Leadscope Enterprise model for acute toxicity to microalgae (72h growth inhibition, ECsg)

1. QSAR identifier
1.1 QSAR identifier (title)

Leadscope Enterprise model for acute toxicity to microalgae (72h growth inhibition, ECsg), Danish QSAR
Group at DTU Food.

1.2 Other related models

SciMatics SciQSAR model for acute toxicity to microalgae (72h growth inhibition, ECsy), Danish QSAR Group
at DTU Food.

1.3. Software coding the model

Leadscope Predictive Data Miner, a component of Leadscope Enterprise version 3.1.1-10.



2. General information
2.1 Date of QMRF

January 2015.

2.2 QMRF author(s) and contact details
QSAR Group at DTU Food,;
Danish National Food Institute at the Technical University of Denmark;

http://qgsar.food.dtu.dk/;

gsar@food.dtu.dk

Eva Bay Wedebye;

National Food Institute at the Technical University of Denmark;

Nikolai Georgiev Nikolov;

National Food Institute at the Technical University of Denmark;

Marianne Dybdahl;

National Food Institute at the Technical University of Denmark;

Sine Abildgaard Rosenberg;

National Food Institute at the Technical University of Denmark;

2.3 Date of QMRF update(s)

2.4 QMRF update(s)

2.5 Model developer(s) and contact details

Eva Bay Wedebye;

National Food Institute at the Technical University of Denmark;



Jay Russel Niemel3;

National Food Institute at the Technical University of Denmark;

Nikolai Georgiev Nikolov;

National Food Institute at the Technical University of Denmark;

Danish QSAR Group at DTU Food;
National Food Institute at the Technical University of Denmark;

http://gsar.food.dtu.dk/;

gsar@food.dtu.dk

2.6 Date of model development and/or publication

January 2014.

2.7 Reference(s) to main scientific papers and/or software package

Roberts, G., Myatt, G. J., Johnson, W. P., Cross, K. P., and Blower, P. E. J. (2000) LeadScope: Software for
Exploring Large Sets of Screening Data. Chem. Inf. Comput. Sci., 40, 1302-1314.

Cross, K.P., Myatt, G., Yang, C., Fligner, M.A., Verducci, J.S., and Blower, P.E. Jr. (2003) Finding
Discriminating Structural Features by Reassembling Common Building Blocks. J. Med. Chem., 46, 4770-4775.

Valerio, L. G., Yang, C., Arvidson, K. B., and Kruhlak, N. L. (2010) A structural feature-based computational
approach for toxicology predictions. Expert Opin. Drug Metab. Toxicol., 6:4, 505-518.

2.8 Availability of information about the model

The training set is non-proprietary. More than half of the training set consists of results from experimental
tests performed at the Technical University of Denmark and financed by the Danish EPA. The remaining
data were retrieved from a number of sources (see references in 9.2). The model algorithm is proprietary
from commercial software.

2.9 Availability of another QMRF for exactly the same model



3. Defining the endpoint
3.1 Species

Microalgae (Pseudokirchneriella subcapitata).

3.2 Endpoint
3.Ecotoxic effects

3.2.Short-term toxicity to algae (inhibition of the exponential growth rate)

3.3 Comment on endpoint

Water pollution has become a major threat to the existence of living organisms in aquatic environment. A
huge quantity of pollutants in the form of domestic and industrial effluents is discharged directly or
indirectly into the water bodies, which has severe impacts on its biotic and abiotic environment.
Planktonic microalgae are a key component of food chains in aquatic ecosystems and are consumed by
other invertebrates, fish or birds. Changes in the structure and productivity of the algal community may
induce direct structural changes in the rest of the ecosystem and/or indirectly affect the ecosystem by
affecting water quality. Assessing the toxicity of chemicals to algae is thus relevant when regulating
chemicals.

The freshwater green microalgae Pseudokirchneriella subcapitata, formerly known as Selenastrum
capricornutum, is highly sensitive to toxic substances and has a ubiquitous distribution.

The training set consists of data for acute toxicity to P. subcapitata. The concentration of the test chemical
at which a 50% inhibition in the growth rate (based on biomass) of the algae culture is seen after 72 hours
exposure to the test substance is used as the endpoint.

3.4 Endpoint units

-log(ECsp).

3.5 Dependent variable

Acute toxicity to microalgae (72h growth inhibition): ECsq, in uM.

3.6 Experimental protocol

The experimental protocol is described in OECD guideline 201 (2006). Briefly, exponentially growing algae
cultures are exposed to the test substance in different concentrations over a period of normally 72 hours.
In spite of the relatively brief test duration, effects over several generations can be assessed.

The reduction of growth is compared with the average growth of replicate, unexposed control cultures. For
full expression of the system response to toxic effects (optimal sensitivity), the cultures are allowed
unrestricted exponential growth under nutrient sufficient conditions and continuous light for a sufficient
period of time to measure reduction of the specific growth rate.



The test endpoint is inhibition of growth, expressed as the logarithmic increase in biomass (average specific
growth rate) during the exposure period. From the average specific growth rates recorded in a series of test

solutions, the concentration bringing about a 50% inhibition of growth rate is estimated and expressed as
the EC50.

3.7 Endpoint data quality and variability

As data are compiled from multiple sources some degree of variability in data is expected.



4. Defining the algorithm
4.1 Type of model

A continuous (Q)SAR model based on structural features and numeric molecular descriptors.

4.2 Explicit algorithm

This is a continuous (Q)SAR model made by use of partial least squares (PLS) regression. The specific
implementation is proprietary within the Leadscope software.

4.3 Descriptors in the model
structural features,

alLogP,

polar surface area,

number of hydrogen bond donors,
Lipinski score,

number of rotational bonds,
parent atom count,

parent molecular weight,

number of hydrogen bond acceptors

4.4 Descriptor selection

Leadscope Predictive Data Miner is a software program for systematic sub-structural analysis of a chemical
using predefined structural features stored in a template library, training set-dependent generated
structural features (scaffolds) and calculated molecular descriptors. The feature library contains
approximately 27,000 pre-defined structural features and the structural features chosen for the library are
motivated by those typically found in small molecules: aromatics, heterocycles, spacer groups, simple
substituents. Leadscope allows for the generation of training set-dependent structural features (scaffold
generation), and these features can be added to the pre-defined structural features from the library and be
included in the descriptor selection process. It is possible in Leadscope to remove redundant structural
features before the descriptor selection process and only use the remaining features in the descriptor
selection process. Besides the structural features Leadscope also calculates eight molecular descriptors for



each training set structure: the octanol/water partition coefficient (alogP), hydrogen bond acceptors (HBA),
hydrogen bond donors (HBD), Lipinski score, atom count, parent compound molecular weight, polar
surface area (PSA) and rotatable bonds. These eight molecular descriptors are also included in the
descriptor selection process.

Leadscope has a default automatic descriptor selection procedure. This procedure selects the top 30% of
the descriptors (structural features and molecular descriptors) according to X*-test for a binary variable, or
the top and bottom 15% descriptors according to t-test for a continuous variable. Leadscope treats numeric
property data as ordinal categorical data. If the input data is continuous such as ICsy or cLogP data, the user
can determine how values are assigned to categories: the number of categories and the cut-off values
between categories. (Roberts et al.2000).

When developing this model, intermediate models with application of different modelling approaches in
Leadscope were tried:

1. ‘Single model’ using only the Leadscope pre-defined structural features, i.e. no scaffolds, and calculated
molecular descriptors for descriptor selection.

2. ‘Single model’ using both the Leadscope pre-defined structural features and the training set dependent
features (scaffolds generation) as well as the calculated molecular descriptors in the descriptor
selection.

3. ‘Single model’ using both Leadscope pre-defined structural features and the training set dependent
features (scaffolds generation), with subsequent removal of redundant structural features, and
calculated molecular descriptors for descriptor selection.

Based on model performance as measured by a preliminary cross-validation the model developed using
approach number 2. was chosen.

For this model scaffolds were generated by Leadscope for the training set structures and added to the
Leadscope library of structural features. Descriptors were then automatically selected among the structural
features and the eight molecular descriptors.

4.5 Algorithm and descriptor generation
For descriptor generation see 4.4.

After selection of descriptors the Leadscope Predictive Data Miner program performs partial least squares
(PLS) regression for a continuous response variable, or partial logistic regression (PLR) for a binary response
variable, to build a predictive model. By default the Predictive Data Miner performs leave-one-out or leave-
groups-out (in the latter case, the user can specify any number of repetitions and percentage of structures
left out) cross-validation on the training set depending on the size of the training set. In the cross-validation
made by Leadscope the descriptors selected for the ‘mother model’ are used when building the validation
submodels and they therefore have a tendency to be overfittet and give overoptimistic validation results.

In this model because of the continuous outcome in the response variable PLS regression was used to build
the predictive model. For this model 199 descriptors were selected to build the model. These include 9
Leadscope calculated molecular descriptors, 103 hierarchy features, 1 dynamic feature and 86 scaffolds.
The 199 descriptors were distributed on 6 PLS factors.



4.6 Software name and version for descriptor generation

Leadscope Predictive Data Miner, a component of Leadscope Enterprise version 3.1.1-10.

4.7 Descriptors/chemicals ratio

In this model 199 descriptors were used and distributed on 6 PLS factors. The training set consists of 531
compounds. The descriptor/chemical ratio is 1:2.7 (199:531).



5. Defining Applicability Domain

5.1 Description of the applicability domain of the model

The definition of the applicability domain consists of two components; the definition of a structural domain
in Leadscope and the in-house further probability refinement algorithm on the output from Leadscope to
reach the final applicability domain call.

1. Leadscope

For assessing if a test compound is within the structural applicability domain of a given model Leadscope
examines whether the test compound bears enough structural resemblance to the training set compounds
used for building the model (i.e. a structural domain analysis). This is done by calculating the distance
between the test compound and all compounds in the training set (distance = 1 - similarity). The similarity
score is based on the Tanimoto method. The number of neighbours is defined as the number of compounds
in the training set that have a distance equal to or smaller than 0.7 with respect to the test compound. The
higher the number of neighbours, the more reliable the prediction for the test compound. Statistics of the
distances are also calculated. Effectively no predictions are made for test compounds which are not within
the structural domain of the model or for which the molecular descriptors could not be calculated in
Leadscope.

2. The Danish QSAR group

In addition to the general Leadscope structural applicability domain definition the Danish QSAR group has
applied two further requirements to the applicability domain of the model. First, the logP value of the
qguery compound should fall within the logP interval of the model’s training set [-9.4;8]. Secondly, only
predictions that falls within the response variable ECs, interval (uM) [0.00076;707945.46] of the model’s
training set are considered reliable and therefore accepted.

5.2 Method used to assess the applicability domain

Leadscope does not generate predictions for test compounds which are not within the structural domain of
the model or for which the molecular descriptors could not be calculated.

Only compounds with a logP value within the logP interval [-9.4;8] are within the applicability domain. The
generated predictions should fall within the response variable interval [0.00076;707945.46] of the training
set. Any prediction outside this interval is set to the closest response variable limit (0.00076 or 707945).

5.3 Software name and version for applicability domain assessment

Leadscope Predictive Data Miner, a component of Leadscope Enterprise version 3.1.1-10.

5.4 Limits of applicability

The Danish QSAR group applies an overall definition of structures acceptable for QSAR processing which is
applicable for all the in-house QSAR software, i.e. not only Leadscope. According to this definition accepted
structures are organic substances with an unambiguous structure, i.e. so-called discrete organics defined



as: organic compounds with a defined two dimensional (2D) structure containing at least two carbon
atoms, only certain atoms (H, Li, B, C, N, O, F, Na, Mg, Si, P, S, Cl, K, Ca, Br, and I), and not mixtures with two
or more ‘big components’ when analyzed for ionic bonds (for a number of small known organic ions
assumed not to affect toxicity the ‘parent molecule’ is accepted). Calculation 2D structures (SMILES and/or
SDF) are generated by stripping off ions (of the accepted list given above). Thus, all the training set and
prediction set chemicals are used in their non-ionized form. See 5.1 for further applicability domain
definition.
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6. Internal validation
6.1 Availability of the training set

Yes

6.2 Available information for the training set
CAS

SMILES

6.3 Data for each descriptor variable for the training set

No

6.4 Data for the dependent variable for the training set

All

6.5 Other information about the training set

531 compounds are in the training set.

Of the 531 chemicals in the training set, data for 396 were in-house data made at the Technical University
of Denmark for the Danish EPA. In addition to in-house data the following data were added to the training
set:

- 85 physiological compounds normally present in mammalian cells and for this reason

assumed non-toxic to Algae, i.e. theoretically negatives (from Grant et al. 2000)

- 17 AQUIRE tests (from AQUIRE 2000)

- 27 tests from The Pesticide manual (Tomlin 1997)

- 5tests from Environmental Project no. 615 (DK EPA 2001)

- 1test from the paper by Orvos and colleagues (2002)

6.6 Pre-processing of data before modelling

Nominal concentrations were used for DTU data. All tests with an EC5p above 1000 mg/L were set to 1000
mg/L. This enabled including chemicals with experimental values of the kind “>”, e.g. >2000 mg/L, and the
physiological chemicals. A few tests with values like e.g. “>200 mg/L”, which were below 1000 mg/L, were
set to the value, here “200 mg/L”, to be on the safe side. Keeping in chemicals with experimental values of
the kind “>”, and setting everything with ECs, values over 1000mg/L to this value, makes the model a
combination of a quantitative model and a binary model.

The training set ECso (72h) results were given in mg/L and were converted to -log(uM) before modelling.
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Only structures acceptable for Leadscope were used in the final training set. That is only discrete organic
chemicals as described in 5.4 were used. In case of replicate structures, one of the replicates was kept if all
the compounds had the same activity and all were removed if they had different activity. No further
structures accepted by the software were eliminated (i.e. outliers).

6.7 Statistics for goodness-of-fit

Leadscope’s own internal performance test gave the following result for predictions within the applicability
domain as defined by Leadscope (i.e. the first criterion described in 5.1):

R-squared: 0.7395

6.8 Robustness — Statistics obtained by leave-one-out cross-validation

Not performed. (It is not a preferred measurement for evaluating large models).

6.9 Robustness — Statistics obtained by leave-many-out cross-validation
Leadscope’s own internal leave-many-out (LMO) cross-validation procedure was used for predictions within
the applicability domain as defined by Leadscope (i.e. the first criterion described in 5.1). A 10 times 50%

cross-validation was done and gave the following result:

R-Square: 0.7116

6.10 Robustness - Statistics obtained by Y-scrambling

Not performed.

6.11 Robustness - Statistics obtained by bootstrap

Not performed.

6.12 Robustness - Statistics obtained by other methods

Not performed.
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7. External validation

7.1 Availability of the external validation set

7.2 Available information for the external validation set

7.3 Data for each descriptor variable for the external validation set

7.4 Data for the dependent variable for the external validation set

7.5 Other information about the training set

7.6 Experimental design of test set

7.7 Predictivity — Statistics obtained by external validation

7.8 Predictivity — Assessment of the external validation set

7.9 Comments on the external validation of the model

External validation has not been performed for this model.
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8. Mechanistic interpretation
8.1 Mechanistic basis of the model

The global model identifies structural features and molecular descriptors which in the model development
was found to be statistically significant associated with effect. Many predictions may indicate modes of
action that are obvious for persons with expert knowledge for the endpoint.

8.2 A priori or posteriori mechanistic interpretation

A posteriori mechanistic interpretation. The identified structural features and molecular descriptors may
provide basis for mechanistic interpretation.

8.3 Other information about the mechanistic interpretation
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9. Miscellaneous information
9.1 Comments

The model can be used to predict if a chemical causes acute toxicity (72h) to microalgae
(Pseudokirchneriella subcapitata). The Danish QSAR Group applies an algorithm on top of the predictions
from the model in order to convert prediction values from -log(uM) to mg/L, which is the normal unit for
this endpoint.
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