.org/10.1146/annurev-publhealth-040119-094402
Alicino, C., Bragazzi, N. L., Faccio, V., Amicizia, D., Panatto, D., Gasparini, R., Icardi, G., & Orsi, A. (2015). Assessing Ebola-related web search behaviour: Insights and implications from an analytical study of Google Trends-based query volumes. Infectious Diseases of Poverty, 4(1), 1–13.
Al-Saggaf, Y. (2017). Information sharing on Facebook by alone, single and lonely female users. SEARCH (Malaysia), 9(1), 97–116.
Asur, S., & Huberman, B. A. (2010). Predicting the future with social media. In 2010 IEEE/WIC/ACM international conference on web intelligence and intelligent agent technology (Vol. 1, pp. 492–499). IEEE Computer Society.
Badiee, S., Jütting, J., Appel, D., Klein, T., & Swanson, E. (2017). The role of national statistical systems in the data revolution (pp. 55–75). Organisation for Economic Cooperation and Development (OECD). https://search.proquest.com/pqrlalumni/docview/1966843871/abstract/2267014FD5FE4B52PQ/16
Baker, S. (2013). Conceptualising the use of Facebook in ethnographic research: As tool, as data and as context. Ethnography and Education, 8(2), 131–145. https://doi.org/10.1080/17457823.2013.792504
Bradley, A. K. (1981). Local perceptions of onchocerciasis in the Hawal Valley, Nigeria. GeoJournal, 5(4), 357–362. https://doi.org/10.1007/BF00191149
Bragazzi, N. L., & Mahroum, N. (2019). Google trends predicts present and future plague cases during the plague outbreak in Madagascar: Infodemiological study. JMIR Public Health and Surveillance, 5(1), e13142. https://doi.org/10.2196/13142
Brown, M. E., Grace, K., Shively, G., Johnson, K. B., & Carroll, M. (2014). Using satellite remote sensing and household survey data to assess human health and nutrition response to environmental change. Population and Environment, 36(1), 48–72. https://doi.org/10.1007/s11111-013-0201-0
Carr, C. T., & Hayes, R. A. (2015). Social media: Defining, developing, and divining. Atlantic Journal of Communication, 23(1), 46–65.
Charles-Smith, L. E., Reynolds, T. L., Cameron, M. A., Conway, M., Lau, E. H. Y., Olsen, J. M., Pavlin, J. A., Shigematsu, M., Streichert, L. C., Suda, K. J., & Corley, C. D. (2015). Using social media for actionable disease surveillance and outbreak management: A systematic literature review. PLoS One, 10(10), e0139701. https://doi.org/10.1371/journal.pone.0139701
Data Reportal. (2022, August 15). The latest Facebook statistics: Everything you need to know. DataReportal – Global Digital Insights. https://datareportal.com/essential-facebook-stats
Dugas, A. F., Hsieh, Y.-H., Levin, S. R., Pines, J. M., Mareiniss, D. P., Mohareb, A., Gaydos, C. A., Perl, T. M., & Rothman, R. E. (2012). Google flu trends: Correlation with emergency department influenza rates and crowding metrics. Clinical Infectious Diseases, 54(4), 463–469. https://doi.org/10.1093/cid/cir883
Edo-Osagie, O., De La Iglesia, B., Lake, I., & Edeghere, O. (2020). A scoping review of the use of Twitter for public health research. Computers in Biology and Medicine, 122, 103770. https://doi.org/10.1016/j.compbiomed.2020.103770
Ferguson, A., & Leeuwenburg, J. (1981). Local mobility and the spatial dynamics of measles in a rural area of Kenya. GeoJournal, 5(4), 315–322. https://doi.org/10.1007/BF00191144
Fritz, S., See, L., Carlson, T., Haklay, M. (Muki), Oliver, J. L., Fraisl, D., Mondardini, R., Brocklehurst, M., Shanley, L. A., Schade, S., Wehn, U., Abrate, T., Anstee, J., Arnold, S., Billot, M., Campbell, J., Espey, J., Gold, M., Hager, G., et al. (2019). Citizen science and the United Nations Sustainable Development Goals. Nature Sustainability, 2(10), 922–930. https://doi.org/10.1038/s41893-019-0390-3
Frost, R. L., & Rickwood, D. J. (2017). A systematic review of the mental health outcomes associated with Facebook use. Computers in Human Behavior, 76, 576–600. https://doi.org/10.1016/j.chb.2017.08.001
Gao, X., Hamzah, S. H., Yiu, C. K. Y., McGrath, C., & King, N. M. (2013). Dental fear and anxiety in children and adolescents: Qualitative study using YouTube. Journal of Medical Internet Research, 15(2), e2290. https://doi.org/10.2196/jmir.2290
Haklay, M. (Muki), Antoniou, V., Basiouka, S., Soden, R. J., Deparday, V., Sheely, R. M., & Mooney, P. (2018). Identifying success factors in crowdsourced geographic information use in government (Vol. 139461, pp. 1–157). The World Bank. http://documents.worldbank.org/curated/en/387491563523294272/Identifying-Success-Factors-in-Crowdsourced-Geographic-Information-Use-in-Government
Hellen, J. A. (1981). The delivery of family planning services in Egypt with particular reference to population policy and health care planning. GeoJournal, 5(4), 369–384. https://doi.org/10.1007/BF00191151
Hunter, J. M. (1981). Past explosion and future threat: Exacerbation of red water disease (Schistosomiasis haematobium) in the Upper Region of Ghana. GeoJournal, 5(4), 305–313. https://doi.org/10.1007/BF00704684
Ikwuegbuenyi, C. A., Sebopelo, L. A., Bamimore, M. A., Ogunfolaji, O., Nyalundja, A. D., Adegboyega, G., Nteranya, D. S., Umutoni, A., Ngoma, P., & Kanmounye, U. S. (2021). Evaluating the usefulness of YouTube as a source of patient information for neurosurgical care in Africa: A study protocol. International Journal of Surgery Protocols, 25(1), 244–249. https://doi.org/10.29337/ijsp.168
Jones, K. H., Daniels, H., Heys, S., & Ford, D. V. (2018). Challenges and potential opportunities of mobile phone call detail records in health research: Review. JMIR mHealth and uHealth, 6(7), e9974. https://doi.org/10.2196/mhealth.9974
Karami, A., Lundy, M., Webb, F., & Dwivedi, Y. K. (2020). Twitter and research: A systematic literature review through text mining. IEEE Access, 8, 67698–67717.
Korda, H., & Itani, Z. (2013). Harnessing social media for health promotion and behavior change. Health Promotion Practice, 14(1), 15–23.
Kosinski, M., Matz, S. C., Gosling, S. D., Popov, V., & Stillwell, D. (2015). Facebook as a research tool for the social sciences: Opportunities, challenges, ethical considerations, and practical guidelines. American Psychologist, 70(6), 543.
Kostkova, P. (2018). Disease surveillance data sharing for public health: The next ethical frontiers. Life Sciences, Society and Policy, 14(1), 16. https://doi.org/10.1186/s40504-018-0078-x
Madathil, K. C., Rivera-Rodriguez, A. J., Greenstein, J. S., & Gramopadhye, A. K. (2015). Healthcare information on YouTube: A systematic review. Health Informatics Journal, 21(3), 173–194. https://doi.org/10.1177/1460458213512220
Makinde, O. A., Sule, A., Ayankogbe, O., & Boone, D. (2018). Distribution of health facilities in Nigeria: Implications and options for Universal Health Coverage. The International Journal of Health Planning and Management, 33(4), e1179–e1192. https://doi.org/10.1002/hpm.2603
Makinde, O. A., Olamijuwon, E., Ichegbo, N. K., Onyemelukwe, C., & Ilesanmi, M. G. (2021). The nature of technology-facilitated violence and abuse among young adults in sub-Saharan Africa. In J. Bailey, A. Flynn, & N. Henry (Eds.), The Emerald international handbook of technology facilitated violence and abuse (pp. 83–101). Emerald Publishing Limited. https://doi.org/10.1108/978-1-83982-848-520211005
Makinde, O. A., Ebong, U. S., Ichegbo, N. K., & Omotosho, M. (2022). Reporta Health: A mobile social innovation for crowdsourcing data on illegal health facilities in Nigeria. BMJ Innovations, bmjinnov. https://doi.org/10.1136/bmjinnov-2021-000878
Maxmen, A. (2019). This Nigerian doctor might just prevent the next deadly pandemic. Nature, 566(7744), 310–313. https://doi.org/10.1038/d41586-019-00615-x
Moorhead, S. A., Hazlett, D. E., Harrison, L., Carroll, J. K., Irwin, A., & Hoving, C. (2013). A new dimension of health care: Systematic review of the uses, benefits, and limitations of social media for health communication. Journal of Medical Internet Research, 15(4), e1933.
Nabyonga-Orem, J. (2017). Monitoring Sustainable Development Goal 3: How ready are the health information systems in low-income and middle-income countries? BMJ Global Health, 2(4), e000433. https://doi.org/10.1136/bmjgh-2017-000433
National Academies of Sciences, Engineering and Medicine, Division of Behavioral and Social Sciences and Education, Committee on National Statistics, Panel on Improving Federal Statistics for Policy and Social Science Research Using Multiple Data Sources and State-of-the-Art Estimation Methods, Harris-Kojetin, B. A., & Groves, R. M. (2017). Using private-sector data for federal statistics. In Innovations in federal statistics: Combining data sources while protecting privacy. National Academies Press (US). https://www.ncbi.nlm.nih.gov/books/NBK425876/
Okunoye, B. (2020). Aggregate search engine query trend reveal trade-off in interest and awareness on HIV/AIDS in Nigeria and South Africa. https://doi.org/10.31219/osf.io/5j4nk
Olamijuwon, E. O. (2021). Characterizing low effort responding among young African adults recruited via Facebook advertising. PLoS One, 16(5), e0250303. https://doi.org/10.1371/journal.pone.0250303
Olamijuwon, E., Clifford, O., & Adjiwanou, V. (2021). Understanding how young African adults interact with peer-generated sexual health information on Facebook and uncovering strategies for successful organic engagement. BMC Public Health, 21(1), 2153. https://doi.org/10.1186/s12889-021-12165-x
Olu Sule, R. A. (1981). Spatial patterns of urban mental health: Calabar (Cross River State) Nigeria. GeoJournal, 5(4), 323–330. https://doi.org/10.1007/BF00704686
Oyebanji, O., Ofonagoro, U., Akande, O., Nsofor, I., Ukenedo, C., Mohammed, T. B., Anueyiagu, C., Agenyi, J., Yinka-Ogunleye, A., & Ihekweazu, C. (2019). Lay media reporting of monkeypox in Nigeria. BMJ Global Health, 4(6), e002019. https://doi.org/10.1136/bmjgh-2019-002019
Park, H.-A., Jung, H., On, J., Park, S. K., & Kang, H. (2018). Digital epidemiology: Use of digital data collected for non-epidemiological purposes in epidemiological studies. Healthcare Informatics Research, 24(4), 253–262. https://doi.org/10.4258/hir.2018.24.4.253
Perez, V., & Freedman, S. (2018). Do crowdsourced hospital ratings coincide with hospital compare measures of clinical and nonclinical quality? Health Services Research, 53(6), 4491–4506. https://doi.org/10.1111/1475-6773.13026
Pervaiz, F., Pervaiz, M., Rehman, N. A., & Saif, U. (2012). FluBreaks: Early epidemic detection from Google flu trends. Journal of Medical Internet Research, 14(5), e2102. https://doi.org/10.2196/jmir.2102
Poushter, J., Caldwell, B., & Chwe, H. (2018, June 19). Social media use continues to rise in developing countries. Pew Research Center’s Global Attitudes Project. https://www.pewresearch.org/global/2018/06/19/social-media-use-continues-to-rise-in-developing-countries-but-plateaus-across-developed-ones/
Proden, E., Bett, K., Chen, H., Duerto Valero, S., Fraisl, D., Gamez, G., MacFeely, S., Mondardini, R., See, L., & Min, Y. (2022). Citizen science data to track SDG progress: Low-hanging fruit for Governments and National Statistical Offices. Crowd4SDG, Policy Brief.
Prothero, R. M. (1981). Studies in medical geography in Africa. GeoJournal, 5(4), 298–304. https://doi.org/10.1007/BF00191142
Ranard, B. L., Ha, Y. P., Meisel, Z. F., Asch, D. A., Hill, S. S., Becker, L. B., Seymour, A. K., & Merchant, R. M. (2014). Crowdsourcing—Harnessing the masses to advance health and medicine, a systematic review. Journal of General Internal Medicine, 29(1), 187–203. https://doi.org/10.1007/s11606-013-2536-8
Rossington, C. E. (1981). Environmental aspects of child growth and nutrition: A case study from Ibadan, Nigeria. GeoJournal, 5(4), 347–356. https://doi.org/10.1007/BF00704689
Salathé, M. (2018). Digital epidemiology: What is it, and where is it going? Life Sciences, Society and Policy, 14. https://doi.org/10.1186/s40504-017-0065-7
Sato, R., Makinde, O. A., Daam, K. C., & Lawal, B. (2022). Geographical and time trends of measles incidence and measles vaccination coverage and their correlation in Nigeria. Human Vaccines & Immunotherapeutics, 0(0), 2114697. https://doi.org/10.1080/21645515.2022.2114697
Shin, S.-Y., Seo, D.-W., An, J., Kwak, H., Kim, S.-H., Gwack, J., & Jo, M.-W. (2016). High correlation of Middle East respiratory syndrome spread with Google search and Twitter trends in Korea. Scientific Reports, 6, 32920. https://doi.org/10.1038/srep32920
Stock, R. (1981). Traditional healers in rural Hausaland. GeoJournal, 5(4), 363–368. https://doi.org/10.1007/BF00704691
Synan, L. T., Eid, M. A., Lamb, C. R., & Wong, S. L. (2021). Crowd-sourced hospital ratings are correlated with patient satisfaction but not surgical safety. Surgery, 170(3), 764–768. https://doi.org/10.1016/j.surg.2021.04.011
Thornton, L., Batterham, P. J., Fassnacht, D. B., Kay-Lambkin, F., Calear, A. L., & Hunt, S. (2016). Recruiting for health, medical or psychosocial research using Facebook: Systematic review. Internet Interventions, 4, 72–81. https://doi.org/10.1016/j.invent.2016.02.001
Turner, M. (1981). A nutritional survey in Moshaneng, Ngwaketse, Botswana: Preliminary findings and observations. GeoJournal, 5(4), 339–346. https://doi.org/10.1007/BF00191147
Uyanga, J. (1981). The regional correlates of child nutrition in rural Southeastern Nigeria. GeoJournal, 5(4), 331–337. https://doi.org/10.1007/BF00704687
Viana, J., Santos, J. V., Neiva, R. M., Souza, J., Duarte, L., Teodoro, A. C., & Freitas, A. (2017). Remote sensing in human health: A 10-year bibliometric analysis. Remote Sensing, 9(12), 1225. https://doi.org/10.3390/rs9121225
World Bank. (2020, July 6). Survey of National Statistical Offices (NSOs) during COVID [Text/HTML]. World Bank. https://www.worldbank.org/en/research/brief/survey-of-national-statistical-offices-nsos-during-covid-19
World Health Organization. (2008). Framework and standards for country health information systems. http://apps.who.int/iris/handle/10665/43872.
World Health Organization. (2018). Crowdsourcing in health and health research: A practical guide. World Health Organization.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Makinde, O.A. (2023). Traditional and Non-traditional Data Sources Useful in Research in African Health and Medical Geography. In: Adewoyin, Y. (eds) Health and Medical Geography in Africa. Global Perspectives on Health Geography. Springer, Cham. https://doi.org/10.1007/978-3-031-41268-4_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-41268-4_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-41267-7
Online ISBN: 978-3-031-41268-4
eBook Packages: Earth and Environmental ScienceEarth and Environmental Science (R0)