
Leadscope Enterprise model for human PXR ligand binding in vitro (U.S. NIH data) 

1. QSAR identifier  

1.1 QSAR identifier (title) 

Leadscope Enterprise model for human PXR ligand binding in vitro (U.S. NIH data), Danish QSAR 
Group at DTU Food.  

 

1.2 Other related models 

None 

 

1.3. Software coding the model 

Leadscope Predictive Data Miner, a component of Leadscope Enterprise Server version 3.5.3-5.  

 

2. General information 

2.1 Date of QMRF 

December 2018  

 
2.2 QMRF author(s) and contact details  

QSAR Group at DTU Food; 

Danish National Food Institute at the Technical University of Denmark;  

http://qsar.food.dtu.dk/; 

qsar@food.dtu.dk 

 

Eva Bay Wedebye; 

National Food Institute at the Technical University of Denmark; 

 

http://qsar.food.dtu.dk/


Nikolai Georgiev Nikolov; 

National Food Institute at the Technical University of Denmark; 

 

Maria Nektaria Triantafillopoulos; 

National Food Institute at the Technical University of Denmark; 

 

2.3 Date of QMRF update(s) 

None 

 

2.4 QMRF update(s) 

None 

 

2.5 Model developer(s) and contact details  

Nikolai Nikolov 

National Food Institute at the Technical University of Denmark  

 

Eva Wedebye 

National Food Institute at the Technical University of Denmark 

 

Sine Rosenberg 

PhD student 2013-2017 at the National Food Institute at the Technical University of Denmark 

 

Marianne Dybdahl 

National Food Institute at the Technical University of Denmark 

 

2.6 Date of model development and/or publication 



August 2018 

 

2.7 Reference(s) to main scientific papers and/or software package 

Roberts, G., Myatt, G. J., Johnson, W. P., Cross, K. P., and Blower, P. E. J. (2000) LeadScope: 
Software for Exploring Large Sets of Screening Data. Chem. Inf. Comput. Sci., 40, 1302-1314. 

Cross, K.P., Myatt, G., Yang, C., Fligner, M.A., Verducci, J.S., and Blower, P.E. Jr. (2003) Finding 
Discriminating Structural Features by Reassembling Common Building Blocks. J. Med. Chem., 46, 
4770-4775. 

Valerio, L. G., Yang, C., Arvidson, K. B., and Kruhlak, N. L. (2010) A structural feature-based 
computational approach for toxicology predictions. Expert Opin. Drug Metab. Toxicol., 6:4, 505-518. 

 

2.8 Availability of information about the model 

The training data set is non‐proprietary. Experimental data to make the training set was kindly 
provided by U.S. NIH NCATS (National Center for Advancing Translational Sciences) with 
chemical structure information and qHTS screening results for binding to the Ligand Binding 
Domain (LBD) of human PXR at the protein level (hPXR-LBD). Generation of the experimental 
data is described in Shukla et al. 2011. The model algorithm is proprietary from commercial 
software.  

 
2.9 Availability of another QMRF for exactly the same model 
No other available QMRF for this model  

 

3. Defining the endpoint  

3.1 Species 

Human (a cell-free assay containing the human pregnane X receptor (hPXR)).  

 

3.2 Endpoint 

QMRF 4. Human Health Effects 

QMRF 4.18.a. Endocrine Activity. Receptor-binding (hPXR) 



 

3.3 Comment on endpoint  

 

From Rosenberg et al. 2017: The nuclear receptor (NR) superfamily is a large group of transcription 
factors that control expression of multiple genes involved in a broad range of biological processes, 
such as development, homeostasis and metabolism. The transcriptional activity of NRs is primarily 
regulated through ligand binding [1]. The Pregnane X Receptor (PXR), first described by Kliewer 
and colleagues in 1998, is a member of the NR superfamily [2,3]. PXR is mainly expressed in the 
liver, intestine and kidneys, and plays a key role in the regulation of genes involved in the metabolism 
and efflux of endogenous hormones and xenobiotic molecules [3–5]. The genes regulated by PXR 
include genes encoding enzymes, such as cytochrome P450s (CYPs), glucuronyltransferases and 
sulfotransferases, as well as transporters, such as P-glycoprotein and multidrug resistance proteins 
[2,3,6–8]. The ligand-binding domain (LBD) of PXR is large and flexible, and can change its shape 
to accommodate structurally diverse molecules including steroids, bile acids, antibiotics, statins, and 
pesticides [9,10]. A considerable amount of inter-species variation has been observed in the PXR 
LBD with human, rabbit and rat sharing roughly 75-80% amino acid identity [11,12]. There are 
numerous examples of differences in ligand binding to PXR and resulting downstream transcription 
of enzymes and transporters between species, which complicates the extrapolation of results from in 
vivo animal studies to humans [11,13–15]. 

PXR is located in the cytoplasm and translocated to the nucleus upon ligand binding, and here the 
PXR-ligand complex heterodimerizes with the Retinoid X Receptor alpha (RXRα), another member 
of the NR superfamily. The PXR-RXRα heterodimer complexes with co-activators, and this multi-
protein complex binds to the Xenobiotic Response Element (XRE) in the promoter region of target 
genes and induces their transcription leading to altered expression of their encoded proteins [2,3,16]. 
Because many of the proteins regulated by PXR are not only involved in the metabolism and transport 
of xenobiotics, but also of various endogenous compounds such as steroid and thyroid hormones, an 
altered protein expression upon xenobiotic exposure may interfere with the homeostatic balance of 
such endogenous compounds [17,18]. This interference can potentially affect normal physiological 
functions [2,19] and may result in adverse health effects. Findings from previous studies indicate that 
there is an association between PXR activation by environmental chemicals and adverse health 
effects [15,18,20,21]. The importance of PXR activation is also reflected in a number of suggested 
adverse outcome pathways (AOPs) available from the online AOP-Wiki [22], for example an AOP 
describing how activation of PXR and other related NRs upregulate thyroid hormone catabolism 
resulting in hypothyroidism and subsequent adverse neurodevelopmental outcomes [23]. The AOPs 
are envisioned to promote the industry’s and regulators’ use of results from alternative methods such 
as in vitro tests and computational models in chemical risk assessments to reduce, refine or replace 
traditional animal tests [24–26], for example by applying the AOP in an Integrated Approaches to 
Testing Assessment (IATA) context to support regulatory decisions [27].  

 



Compound collection, qHTS assays and the classification of the qHTS results into actives, 
inconclusives and inactives is described in Shukla et al. 2009, Shukla et al. 2011 and Huang et al. 
2011.  

The training set was created by combining the training set and the external validation set for hPXR–
LBD is reported in Rosenberg et al. 2017.  

 

3.4 Endpoint units 

No units, 1 for positives and 0 for negatives. 

 

3.5 Dependent variable 

Human PXR-LBD binding, positive or negative. 

 

3.6 Experimental protocol 

The hPXR-LBD assay was performed with LanthaScreen time-resolved fluorescence resonance 
energy transfer (TR-FRET)-based technology and described in detail in Shukla et al. 2009 and Shukla 
et al. 2011. 3,5-Di-tert-butyl-4-hydroxystyrene-β,β-diphosphonic acid tetraethyl ester is a potent PXR 
agonist and was used as a positive control to assess maximal response in the hPXR-LBD assay.   

The primary qHTS of the hPXR LBS assay performed well with a signal/background ratio of 3.1 and 
average EC50 of 0.44 µM for the positive control SRI12813.  

 

3.7 Endpoint data quality and variability 

The qHTS assay for hPXR-LBD was optimised by Shukla et al. 2009 and illustrated a good 
performance with Z’factors 0.5 and MSR values ~3 for the control compounds. Furthermore the 
ability to generate CRCs for Tb3+ and fluorescein emission allowed monitoring for assay artefacts.  

Seven- to 15-point concentration–response curves (CRCs) were generated for 8,280 compounds using 
both terbium and fluorescein emission data, resulting in the generation of 241,664 data points.  
 
The qHTS method allowed to retrospectively examine single concentration screening datasets to 
assess the sensitivity and selectivity of the PXR assay at different compound screening 
concentrations.  
 



Furthermore, nonspecific assay artefacts such as concentration-based quenching of the terbium signal 
and compound fluorescence were identified through the examination of CRCs for specific emission 
channels. The CRC information was also used to define chemotypes associated with PXR ligands. 
This study demonstrates the feasibility of profiling thousands of compounds against PXR using the 
TR-FRET assay in a high-throughput format. 
 
Overall, the 7.7 μM concentration was closest to the typical screening concentration of 10 μM, and 
an excellent selectivity was found (accuracy of 96%) and selectivity (89% of the TP found) for the 
1,536-well PXR assay at this concentration.  
 
Overall, the 1,536-well PXR TR-FRET assay was found to be an excellent assay for interrogating 
large chemical libraries for PXR ligands and the datasets originate from the same source, i.e. NIH 
NCATS. All chemicals have been screened in the same testing protocols and undergone the same 
data processing, and this has likely contributed to decrease the experimental variability.  

No measures of the reproducibility of the overall positive and negative end calls as used for QSAR 
model was available. Still, the experimental data was assessed to be of high quality and expected to 
be a good basis for QSAR model development.  

 

4. Defining the algorithm  

4.1 Type of model 

A categorical QSAR model based on structural features and numeric molecular descriptors. 

 

4.2 Explicit algorithm 

This is a categorical QSAR model made by use of partial logistic regression (PLR). The model is a 
‘Cocktail model’, see 4.4, that integrates a so-called single model and a Leadscope composite model 
with 10 sub-models, i.e. the cocktail composite model contains 11 sub-models. The specific 
implementation is proprietary within the Leadscope software. 

 

4.3 Descriptors in the model 

ALogP, 

Hydrogen Bonds Acceptors and Donors, 

Lipinski Score, 

Molecular Weight, 



Parent Atom Count, 

Parent Molecular Weight,  

Polar Surface Area, 

Number of rotational bonds.  

Structural features.  

 

4.4 Descriptor selection  

Leadscope Predictive Data Miner is a software program for systematic sub-structural analysis of a 
chemical using predefined structural features stored in a template library, training set-dependent 
generated structural features (scaffolds) and calculated molecular descriptors. The feature library 
contains approximately 27,000 pre-defined structural features and the structural features chosen for 
the library are motivated by those typically found in small molecules: aromatics, heterocycles, spacer 
groups, simple substituents. Leadscope allows for the generation of training set-dependent structural 
features (scaffold generation), and these features can be added to the pre-defined structural features 
from the library and be included in the descriptor selection process. It is possible in Leadscope to 
remove redundant structural features before the descriptor selection process and only use the 
remaining features in the descriptor selection process. Besides the structural features Leadscope also 
calculates eight molecular descriptors for each training set structure: the octanol/water partition 
coefficient (alogP), hydrogen bond acceptors (HBA), hydrogen bond donors (HBD), Lipinski score, 
atom count, parent compound molecular weight, polar surface area (PSA) and rotatable bonds. These 
eight molecular descriptors are also included in the descriptor selection process. 

Leadscope has a default automatic descriptor selection procedure. This procedure selects the top 30% 
of the descriptors (structural features and molecular descriptors) according to X2-test for a binary 
variable or the top and bottom 15% descriptors according to t-test for a continuous variable. 
Leadscope treats numeric property data as ordinal categorical data. If the input data is continuous 
such as IC50 or cLogP data, the user can determine how values are assigned to categories: the number 
of categories and the cut-off values between categories. (Roberts et al.2000). 

Five predictive models where build for each of the four training sets where the following five different 
modelling approaches in LPDM where used: 

1. ‘Single model’ using only the Leadscope pre-defined structural features, i.e. no scaffolds, and 
calculated molecular descriptors for descriptor selection. 

2. ‘Single model’ using both the Leadscope pre-defined structural features and the training set 
dependent features (scaffolds generation) as well as the calculated molecular descriptors in the 
descriptor selection. 

3.  ‘Composite model’ using only the Leadscope pre-defined structural features, i.e. no scaffolds, 
and calculated molecular descriptors in the descriptor selection. 



4. ‘Composite model’ using both the Leadscope pre-defined structural features and the training set 
dependent features (scaffolds generation) as well as the calculated molecular descriptors in the 
descriptor selection. 

5. ‘Cocktail model’ integrating a ‘Single model’ and a ‘Composite model’ using only the Leadscope 
pre-defined structural features, i.e. no scaffolds, and calculated molecular descriptors for 
descriptor selection. 

6. ‘Cocktail model’ integrating a ‘Single model’ and a ‘Composite model’ using both the Leadscope 
pre-defined structural features and the training set dependent features (scaffolds generation) as 
well as the calculated molecular descriptors in the descriptor selection 

Based on model performance as measured by preliminary Leadscope Predictive Data Miner cross-
validation the model developed using approach 5, integrating number 1 and 3 into a cocktail 
composite model, was chosen.  
 

Descriptors were automatically selected among the structural features and the eight molecular 
descriptors.  

 

4.5 Algorithm and descriptor generation 

For descriptor generation see 4.4. 

After selection of descriptors the Leadscope Predictive Data Miner program performs partial least 
squares (PLS) regression for a continuous response variable, or partial logistic regression (PLR) for 
a binary response variable, to build a predictive model. By default the Predictive Data Miner performs 
leave-one-out or leave-groups-out (in the latter case, the user can specify any number of repetitions 
and percentage of structures left out) cross-validation on the training set depending on the size of the 
training set. In the cross-validation made by Leadscope the descriptors selected for the ‘mother 
model’ are used when building the validation sub-models and they may therefore have a tendency to 
give overoptimistic validation results.  

In this model because of the categorical outcome in the response variable PLR was used to build the 
predictive model. Because of the unbalanced training set (i.e. 140 positives and 1364 negatives) 10 
sub-models for smaller individual training sets were made. The descriptors for each of the sub-models 
were automatically selected from the Leadscope feature library based solely on the training set 
compounds used to build the individual sub-model and was not affected by the full training set 
chemicals. Therefore, a different number of descriptors (structural features and molecular descriptors) 
were selected and distributed on varying number of PLS factors for each sub-model. 

 

4.6 Software name and version for descriptor generation 

Leadscope Predictive Data Miner, a component of Leadscope Enterprise, Server version 3.5.3-5. 

 



4.7 Descriptors/chemicals ratio 

As this model is a composite model consisting of 11 sub-models with varying training set size and 
using different descriptors and number of PLS factors, an overall descriptor/chemical ratio for this 
model cannot be calculated. The data for individual models are as follows: 

Model Substances Descriptors PLS factors 
1 1504 428 1 
2 280 232 1 
3 280 253 1 
4 280 194 2 
5 280 229 1 
6 280 252 2 
7 280 267 2 
8 280 259 2 
9 280 262 1 
10 280 235 1 
11 280 251 3 

 

5. Defining Applicability Domain  

5.1 Description of the applicability domain of the model 

The definition of the applicability domain consists of two components; the definition of a structural 
domain in Leadscope and the in-house further probability refinement algorithm on the output from 
Leadscope to reach the final applicability domain call.  

1. Leadscope 

For assessing if a test compound is within the structural applicability domain of a given model 
Leadscope examines whether the test compound bears enough structural resemblance to the training 
set compounds used for building the model (i.e. a structural domain analysis). This is done by 
calculating the distance between the test compound and all compounds in the training set (distance = 
1 - similarity). The similarity score is based on the Tanimoto method. The number of neighbours is 
defined as the number of compounds in the training set that have a distance equal to or smaller than 
0.7 with respect to the test compound. The higher the number of neighbours, the more reliable the 
prediction for the test compound. Statistics of the distances are also calculated. Effectively no 
predictions are made for test compounds which are not within the structural domain of the model or 
for which the molecular descriptors could not be calculated in Leadscope. 

2. The Danish QSAR group 

In addition to the general Leadscope structural applicability domain definition the Danish QSAR 
group has applied a further requirement to the applicability domain of the model. That is only positive 
predictions with a probability equal to or greater than 0.7 and negative predictions with probability 
equal to or less than 0.3 are accepted. Predictions within the structural applicability domain but with 
probability equal to or greater than 0.5 and less than 0.7, or greater than 0.3 and less than 0.5 are 



defined as positives out of applicability domain and negatives out of applicability domain, 
respectively. When these predictions are weeded out the performance of the model in general 
increases at the expense of reduced model coverage. 

 

5.2 Method used to assess the applicability domain 

Leadscope does not generate predictions for test compounds which are not within the structural 
domain of the model or for which the molecular descriptors could not be calculated.  

Only positive predictions with probability equal to or greater than 0.7 and negative predictions with 
probability equal to or less than 0.3 are accepted. 

 

5.3 Software name and version for applicability domain assessment 

Leadscope Predictive Data Miner (LPDM), a component of Leadscope Enterprise Server version 
3.5.3-5. 

 

5.4 Limits of applicability 

The Danish QSAR group applies an overall definition of structures acceptable for QSAR processing 
which is applicable for all the in-house QSAR software, i.e. not only Leadscope. According to this 
definition accepted structures are organic substances with an unambiguous structure, i.e. so-called 
discrete organics defined as: organic compounds with a defined two dimensional (2D) structure 
containing at least two carbon atoms, only certain atoms (H, Li, B, C, N, O, F, Na, Mg, Si, P, S, Cl, 
K, Ca, Br, and I), and not mixtures with two or more ‘big components’ when analysed for ionic bonds 
(for a number of small known organic ions assumed not to affect toxicity the ‘parent molecule’ is 
accepted). Calculation 2D structures (SMILES and/or SDF) are generated by stripping off ions (of 
the accepted list given above). Thus, all the training set and prediction set chemicals are used in their 
non-ionized form. See 5.1 for further applicability domain definition.  

 

6. Internal validation 

6.1 Availability of the training set 

Yes, available upon request (see Rosenberg et al. 2017, however please note that in this model we 
have integrated the training set and validation set from Rosenberg et al. 2017 to constitute an 
expanded training set).  

 

6.2 Available information for the training set 

The file contains CAS, SMILES and activity call for each substance 



 

6.3 Data for each descriptor variable for the training set 
No 

 

6.4 Data for the dependent variable for the training set 
Yes 

 

6.5 Other information about the training set 

1,504 compounds are in the training set: 140 actives and 1,364 negatives.  

The training set was created by combining the training set and the external validation set for hPXR-
LBD binding described in Rosenberg et al. 2017.  
 

6.6 Pre-processing of data before modelling 

Only structures acceptable for Leadscope were used in the final training set. That is only discrete 
organic chemicals as described in 5.4 were used. In case of replicate structures, one of the replicates 
was kept if all the compounds had the same activity and all were removed if they had different 
activity. No further structures accepted by the software were eliminated (i.e. outliers).  

 

6.7 Statistics for goodness-of-fit 

Not performed. 

 

6.8 Robustness – Statistics obtained by leave-one-out cross-validation  

Not performed. (It is not a preferred measurement for evaluating large models).  

 

6.9 Robustness – Statistics obtained by leave-many-out cross-validation 

A two times five-fold 20 % cross-validation was performed using the Leadscope Predictive Data 
Miner built-in procedure. NB the implementation in LPDM may sometimes give too optimistic 
results. 



Predictions within the defined applicability domain of the validation sub-models were pooled and 
Cooper’s statistics calculated. This gave the following results for the predictions which were within 
the applicability domains of the respective sub-models: 

− Sensitivity (true positives / (true positives + false negatives)): 86.6% 

− Specificity (true negatives / (true negatives + false positives)): 98.5% 

− Balanced Accuracy ((Sensitivity + Specificity) /2): 92.6% 

− Coverage ((In-Domain predictions) / (All predictions): 82.7% 

 

6.10 Robustness - Statistics obtained by Y-scrambling 

Not performed. 

 

6.11 Robustness - Statistics obtained by bootstrap 

Not performed. 

 

6.12 Robustness - Statistics obtained by other methods 

Not performed. 

 

7. External validation  

The predecessor to the model reported here, i.e. the non-expanded QSAR model reported in 
Rosenberg et al. 2017, was validated by a procedure where the experimental results were blinded by 
U.S. NIH NCATS to the DTU QSAR developers with the results as reported here in chapter 7. 
 

7.1 Availability of the external validation set 

Yes, available upon request, see Rosenberg et al. 2017. 
 

7.2 Available information for the external validation set 



For each substance in the external validation set, CAS, SMILES and activity call is available. 
 

7.3 Data for each descriptor variable for the external validation set 

No 
 

7.4 Data for the dependent variable for the external validation set 

All 
 

7.5 Other information about the validation set  

The experimental protocol for the test set substances is identical to the one for the training set 
described in section 3. 
 

7.6 Experimental design of test set 

The external validation set consisted of about one third of the substances and was masked by NIH 
NCATS for DTU-blinded external validation after the model development was finished.  

The selection of the test sets was designed and made by NIH NCATS scientists, who clustered all 
compounds in the dataset on structural similarity using the Euclidian distance and then, within each 
structure cluster and for each of the four endpoints, approximately one-third actives and one-third 
inactives were selected randomly.  

Thus the training and test sets are structurally comparable and have similar distributions of actives 
and inactives. NIH NCATS sent the training sets containing structure information and experimental 
results and the test sets containing only structure information to the National Food Institute (Food) at 
the Technical University of Denmark (DTU), who performed the structure preparations, the model 
development and validations as well as the virtual screenings.  
 

7.7 Predictivity – Statistics obtained by external validation 

From Table 2 in Rosenberg et al. 2017: 

QSAR model 
 

Statistical 
parameter 

Cross-validation, % 
(SD, %) 

External validation, % 
(actual numbers) 



  5 times 2-fold* Blinded test 
sets** 

Extra hPXR-LBD 
test set 

hPXR-LBD 
Approach 5) 
10 sub-models 

Coverage 66.0 (3.3) 67.3 (438/651) 60.6 (1475/2434) 
Sensitivity 68.7 (7.3) 85.0 (17/20) 71.9 (97/135) 
Specificity 84.5 (2.0) 87.8 (367/418) 80.4 (1078/1340) 
Balanced 
accuracy 

76.6 (3.2) 86.4 76.1 

*A five times two-fold cross-validation with same active-inactive ratio as the full training set and without reusing selected 
descriptors from the parent model. Coverage, sensitivity and specificity are the mean from the ten cross-validation models 
with the standard deviation (SD) in parentheses. ** The experimental results of the test set structures were made available 
to DTU Food by NIH NCATS after they had been predicted in the respective models by DTU Food. 

 

7.8 Predictivity – Assessment of the external validation set 

As described under 7.6 all compounds in the total dataset were clustered on structural similarity using 
the Euclidian distance and within each structure cluster approximately one-third actives and one-third 
inactives were selected randomly for the external validation set.  

From Rosenberg et al. 2017: The distributions of experimentally active and inactive structures in 
these external test sets are imbalanced toward more inactives similar to the training set distributions. 
Although the masked test sets in total are quite large for external validation, the few actives make the 
calculations of sensitivity less robust. The supplementary external validation of the hPXR-LBD model 
included 135 experimentally active substances out of the total 1,475 test set structures predicted 
inside the hPXR-LBD model’s AD (Table 2). This larger number of actives may provide a more 
accurate estimate of the hPXR-LBD model’s sensitivity compared to the result from the blinded 
external validation with only 20 experimentally active compounds. The extra external validation of 
the hPXR-LBD model resulted in overall lower predictive performance estimates compared to the 
blinded external validation (Table 2). This can be due to differences in the chemical universes of the 
two test set with the blinded test set likely representing the training set better due to the chemical-
similarity test set selection procedure described in section 2.1 [55,56]. A previous study have shown 
that this type of rational test set selection can give optimistic validation results [57]. Also, although 
the hPXR-LBD data in the two datasets were generated using the same assay protocol in the same 
laboratory, minor differences in the data analysis of the extra hPXR-LBD dataset compared to that 
of the NIH NCATS hPXR-LBD data could have negatively affected the validation results to some 
degree.  

 

7.9 Comments on the external validation of the model  

A special set-up between the collaborators on the development of this model was set up, where the 
developed QSAR model was validated by a procedure where the experimental results were blinded 
by U.S. NIH NCATS to the DTU QSAR developers. 



 

8. Mechanistic interpretation  

8.1 Mechanistic basis of the model 

The global model identifies structural features and molecular descriptors which in the model 
development was found to be statistically significant associated with effect. Many predictions may 
indicate modes of action that are obvious for persons with expert knowledge for the endpoint.  

 

8.2 A priori or posteriori mechanistic interpretation 

A posteriori mechanistic interpretation. The identified structural features and molecular descriptors 
may provide basis for mechanistic interpretation.  

 

8.3 Other information about the mechanistic interpretation 

 

9. Miscellaneous information 

9.1 Comments 

None 
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