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Model QSAR1 for thyroperoxidase (TPO) inhibition in vitro (U.S. EPA NCCT data) 

 

1. QSAR identifier  

1.1 QSAR identifier (title) 

Leadscope Enterprise model QSAR1 for thyroperoxidase (TPO) inhibition in vitro (U.S. EPA NCCT data), 
Danish QSAR Group at DTU Food. 

1.2 Other related models 

Leadscope Enterprise model QSAR2 for thyroperoxidase (TPO) inhibition in vitro (U.S. EPA NCCT data), 
Danish QSAR Group at DTU Food. 

 

1.3. Software coding the model 

Leadscope Predictive Data Miner, a component of Leadscope Enterprise, version 3.5.  
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2. General information 

2.1 Date of QMRF 

June 2018. 

2.2 QMRF author(s) and contact details  

QSAR Group at DTU Food; 

Danish National Food Institute at the Technical University of Denmark;  

http://qsar.food.dtu.dk/; 

qsar@food.dtu.dk 

 

Eva Bay Wedebye; 

National Food Institute at the Technical University of Denmark; 

 

Nikolai Georgiev Nikolov; 

National Food Institute at the Technical University of Denmark; 

 

Kyrylo Klimenko; 

National Food Institute at the Technical University of Denmark; 

 

2.3 Date of QMRF update(s) 

None 

2.4 QMRF update(s) 

None 

2.5 Model developer(s) and contact details  

Sine Rosenberg 

PhD student 2013-2017 at the National Food Institute at the Technical University of Denmark 

 

Eva Wedebye 

National Food Institute at the Technical University of Denmark 

http://qsar.food.dtu.dk/
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Nikolai Nikolov 

National Food Institute at the Technical University of Denmark  

 

Marianne Dybdahl 

National Food Institute at the Technical University of Denmark 

 

2.6 Date of model development and/or publication 

August 2017. 

2.7 Reference(s) to main scientific papers and/or software package 

Roberts, G., Myatt, G. J., Johnson, W. P., Cross, K. P., and Blower, P. E. J. (2000) LeadScope: Software for 
Exploring Large Sets of Screening Data. Chem. Inf. Comput. Sci., 40, 1302-1314. 

Cross, K.P., Myatt, G., Yang, C., Fligner, M.A., Verducci, J.S., and Blower, P.E. Jr. (2003) Finding 
Discriminating Structural Features by Reassembling Common Building Blocks. J. Med. Chem., 46, 4770-4775. 

Valerio, L. G., Yang, C., Arvidson, K. B., and Kruhlak, N. L. (2010) A structural feature-based computational 
approach for toxicology predictions. Expert Opin. Drug Metab. Toxicol., 6:4, 505-518. 

2.8 Availability of information about the model 

The training data set is non‐proprietary and was kindly provided by U.S. EPA NCCT with chemical 
structure information and HTS screening results for TPO inhibition. Model algorithm is proprietary from 
commercial software. 

2.9 Availability of another QMRF for exactly the same model 
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3. Defining the endpoint  

3.1 Species 

Thyroid tissue from male Long Evans rats 

 

3.2 Endpoint 

QMRF 4. Human Health Effects 

QMRF 4.18.c. Endocrine Activity. Other (rat thyroperoxidase enzyme inhibition) 

 

3.3 Comment on endpoint  

The assay applied for the training set data is described in Paul et al. 2014 and is based on Rat thyroid 
microsomes and a fluorescent peroxidase substrate (Amplex UltraRed, AUR).  
 
Taken from Paul et al. 2014: Toxicants that inhibit TPO activity prevent iodothyronine production in the 
thyroid gland. TPO is a heme-containing, multifunction enzyme critical to thyroid hormone (TH) synthesis 
located at the apical membrane of follicular thyroid cells. TPO catalyzes the oxidation of iodide to 
hypoiodate, the addition of hypoiodate to tyrosyl residues on thyroglobulin (Tg), and concurrent oxidative 
coupling of iodinated tyrosyl residues to form iodothyronine hormones triiodothyronine (T3) and thyroxine 
(T4).  
 
In animal models and humans altered cognition, socialization and motor function as well as hearing loss 
have been observed following moderate to severe hypothyroidism. Even low levels of TH insufficiency 
during fetal development may result in measurable IQ deficits in children. In adulthood, dysregulated TH 
levels can give reversible clinical symptoms of hypo- or hyperthyroidism and are correlated with 
pathological processes involved in adverse outcomes such as cancer, obesity and type II diabetes mellitus. 
 

3.4 Endpoint units 

No units, 1 for positives and 0 for negatives. 

 

3.5 Dependent variable 

Inhibition of the TPO in vitro, positive or negative. 

 

3.6 Experimental protocol 
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The experimental protocol is described in detail in Paul et al. 2014. Briefly, the assay measures the 
fluorescence intensity from the commercial peroxidase substrate, Amplex®UltraRed (AUR), which is 
converted to Amplex UltroxRed by a peroxidase in the presence of hydrogen peroxide. A decrease in 
fluorescence intensity in response to a chemical is an indirect measure of TPO inhibition. 

All chemicals were initially screened at a single, high concentration (~87.5µM). The chemicals associated 
with 20% or greater decreases in maximal TPO activity were subsequently screened for possible 
concentration-response. The concentration-response data were processed using the ToxCast data pipeline 
whereby each chemical was assigned a ‘hit-call’ of 1 if active in AUR-TPO, or a ‘hit-call’ of 0 if inactive in 
AUR-TPO. Actives in the AUR-TPO assay were further processed through a selectivity filtering algorithm, 
which integrates results from cytotoxicity and luciferase inhibition assays to identify possible non-specific 
positive results in the AUR-TPO assay.  

We classified the chemicals into three categories: 1) chemicals that had a <20% activity decrease in the 
single, high concentration screening or had been assigned a ‘hit-call’ of 0 in the concentration-response 
AUR-TPO screening were classified as inactive in this assay; 2) chemicals with a ‘hit-call’ of 1 in AUR-TPO 
and a selectivity score greater than 1 were classified as active for TPO inhibition; and 3) chemicals with a 
‘hit-call’ of 1 in AUR-TPO but with a selectivity score of 1 or less were classified as inconclusive for TPO 
inhibition and not used in the training set of the model. 

 

3.7 Endpoint data quality and variability 

The datasets originate from the same source, i.e. U.S. EPA NCCT. All chemicals have been screened in the 
same testing protocols and undergone the same data processing, and this has likely contributed to 
decrease the experimental variability. The quality of the AUR-TPO assay has been assessed previously 
which indicated excellent performance with robust Z-prime factor from 0.77 to 0.83, where values above 
0.5 generally indicate excellent performance to distinguish between actives and inactives, and high 
intralaboratory repeatability with the robust coefficient of variance being 3–4%. However, no measures of 
the reproducibility of the overall positive and negative end calls as used for QSAR model was available. Still, 
the data in training set 1 and 2 and the test set were assessed to be of high quality and expected to be a 
good basis for QSAR model development. 
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4. Defining the algorithm  

 

4.1 Type of model 

A categorical QSAR model based on structural features and numeric molecular descriptors. 

 

4.2 Explicit algorithm 

 

This is a categorical QSAR model made by use of partial logistic regression (PLR). The model is a ‘cocktail’ 
composite model that integrates a so-called single model, see 4.4, and a Leadscope composite model with 
6 sub-models, see 4.4, i.e. the cocktail composite model contains 7 sub-models. The specific 
implementation is proprietary within the Leadscope software. 

 

4.3 Descriptors in the model 

structural features, 

aLogP, 

polar surface area, 

number of hydrogen bond donors, 

Lipinski score, 

number of rotational bonds, 

parent atom count, 

parent molecular weight, 

 

4.4 Descriptor selection  

Leadscope Predictive Data Miner is a software program for systematic sub-structural analysis of a chemical 
using predefined structural features stored in a template library, training set-dependent generated 
structural features (scaffolds) and calculated molecular descriptors. The feature library contains 
approximately 27,000 pre-defined structural features and the structural features chosen for the library are 
motivated by those typically found in small molecules: aromatics, heterocycles, spacer groups, simple 
substituents. Leadscope allows for the generation of training set-dependent structural features (scaffold 
generation), and these features can be added to the pre-defined structural features from the library and be 
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included in the descriptor selection process. It is possible in Leadscope to remove redundant structural 
features before the descriptor selection process and only use the remaining features in the descriptor 
selection process. Besides the structural features Leadscope also calculates eight molecular descriptors for 
each training set structure: the octanol/water partition coefficient (alogP), hydrogen bond acceptors (HBA), 
hydrogen bond donors (HBD), Lipinski score, atom count, parent compound molecular weight, polar 
surface area (PSA) and rotatable bonds. These eight molecular descriptors are also included in the 
descriptor selection process. 

Leadscope has a default automatic descriptor selection procedure. This procedure selects the top 30% of 
the descriptors (structural features and molecular descriptors) according to X2-test for a binary variable, or 
the top and bottom 15% descriptors according to t-test for a continuous variable. Leadscope treats numeric 
property data as ordinal categorical data. If the input data is continuous such as IC50 or cLogP data, the user 
can determine how values are assigned to categories: the number of categories and the cut-off values 
between categories. (Roberts et al.2000). 

When developing this model, intermediate models with application of different modelling approaches in 
Leadscope were tried:  

1. ‘Single model’ using only the Leadscope pre-defined structural features, i.e. no scaffolds, and calculated 
molecular descriptors for descriptor selection. 

2. ‘Single model’ using both the Leadscope pre-defined structural features and the training set dependent 
features (scaffolds generation) as well as the calculated molecular descriptors in the descriptor 
selection. 

3.  ‘Single model’ using both Leadscope pre-defined structural features and the training set dependent 
features (scaffolds generation), with subsequent removal of redundant structural features, and 
calculated molecular descriptors for descriptor selection. 

4. ‘Composite model’ using only the Leadscope pre-defined structural features, i.e. no scaffolds, and 
calculated molecular descriptors in the descriptor selection. 

5. ‘Composite model’ using both Leadscope pre-defined structural features and the training set 
dependent features (scaffolds generation) ), with subsequent removal of redundant structural features,  
as well as the calculated molecular descriptors in the descriptor selection. 

Based on model performance as measured by a Leadscope Predictive Data Miner cross-validation the 
model developed using approach integrating number 2 and 5 Into a cocktail composite model was chosen.  
 

For this model scaffolds were generated by Leadscope for the training set structures and added to the 
Leadscope library of structural features. The number of structural features was then reduced further using 
the built-in filter to remove similar (reduntant) features (the “less similar” features removed). Descriptors 
were then automatically selected among the remaining structural features and the eight molecular 
descriptors.  

 

4.5 Algorithm and descriptor generation 

For descriptor generation see 4.4. 

After selection of descriptors the Leadscope Predictive Data Miner program performs partial least squares 
(PLS) regression for a continuous response variable, or partial logistic regression (PLR) for a binary response 
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variable, to build a predictive model. By default the Predictive Data Miner performs leave-one-out or leave-
groups-out (in the latter case, the user can specify any number of repetitions and percentage of structures 
left out) cross-validation on the training set depending on the size of the training set. In the cross-validation 
made by Leadscope the descriptors selected for the ‘mother model’ are used when building the validation 
sub-models and they may therefore have a tendency to give overoptimistic validation results.  

In this model because of the categorical outcome in the response variable PLR was used to build the 
predictive model. Because of the unbalanced training set (i.e. 130 positives and 747 negatives) 7 sub-
models for smaller individual training sets were made. The descriptors for each of the sub-models were 
automatically selected from the Leadscope feature library based solely on the training set compounds used 
to build the individual sub-model and was not affected by the full training set chemicals . Therefore, a 
different number of descriptors (structural features and molecular descriptors) were selected and 
distributed on varying number of PLS factors for each sub-model. 

 

4.6 Software name and version for descriptor generation 

Leadscope Predictive Data Miner, a component of Leadscope Enterprise, version 3.5. 

 

4.7 Descriptors/chemicals ratio 

As this model is a composite model consisting of 7 sub-models with varying training set size and using 
different descriptors and number of PLS factors (see 4.5), an overall descriptor/chemical ratio for this 
model cannot be calculated. The data for individual models, as well as, mean, minimum and maximum 
descriptors/chemicals ratios are as follows: 

Name of the model Chemicals Descriptors PLS 
factors 

TC_TPO_Multiple_Scaffolds_Reduced_Model-1 260 155 1 
TC_TPO_Multiple_Scaffolds_Reduced_Model-2 260 132 2 
TC_TPO_Multiple_Scaffolds_Reduced_Model-3 260 124 4 
TC_TPO_Multiple_Scaffolds_Reduced_Model-4 260 161 2 
TC_TPO_Multiple_Scaffolds_Reduced_Model-5 260 154 1 
TC_TPO_Multiple_Scaffolds_Reduced_Model-6 260 163 2 

TC_TPO_Single_Scaffolds_Reduced_Model 877 206 3 
 

5. Defining Applicability Domain  

5.1 Description of the applicability domain of the model 

The definition of the applicability domain consists of two components; the definition of a structural domain 
in Leadscope and the in-house further probability refinement algorithm on the output from Leadscope to 
reach the final applicability domain call.  
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1. Leadscope 

For assessing if a test compound is within the structural applicability domain of a given model Leadscope 
examines whether the test compound bears enough structural resemblance to the training set compounds 
used for building the model (i.e. a structural domain analysis). This is done by calculating the distance 
between the test compound and all compounds in the training set (distance = 1 - similarity). The similarity 
score is based on the Tanimoto method. The number of neighbours is defined as the number of compounds 
in the training set that have a distance equal to or smaller than 0.7 with respect to the test compound. The 
higher the number of neighbours, the more reliable the prediction for the test compound. Statistics of the 
distances are also calculated. Effectively no predictions are made for test compounds which are not within 
the structural domain of the model or for which the molecular descriptors could not be calculated in 
Leadscope. 

2. The Danish QSAR group 

In addition to the general Leadscope structural applicability domain definition the Danish QSAR group has 
applied a further requirement to the applicability domain of the model. That is only positive predictions 
with a probability equal to or greater than 0.7 and negative predictions with probability equal to or less 
than 0.3 are accepted. Predictions within the structural applicability domain but with probability between 
0.5 to 0.7 or 0.3 to 0.5 are defined as positives out of applicability domain and negatives out of applicability 
domain, respectively. When these predictions are weeded out the performance of the model in general 
increases at the expense of reduced model coverage. 

 

5.2 Method used to assess the applicability domain 

Leadscope does not generate predictions for test compounds which are not within the structural domain of 
the model or for which the molecular descriptors could not be calculated.  

Only positive predictions with probability equal to or greater than 0.7 and negative predictions with 
probability equal to or less than 0.3 are accepted. 

 

5.3 Software name and version for applicability domain assessment 

Leadscope Predictive Data Miner, a component of Leadscope Enterprise, version 3.5. 

 

5.4 Limits of applicability 

The Danish QSAR group applies an overall definition of structures acceptable for QSAR processing which is 
applicable for all the in-house QSAR software, i.e. not only Leadscope. According to this definition accepted 
structures are organic substances with an unambiguous structure, i.e. so-called discrete organics defined 
as: organic compounds with a defined two dimensional (2D) structure containing at least two carbon 
atoms, only certain atoms (H, Li, B, C, N, O, F, Na, Mg, Si, P, S, Cl, K, Ca, Br, and I), and not mixtures with two 
or more ‘big components’ when analyzed for ionic bonds (for a number of small known organic ions 
assumed not to affect toxicity the ‘parent molecule’ is accepted). Calculation 2D structures (SMILES and/or 
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SDF) are generated by stripping off ions (of the accepted list given above). Thus, all the training set and 
prediction set chemicals are used in their non-ionized form. See 5.1 for further applicability domain 
definition.  
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6. Internal validation 

6.1 Availability of the training set 

Yes, downloadable at http://qsar.food.dtu.dk/download/TPO_inhibition_QSAR_training_set  

 

6.2 Available information for the training set 

The zip archive has an xls file with “Presence in test set marked with *” column marking structures that 
must be removed to obtain the QSAR1 model training set.  Besides the TPO inhibition calls, the file contains 
CAS and SMILES for each substance. 

 

6.3 Data for each descriptor variable for the training set 

No 

 

6.4 Data for the dependent variable for the training set 

All. Column “TC TPO inhibition activity” in the Excel file from the downloadable zip archive indicates if the 
compound is Active (positive) or Inactive (negative). 

 

6.5 Other information about the training set 

877 compounds are in the training set: 130 positives and 747 negatives. 

 

6.6 Pre-processing of data before modelling 

Only structures acceptable for Leadscope were used in the final training set. That is only discrete organic 
chemicals as described in 5.4 were used. In case of replicate structures, one of the replicates was kept if all 
the compounds had the same activity and all were removed if they had different activity. No further 
structures accepted by the software were eliminated (i.e. outliers).  

 

6.7 Statistics for goodness-of-fit 

Not performed. 

 

http://qsar.food.dtu.dk/download/TPO_inhibition_QSAR_training_set
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6.8 Robustness – Statistics obtained by leave-one-out cross-validation  

Not performed. (It is not a preferred measurement for evaluating large models).  

6.9 Robustness – Statistics obtained by leave-many-out cross-validation 

These results were obtained using Leadscope Predictive Data Miner v.3.2.4 and reported in Rosenberg et al. 
2017, the current model was re-modelled using Leadscope Predictive Data Miner v.3.5 and is expected to 
be associated with similar accuracy: 

A ten times two-fold 50 % cross-validation was performed (not using the Leadscope Predictive Data Miner 
built-in procedure, but by a DTU procedure, see Rosenberg et al. 2017). This was done by randomly 
removing 50% of the full training set used to make the “mother model”, where the 50% contains the same 
ratio of positive and negatives as the full training set. A new model (validation sub-model) was created on 
the remaining 50% using the same settings in Leadscope but with no information from the “mother model” 
regarding descriptor selection etc. The validation sub-model was applied to predict the removed 50% 
(within the defined applicability domain for the sub-model). Likewise, a validation sub-model was made on 
the removed 50% of the training set and this model was used to predict the other 50% (within the defined 
applicability domain for this sub-model). This procedure was repeated ten times.  

Predictions within the defined applicability domain of the twenty validation sub-models were pooled and 
Cooper’s statistics calculated. This gave the following results for the predictions which were within the 
applicability domains of the respective sub-models:  

− Sensitivity (true positives / (true positives + false negatives)):  72.3% (SD 10.1) 
− Specificity (true negatives / (true negatives + false positives)): 89.0% (SD 2.8) 
− Balanced Accuracy ((Sensitivity + Specificity) /2): 80.6% (SD 4.6) 
− Coverage ((In-Domain predictions) / (All predictions): 51.6% (SD 4.7) 

 

6.10 Robustness - Statistics obtained by Y-scrambling 

Not performed. 

 

6.11 Robustness - Statistics obtained by bootstrap 

Not performed. 

 

6.12 Robustness - Statistics obtained by other methods 

Not performed. 

 

 

  



13 
 

7. External validation  

 

7.1 Availability of the external validation set 

See 6.1 

 

7.2 Available information for the external validation set 

The zip archive has an Excel file with “Presence in test set marked with *” column marking structures that 
comprise the QSAR1 model test set.  

 

7.3 Data for each descriptor variable for the external validation set 

No 

 

7.4 Data for the dependent variable for the external validation set 

See 6.1 

 

7.5 Other information about the validation set  

In total 771 substances, of which 646 could obtain predictions with the defined applicability domain: 100 
positives and 546 negatives. 

 

7.6 Experimental design of test set 

The test set was made from an additional set of 771 ToxCast chemicals (known as the ‘Endocrine 1000’ or 
‘E1K’ set). These experimental results were independent from the training set results.  

 

7.7 Predictivity – Statistics obtained by external validation 

These results were obtained using Leadscope Predictive Data Miner v.3.2.4 and reported in Rosenberg et al. 
2017, the current model was re-modelled using Leadscope Predictive Data Miner v.3.5 and is expected to 
be associated with similar accuracy: 
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− Sensitivity (true positives / (true positives + false negatives)):  79.7% (47/(47+12)) 
− Specificity (true negatives / (true negatives + false positives)): 90.8% (266/(266+27) 
− Balanced Accuracy ((Sensitivity + Specificity) /2): 85.3% 
− Coverage ((In-Domain predictions) / (All predictions): 54.5% (352/646) 

 

7.8 Predictivity – Assessment of the external validation set 

 

7.9 Comments on the external validation of the model  

None 
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8. Mechanistic interpretation  

 

8.1 Mechanistic basis of the model 

The global model identifies structural features and molecular descriptors which in the model development 
was found to be statistically significant associated with effect. Many predictions may indicate modes of 
action that are obvious for persons with expert knowledge for the endpoint.  

 

8.2 A priori or posteriori mechanistic interpretation 

A posteriori mechanistic interpretation. The identified structural features and molecular descriptors may 
provide basis for mechanistic interpretation.  

 

8.3 Other information about the mechanistic interpretation 
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9. Miscellaneous information 

 

 

9.1 Comments 

None  
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