SciMatics SciQSAR model for human Thyroid hormone Receptor beta (hTRb) binding in vitro

1. QSAR identifier
1.1 QSAR identifier (title)

SciMatics SciQSAR model for human Thyroid hormone Receptor beta (hTRb) binding in vitro, Danish QSAR
Group at DTU Food.

1.2 Other related models

Leadscope Enterprise model for human Thyroid hormone Receptor beta (hTRb) binding in vitro, Danish
QSAR Group at DTU Food.

MultiCASE CASE Ultra model for human Thyroid hormone Receptor beta (hTRb) binding in vitro, Danish
QSAR Group at DTU Food.

1.3 Software coding the model

SciMatics SciQSAR version 2.3.0.0.12.



2. General information
2.1 Date of QMRF

January 2015.

2.2 QMRF author(s) and contact details
QSAR Group at DTU Food,;
Danish National Food Institute at the Technical University of Denmark;

http://gsar.food.dtu.dk/;

gsar@food.dtu.dk

Eva Bay Wedebye;

National Food Institute at the Technical University of Denmark;

Nikolai Georgiev Nikolov;

National Food Institute at the Technical University of Denmark;

Marianne Dybdahl;

National Food Institute at the Technical University of Denmark;

Sine Abildgaard Rosenberg;

National Food Institute at the Technical University of Denmark;

2.3 Date of QMRF update(s)

2.4 QMRF update(s)

2.5 Model developer(s) and contact details

Sine Abildgaard Rosenberg;

National Food Institute at the Technical University of Denmark;



Marianne Dybdahl;

National Food Institute at the Technical University of Denmark;

Jay Russel Niemel3;

National Food Institute at the Technical University of Denmark;

Nikolai Georgiev Nikolov;

National Food Institute at the Technical University of Denmark;

Eva Bay Wedebye;

National Food Institute at the Technical University of Denmark;

Danish QSAR Group at DTU Food;
National Food Institute at the Technical University of Denmark;

http://gsar.food.dtu.dk/;

gsar@food.dtu.dk

2.6 Date of model development and/or publication

January 2014.

2.7 Reference(s) to main scientific papers and/or software package

Contrera, J.F., Matthews, E.J., Kruhlak, N.L., and Benz, R.D. (2004) Estimating the safe starting dose in phase
| clinical trials and no observed effect level based on QSAR modelling of the human maximum
recommended daily dose. Regulatory Toxicology and Pharmacology, 40, 185 — 206.

SciQSAR (2009) Reference guide: Statistical Analysis and Molecular Descriptors. Included within the
SciMatics SciQSAR software.



2.8 Availability of information about the model

The training set is non-proprietary and was compiled from the published literature (see 6.6 and 9.2 for
more details). The model algorithm is proprietary from commercial software.

2.9 Availability of another QMRF for exactly the same model



3. Defining the endpoint
3.1 Species

Human (cell-free assay containing the human Thyroid hormone Receptor beta, hTRb)).

3.2 Endpoint
QMRF 4. Human Health Effects

QMRF 4.18.a. Endocrine Activity. Receptor-binding (human Thyroid Receptor beta)

3.3 Comment on endpoint

Endocrine disruption not only involves the sex hormone system, but also includes disruption of the thyroid
hormone (TH) system. Exposure to chemicals can potentially disrupt the TH system by a number of
different mechanisms, one of them being binding to the thyroid hormone receptor (TR). Thyroid disrupting
chemicals (TDCs) can affect important physiological processes such as metabolism, growth and
development, including development of the brain, and are therefore of high concern (OECD 2006; Murk et
al.2013).

Thyroid hormones are produced in the thyroid gland and exert a wide array of effects through binding of
the active hormone triiodothyronine (T3) to TR. The TR is a member of the nuclear receptor superfamily
and two isoforms of the receptor exist in humans, TR alpha (TRa) and beta (TRb). The TR usually
heterodimerize with the retinoid X receptor (RXR), another nuclear receptor, and binds to a thyroid
response element (TRE) on the DNA. At low levels of T3, a nuclear receptor transcriptional co-repressor is
bound to the activation function 2 (AF-2) domain in the Ligand Binding Domain (LBD) of TR and represses
the basal transcription through chromatin deacetylase activity. When the thyroid hormone level is high, T3
binds to the TRs LBD causing conformational changes in the LBD that leads to release of the co-repressor
from the AF-2 domain and the basal transcriptional activity is restored. Subsequently a nuclear receptor
transcriptional co-activator (SRC-1, SRC-2 and others) bind to the AF-2 domain. This binding causes a
destabilization of the chromatin and enhances the transcriptional activity through histone acetylation and
contacts with the basal transcriptional machinery. Together the binding of T3 and a co-activator to TR leads
to an increased transcription of the genes downstream the TRE.

Multiple assays have been established for different mechanisms in the TH system in order to identify TDCs.
For this (Q)SAR model data compiled from in vitro assays for binding to the human TR beta (hTRb) have
been used to make a model that within the defined applicability domain (see 5.) can predict if a chemical
binds to the LBD of hTRb. The in vitro binding assay is a cell free assay that detects a compounds affinity to
hTRb by determining its ability to compete with radioactive [1,sl]triiodothyronine ([**I]T3) for binding to
hTRb. Using the concentration response curve an IC50 value can be determined for each compound as the
concentration of compound measured in uM required to inhibit 50% of the binding of [***I]T3 to hTRb. The
assay does not say anything about if the binding induces transcription of the target genes (i.e. if the
chemical is an hTRb agonist or antagonist).



3.4 Endpoint units

-log(1C50), where IC50 is in uM.

3.5 Dependent variable

Binding affinity to human Thyroid Receptor beta in vitro, —log(IC50) (uM).

3.6 Experimental protocol

Data for the training set was obtained from studies using a hTRb-binding in vitro assay to measure affinity
of a compound to hTRb. Currently this assay does not have an internationally agreed guideline. The assay
has been described in Greenidge et al. (1998) The assay is known to have a potential for a high rate of false
negatives (Murk et al.2013).

3.7 Endpoint data quality and variability

All data in the final training sets originated from the same laboratory (Karo Bio). From the publications it is
expected that the tests were performed by the same protocol, possibly with minor justifications, however it
is not explicitly stated. The overall data variability is assumed to be low due to the fact that all data points
originate from the same laboratory.



4. Defining the algorithm
4.1 Type of model

A continuous (Q)SAR model based on calculated molecular descriptors, and if available own or third-party
descriptors or measured endpoints can be imported and used as descriptors.

4.2 Explicit algorithm

As the endpoint for this training set was continuous the (Q)SAR model was made by use of Partial Least
Squares (PLS) regression method (see 4.5). The derived algorithm is proprietary within the SciQSAR
software.

4.3 Descriptors in the model

Molecular connectivity indices

Molecular shape indices

Topological indices

Electrotopological (Atom E and HE-States) indices
Electrotopological bond types indices

SciQSAR software provides over 400 built-in molecular descriptors. Additionally, SciQSAR makes it possible
to import own or third-party descriptors or use measured endpoints as custom descriptors.

4.4 Descriptor selection
Genetic algorithm (GA) analysis was used to select descriptors to make the best PLS regression model.

In this model the Initial population size was set to 80 and the number of iterations was 50,000. The
remaining the settings for the GA were the default settings in SciQSAR.

4.5 Algorithm and descriptor generation

For a binary classification problem SciQSAR uses discriminant analysis (DA) to make a (Q)SAR model.
SciQSAR implements the entire range of DA methods including parametric and non-parametric approaches.
The classic parametric method of DA is applicable in the case of approximately normal within-class
distributions. The method generates either a linear discriminant function (the within-class covariance
matrices are assumed to be equal) or a quadratic discriminant function (the within-class covariance
matrices are assumed to be unequal). When the distribution is not assumed to follow a particular law or is
assumed to be other than the multivariate normal distribution, non-parametric DA methods can be used to
derive classification criteria. The non-parametric DA methods available within SciQSAR include the kernel
and k-nearest-neighbor (kNN) methods. The main types of kernels implemented in SciQSAR include
uniform, normal, Epanechnikov, bi-weight, or tri-weight kernels, which are used to estimate the group
specific density at each observation. In general, either Mahalanobis or Euclidean distances can be used to
determine proximity between compound-vectors in multidimensional descriptor space. When the kNN



method is used, the Mahalanobis distances are based on the pooled covariance matrix. When the kernel
method is used, the Mahalanobis distances are based on either the individual within-group covariance
matrices or the pooled covariance matrix.

If the data outcome is on the other hand continuous, regression analysis is used to build the predictive
model. Within SciQSAR several regression methods are available: for independent variables ordinary
multiple regression (OMR) (only for a small number of independent variables), stepwise regression (SWR)
or all possible subsets regression (PSR) is useful, and for analysis of variables with high correlation or
multicollinearity regression on principal components (PCR) or partial least squares regression (PLS) should
be used. For the above mentioned regression methods an in-built cross validation procedure tests how
stable the built models are.

In SciQSAR descriptors for regression analysis are selected with the use of genetic algorithm (GA) analysis.
The GA method sequentially generates sets of descriptors. Selection of the best descriptors is accomplished
through an algorithm which simulates mutation and genetic cross-over. Each set of descriptors (generation)
is evaluated and its “goodness of fit”” determined by a set of criteria. The algorithm makes use of the whole
descriptor pool to select a set of descriptors with good regression statistics (high R* and Q2). The
performance of each candidate model is assessed using an automated cross validation process within
SciQSAR. (Contrera et al. 2004)

4.6 Software name and version for descriptor generation

SciMatics SciQSAR version 2.3.0.0.12.

4.7 Descriptors/chemicals ratio

12 PLS components were used to make this model.



5. Defining Applicability Domain
5.1 Description of the applicability domain of the model

Domain of applicability of a (Q)SAR model is partly a function of the molecular coverage of the test
molecule relative to the molecules in the training data set. If a test molecule is not well-represented in the
training data molecular library, the test molecule will be considered outside of the domain of the model.

5.2 Method used to assess the applicability domain

For a (Q)SAR model on a binary endpoint the probability (p) of test compounds membership in one of the
two (low or high risk) classes is calculated and used for determining whether the test chemical is within the
models domain of applicability. The probability of membership in a class is a measure of how well training
set knowledge is able to discriminate compounds with high risk from those with low risk within the nearest
space of the subject compound-vector. The probability of membership value is also a measure of the
degree of confidence of a prediction.

For a continuous (Q)SAR model the test chemical is considered out of domain if SciQSAR cannot calculate
each descriptor value for the test chemical.

Predictions outside the —loglCsq interval [-4.5;1.71] are considered out of domain.

5.3 Software name and version for applicability domain assessment

SciMatics SciQSAR version 2.3.0.0.12.

5.4 Limits of applicability

The Danish QSAR group applies an overall definition of structures acceptable for QSAR processing which is
applicable for all the in-house QSAR software, i.e. not only Leadscope. According to this definition accepted
structures are organic substances with an unambiguous structure, i.e. so-called discrete organics defined
as: organic compounds with a defined two dimensional (2D) structure containing at least two carbon
atoms, only certain atoms (H, Li, B, C, N, O, F, Na, Mg, Si, P, S, Cl, K, Ca, Br, and I), and not mixtures with two
or more ‘big components’ when analyzed for ionic bonds (for a number of small known organic ions
assumed not to affect toxicity the ‘parent molecule’ is accepted). Calculation 2D structures (SMILES and/or
SDF) are generated by stripping off ions (of the accepted list given above). Thus, all the training set
chemicals are used in their non-ionized form. See 5.1 for further applicability domain definition.



6. Internal validation
6.1 Availability of the training set

Yes

6.2 Available information for the training set

SMILES

6.3 Data for each descriptor variable for the training set

No

6.4 Data for the dependent variable for the training set

All

6.5 Other information about the training set

130 chemicals were in the training set.

6.6 Pre-processing of data before modeling

Data used to develop the (Q)SAR model was compiled from two public databases, ChEMBL and BindingDB,
on the internet . Data in the two databases originate from published literature, and in this case all the data
were made by Karo Bio (Karo Bio AB, Novum, Huddinge S-141 57, Sweden) (Carlsson et al. 2002, Ye et al.
2003, Hangeland et al. 2004, 2005, Hedfors et al. 2005, Collazo et al. 2006, Koehler et al. 2006, Li et al.
2006, Garg et al. 2007, Malm et al. 2007). The initial data sets consisted of results from various in vitro
assays measuring different endpoints related to the TH system. Therefore a thorough manual review of the
data sources was performed, and data originating from other assays than the hTRb binding assay were
removed.

Only structures acceptable for the commercial software were used in the training se. That is only discrete
organic chemicals as described in 5.4 were used. Subsequently, duplicates were identified and removed
according to defined criteria: 1C50 values for duplicates were compared and in case the difference between
the IC50 values were more than 10 fold both data points were removed. If the difference was less than 10
fold the data point with the lowest IC50 value was kept (conservative approach). For this model no
duplicates had a 10 fold or more difference in the IC50 values. IC50 values were transformed into —logIC50.

6.7 Statistics for goodness-of-fit

The R-squared (internal performance) was calculated by SciQSAR and gave 0.65.
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6.8 Robustness — Statistics obtained by leave-one-out cross-validation

Not performed. (It is not a preferred measurement for evaluating large models).

6.9 Robustness — Statistics obtained by leave-many-out cross-validation

A cross-validation was performed in SciQSAR using SqiQSARs own validation procedure with default
settings. The resulting Q-squared (predictive performance) was 0.58.

6.10 Robustness - Statistics obtained by Y-scrambling

Not performed.

6.11 Robustness - Statistics obtained by bootstrap

Not performed.

6.12 Robustness - Statistics obtained by other methods

Not performed.
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7. External validation

7.1 Availability of the external validation set

7.2 Available information for the external validation set

7.3 Data for each descriptor variable for the external validation set
7.4 Data for the dependent variable for the external validation set
7.5 Other information about the training set

7.6 Experimental design of test set

7.7 Predictivity — Statistics obtained by external validation

7.8 Predictivity — Assessment of the external validation set

7.9 Comments on the external validation of the model

External validation has not been performed for this model.
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8. Mechanistic interpretation
8.1 Mechanistic basis of the model

The global model identifies structural features and molecular descriptors which in the model development
was found to be statistically significant associated with effect. Many predictions may indicate modes of
action that are obvious for persons with expert knowledge for the endpoint.

8.2 A priori or posteriori mechanistic interpretation

A posteriori mechanistic interpretation. The identified structural features and molecular descriptors may
provide basis for mechanistic interpretation.

8.3 Other information about the mechanistic interpretation
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9. Miscellaneous information
9.1 Comments

The model can be used to predict a chemicals binding affinity to the human Thyroid hormone Receptor
beta in vitro. The outcome from the prediction is —loglC50 and this can be transformed to make an estimate
for the IC50 (uM) value for the chemical.
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