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We study the critical behavior for percolation on inhomogeneous random
networks on n vertices, where the weights of the vertices follow a power-
law distribution with exponent τ ∈ (2,3). Such networks, often referred to as
scale-free networks, exhibit critical behavior when the percolation probability
tends to zero at an appropriate rate, as n→∞. We identify the critical win-
dow for several scale-free random graph models, such as the Norros-Reittu
model, Chung-Lu model and generalized random graphs. Surprisingly, there
exists a finite time inside the critical window, after which we see a sudden
emergence of a ‘tiny’ giant component. This is a novel behavior which is in
contrast with the critical behavior in other known universality classes with
τ ∈ (3,4) and τ > 4.

Precisely, for edge-retention probabilities πn = λn−(3−τ)/2, there is an
explicitly computable λc > 0 such that the critical window is of the form λ ∈
(0, λc), where the largest clusters have size of order nβ with β = (τ2−4τ +

5)/[2(τ − 1)] ∈ [
√

2− 1, 1
2 ) and have non-degenerate scaling limits, while

in the supercritical regime λ > λc, a unique ‘tiny giant’ component of size
Θ(
√
n) emerges, and its size concentrates. For λ ∈ (0, λc), the scaling limit

of the maximum component sizes can be described in terms of components
of a one-dimensional inhomogeneous percolation model on Z+ studied in a
seminal work by Durrett and Kesten [28]. For λ > λc, we use a relation to
general inhomogeneous random graphs as studied by Bollobás, Janson and
Riordan [15] to prove that the sudden emergence of the tiny giant is caused
by a phase transition inside a smaller core of vertices of weight Ω(

√
n).

1. Introduction.

1.1. Background. Percolation phase transitions are one of the foundational tenets in the
application of probabilistic combinatorics to areas ranging from statistical physics to social
dynamics [30]. At the simplest level, one starts with a base (potentially random) graph. For
a parameter π, each edge in the graph is retained with probability π and deleted with prob-
ability 1− π, independently across edges. The first question of interest is to understand the
emergence of a giant connected component as one increases the value of π, by identifying
critical values of this parameter where abrupt changes in the connectivity occurs. This ques-
tion arises as the building block for more complex interacting particle systems, e.g. in the
study of epidemics, condensed matter theory, and robustness of networks such as the Internet
when the edges of the underlying network experience random failure [6, 27, 38].

Unlike phase transitions on infinite graphs such as lattices, there is typically no unique
critical value for phase transition in large, but finite, graphs. Instead, there is an interval
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of π-values (depending on the size of the graph), often referred to as the critical window,
where this structural transition in the component sizes takes place. To fix ideas, let us recall
classical results for percolation on complete graphs with n vertices and π = c/n or Erdős-
Rényi random graphs ERn(c/n). It is well known that the critical window is given by c(λ) =
1 +λn−1/3 for −∞< λ<∞ [2, 33, 34], i.e., if C(i) denotes the i-th largest component, then

(a) |C(i)|
2λ2
nn

2/3 log |λn|
P−→ 1 for all i≥ 1 for λ= λn→−∞ with |λn|= o(n1/3);

(b) |C(1)|
2|λn|n2/3

P−→ 1, and |C(i)|
2λ2
nn

2/3 log |λn|
P−→ 1 for all i ≥ 2 for λ = λn → +∞ with λn =

o(n1/3);
(c) n−2/3|C(i)| converges in distribution to non-degenerate strictly positive random variables

whose distribution depends on λ inside the critical window where λ is fixed.

Thus the largest component sizes concentrate outside the critical window, whereas they yield
non-degenerate scaling limits in the critical window which sensitively depends on the precise
location in the scaling window given by λ. Starting with the pioneering work by Janson,
Knuth, Łuczak, Pittel [33] and Aldous [2], the study of critical behavior has inspired an
enormous literature with several scaling-limit results showing qualitatively similar behavior
as in Erdős-Rényi random graph for largest component sizes [4, 13, 22, 35, 37, 40] and their
metric structure [1, 7, 9, 17] when the base graphs have sufficiently homogeneous degree
distribution, as well as qualitatively different behavior for component sizes [3, 14, 23, 35]
and their metric structure [11, 12, 17, 20] when the base graphs have heavy-tailed degree
distribution. See [21, Chapter 1] for a detailed literature overview.

1.2. Overview of our contributions. In this paper, we prove a new type of phase transi-
tion phenomenon in the emergence of maximally connected components in certain random
graphs, and develop techniques in probabilistic combinatorics necessitated by such mod-
els. The starting point is random network models with power-law degree distributions with
exponent τ ∈ (2,3). These models are enormously popular in applications owing to empir-
ical observations that many real-world systems (World-Wide Web, social networks, protein
interaction networks [6]) seem to exhibit qualitative properties similar to such models. Math-
ematically, these models turn out to be highly challenging (as will become further evident
below), since they contain extremal degree vertices at many different scales that play crucial
and central roles in the connectivity patterns at specific phases of the percolation process. In
this context, our main contributions include the following central aspects:

A novel phase transition. This paper considers a number of major families of scale-free
random graph models with degree exponent τ ∈ (2,3) related to Aldous’s multiplicative co-
alescent [2]; these include models such as the Norros-Reittu model, the Chung-Lu model,
and the generalized random graph (see Section 2.2 for more details). This class of models,
sometimes referred to as rank-1 models [15], has turned out to be central in understanding
universality phenomena for critical random graphs in the sense that, once these models have
been understood, a host of other canonical random graph models can all be proven to have
the same asymptotic behavior in the critical regime, see e.g. [9, 10, 11, 12]. We show that the
critical window for percolation on scale-free random graphs will be given by

πc(λ) = λn−(3−τ)/2, λ ∈ (0, λc),(1.1)

for some explicitly-computable and model-dependent critical value λc. Thus, surprisingly,
the critical window is given by a bounded interval λ ∈ (0, λc). In other words, if we look at
the coalescence of the critical components as the percolation parameter transitions through
the critical window, the components evolve in a non-trivial manner only up to a finite time λc,
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after which all of the critical components suddenly coalesce with each other. This is in con-
trast with Aldous’ multiplicative coalescent, where the coalescence happens over an infinite
length window. The exponent for the critical window in (1.1) was previously conjectured in
the statistical physics literature (see for example [27, Section 4]) using a tree ansatz argu-
ment which predicts the critical probability from the criticality of a branching process that
approximates the local structure of these random graph models. However, the sudden phase
transition at some finite λc was not predicted in the extensive numerical and non-rigorous in-
vestigations from statistical physics and condensed matter theory. Conceptually, in addition
to the tree ansatz argument, the emergence of giants in networks with a heavy-tailed degree
distribution depends crucially on how the connections between the extremal-degree vertices
or hubs form. We will see that the intricate structure of the connectivity between hubs is
responsible for the giant emergence at λc.

Overall, this work identifies a completely new phenomenon for percolation on scale-free
random graphs. See Section 2.6 for a discussion of many other random graphs models where
similar behavior is conjectured.

Multiscale emergence of connectivity and technical novelty. Analyzing the critical regime
of models in this class presents significant technical challenges, mainly since standard tech-
niques based on exploration processes or differential equations cannot be implemented; rather
one needs to carefully understand the contribution of extremal-degree vertices or hubs of dif-
ferent scales contributing to connectivity at each value of πc(·). More precisely, we show the
following:

(a) Critical scaling window: For λ ∈ (0, λc), the maximal component sizes scale like nβ

with β = 1
τ−1 −

3−τ
2 ∈ [

√
2 − 1, 1

2), and the rescaled vector of ordered component
sizes converges to a non-degenerate random vector in the `2-topology. The distributional
asymptotics can be derived in terms of an inhomogeneous percolation model on Z+,
which represents the core connectivity structure between the hubs. In this regime, connec-
tivity emerges owing to interconnections between macro-hubs, namely maximal-degree
vertices (with maximal weight of order n1/(τ−1)). However note that with πc(λ)→ 0,
these macro-hubs cannot be directly connected; rather (with positive probability) they
are connected via two-step paths through intermediate scale meso-hubs of weight of or-
der n(τ−2)/(τ−1). This interconnected structure forms the core of the critical components,
and we use path-counting techniques to show that the 1-neighborhood of the core spans
the critical components (see Figure 1). The core can be coupled to a one-dimensional in-
homogeneous percolation model on Z+, which was studied in a seminal work of Durrett
and Kesten [28] and in follow-up work by Zhang [41].

(b) Supercritical regime: For λ > λc, instead, we show that there is a unique giant com-
ponent of size Θ(

√
n)� nβ , and the size of the rescaled giant component concentrates.

In this case we show that the graph restricted to a special set of vertices of mesoscopic
weights of order at least

√
n can be approximated by a well-behaved inhomogeneous ran-

dom graph in the spirit of Bollobás, Janson and Riordan [15]. A giant component appears
inside this special high-weight set of vertices precisely when λ > λc. This forms the core
of the giant component in the whole graph, and again the 1-neighborhood of the core
spans the giant component of size

√
n (and, in fact, the core itself is, in size, negligible

to this 1-neighborhood). Analyzing the resulting random structure requires several deli-
cate estimates of multi-type branching process, as well as a careful topological analysis
of paths exiting and returning to these special high-weight set of vertices.

2. Main results.
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2.1. Preliminaries: notation, convergence and topologies. To describe the main results
of this paper, we need some definitions and notations. We use P−→ and d−→ to denote conver-
gence in probability and in distribution, respectively. The topology needed for convergence
in distribution will be specified unless clear from the context. We use the Bachmann-Landau
notation O(·), o(·), Θ(·) for large n asymptotics of real numbers. For two real sequences
(an)n≥1, (bn)n≥1, we write an � bn for an/bn = 1 + o(1). A sequence of events (En)n≥1 is
said to occur with high probability with respect to the associated sequence of probability mea-
sures (Pn)n≥1 if Pn

(
En
)
→ 1. For two sequences of real-valued random variables (Xn)n≥1

and (Yn)n≥1 on the same probability space, we write Xn = OP(Yn) if (|Xn|/|Yn|)n≥1 is a
tight sequence; Xn = oP(Yn) when Xn/Yn

P−→ 0; Xn = ΘP(Yn) if both Xn = OP(Yn) and
Yn = OP(Xn). We use C,C ′,C1,C2 etc. as generic notation for positive constants whose
value can change from line to line.

Fix τ ∈ (2,3). Throughout this paper, we denote

(2.1) α= 1/(τ − 1), ρ= (τ − 2)/(τ − 1), η = (3− τ)/(τ − 1), ηs = (3− τ)/2.

For p > 0, let `p denote the collection of sequences x = (x1, x2, x3, . . .) with
∑∞

i=1 |xi|p <
∞. Equip this space with the p-norm metric d(x,y) =

(∑∞
i=1 |xi − yi|p

)1/p. Let `p↓ ⊂ `p be
the collection of sequences x with xi ≥ 0 for all i and the elements of the sequence arranged
in non-increasing order.

2.2. Scale-free random graph models. We now describe the main models studied in this
paper. Given a set of weights w = (wi)i∈[n] on the vertex set [n], the Poissonian random
graph or Norros-Reittu model [39], denoted by NRn(w), is generated by creating an edge
between vertices i and j independently with probability

(2.2) pij = pNR

ij := 1− e−wiwj/`n ,

where `n =
∑

i∈[n]wi denotes the total weight. Our results for the critical window hold more
generally, for example, for the Chung-Lu Model [18, 19] (denoted by CLn(w)) with

(2.3) pCL

ij := min{wiwj/`n,1},

and the generalized random graph model [16] (denoted by GRGn(w)) with

(2.4) pGRG

ij :=
wiwj

`n +wiwj
.

The final model has the property that, conditionally on the degree sequence d= (di)i∈[n], the
law of the obtained random graph is the same as that of a uniformly chosen graph from the
space of all simple graphs with degree distribution d (cf. [31, Theorem 6.15]).

The percolated graph NRn(w, π) is obtained by keeping each edge of the graph indepen-
dently with probability π. This deletion process is also independent of the randomization of
the graph. Naturally, the behavior of NRn(w), and thus of NRn(w, π), depends sensitively
on the choice of vertex weights. The following choice of vertex weights will give rise to
scale-free random graphs:

ASSUMPTION 2.1 (Scale-free weight structure). For some τ ∈ (2,3), consider the distri-
bution function F satisfying [1−F ](w) =Cw−(τ−1) for some C > 0 and all w >C1/(τ−1).
Let wi = [1− F ]−1(i/n).

In this setting, if Wn denotes the weight of a vertex chosen uniformly at random, then
Wn will satisfy an asymptotic power-law in the sense that for any w > 0, P(Wn > w)→
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P(W >w), where W has distribution function F . As a result, the asymptotic weight distri-
bution will have the same exponent τ (see [32, Chapter 6]) resulting in a scale-free random
graph. Further,

(2.5) E[Wn] =
1

n

∑
i∈[n]

wi→ µ=E[W ],

and, for all i ∈ [n],

(2.6) n−αwi = cFi
−α,

for some constant cF > 0. Throughout cF will denote the special constant appearing in (2.6)
above.

2.3. Results. We start by describing our results for the barely subcritical regime, then
the critical window, and end with the super-critical regime. To explicitly describe limit con-
stants, we will phrase the results with respect to the Norros-Reittu model deferring statements
to other models to Theorem 2.7. The phase transition is described in terms of functionals of
the relevant components. Let (|C(i)(π)|)i≥1 be the component sizes of NRn(w, π), arranged
in non-increasing order (breaking ties arbitrarily). Further, let (W(i)(π))i≥1 denote the corre-
sponding weight of these clusters, i.e.,

(2.7) W(i)(π) =
∑

j∈C(i)(π)

wj .

The phase transitions will be described in terms of these two functionals.

2.3.1. Behavior in the barely sub-critical regime. Recall the constants related to the de-
gree exponent in (2.1).

THEOREM 2.2 (Subcritical regime for NRn(w, πn)). Suppose that w satisfies Assump-
tion 2.1, and consider NRn(w, πn) with πn = λnn

−ηs with λn = o(1), and πn� n−α. Then,
for any fixed i≥ 1, as n→∞,

(2.8)
|C(i)(πn)|
nαπn

P−→ cFi
−α, and

W(i)(πn)

nα
P−→ cFi

−α.

Theorem 2.2 implies that the largest percolation clusters with πn� n−ηs are the clusters
of the hubs, i.e., the vertices with the largest weights (wi = Θ(nα)). Further, the hubs with
high probability lie in disjoint components. Since, after percolation, the number of neighbors
of hub i is close to πnwi ≈ nαπncFi

−α, these largest clusters consist mostly of the hubs with
their immediate neighbors. In particular, since the largest cluster sizes concentrate, we are
not in the critical window when πn� n−ηs .

2.3.2. Behavior in the critical window. As discussed in the introduction, this critical win-
dow consists of πn = λn−ηs for some explicit bounded interval of λ. In particular, such val-
ues of πn are much larger than the values considered in the previous section. We will see that
there is a surprising phase transition in λ, occurring at a finite positive value λc. Below λc,
the scaling limits of the largest connected components have non-degenerate scaling limits,
and any two hubs are in the same component with asymptotic probabilities strictly bounded
between 0 and 1. Recall (2.1), and define

(2.9) πc = πc(λ) := λn−ηs , for λ ∈ (0, λc),
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where λc is given by

λc :=

√
η

4Bα
=
c
−1/α
F

2

√
(3− τ)µ1/α

Aα
,(2.10)

Aα :=

∫ ∞
0

1− e−z

z1/α
dz, Bα :=

c
2/α
F Aα

αµ1/α
.(2.11)

THEOREM 2.3 (Critical regime for NRn(w, πn)). Suppose that w satisfies Assump-
tion 2.1, and consider NRn(w, πn) with πn = πc(λ) for λ ∈ (0, λc) and λc as in (2.10).
Then, as n→∞,

(nαπc(λ))−1(|C(i)(πc(λ))|)i≥1
d−→ (W ∞

(i)
(λ))i≥1

and n−α(W(i)(πc(λ)))i≥1
d−→ (W ∞

(i)
(λ))i≥1

(2.12)

with respect to the `2↓ -topology and the `2-topology respectively. The limiting random vari-
ables (W ∞

(i)
(λ))i≥1 are non-degenerate and described in Definition 2.4 below. Moreover, for

each i≥ 1,

(nαπc(λ))−1|C(i)(πc(λ))| − n−α(W(i)(πc(λ))
P−→ 0,(2.13)

so that the convergence in (2.12) holds jointly.

The non-degenerate scaling limit of the component sizes, as well as their weights, is the
hallmark of critical behavior. To define the limiting variables in Theorem 2.3, we need the
following infinite weighted random graph which belongs to a general class of models studied
by Durrett and Kesten in [28]:

DEFINITION 2.4 (Limiting variables). Fix vertex set Z+ and let vertex i ∈ Z+ have
weight θi := cFi

−αµ−1. Consider the random multi-graph G∞(λ) on Z+ where vertices i and
j are joined independently by Poisson(λij) many edges with λij given by

(2.14) λij := λ2

∫ ∞
0

Θi(x)Θj(x)dx, where Θi(x) := 1− e−cFθix
−α
.

For i≥ 1, let W ∞
(i)

(λ) denote the i-th largest element of the set{∑
i∈C

θi : C is a connected component
}
,

which is well-defined when (W ∞
(i)

(λ))i≥1 ∈ `2↓ almost surely.

We will see that asymptotically there are Poisson(λij) many two-step paths between
macro-hubs i and j via intermediate meso-scale hubs of weight Θ(nρ) in NRn(w, πc(λ)),
for i, j fixed as n→∞. The integral in (2.14) can be understood as the limit of the summa-
tion over the intermediate vertices in the two-step connection probabilities from i to j. These
two-step paths between hubs form the backbone of the largest connected components. The
connectivity structure of these two-step connections undergoes a phase transition, as we next
explain. The following result implies that the limiting object is well-defined for λ ∈ (0, λc],
and undergoes a phase transition at λ= λc:

PROPOSITION 2.5 (Phase transition for the limiting model). (a) For λ≤ λc, (W ∞
(i)

(λ))i≥1

is in `2↓ almost surely.
(b) For λ > λc, G∞(λ) is connected almost surely, in particular W ∞

(1)
(λ) =∞ and W ∞

(2)
(λ) =

0 almost surely.
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2.3.3. Behavior in the supercritical regime. Let us now consider percolation with prob-
ability πn = λn−ηs for λ > λc. Since G∞(λ) represents the connectivity structure between
the hubs, Proposition 2.5 (b) suggests that (1) the hubs are in the same component with high
probability; and (2) the largest connected component after λc is much larger than the com-
ponents before λc. Our result next result shows that in fact a ‘tiny’ giant component of size
Θ(
√
n) appears in the graph, and the size of this giant component concentrates. Moreover,

the giant component is unique in the sense that the second largest component is of a smaller
order. To describe the limiting size of the giant component, fix a > 0, and define

ζλa := λ

∫ a

0
cFu
−αρλa(u)du,(2.15)

where ρλa : (0, a]→[0,1] is the maximum solution to the fixed point equation

ρλa(u) = 1− e−λ
∫ a
0
κ(u,v)ρλa(v)dv, with κ(u, v) := 1− e−c

2
F(uv)−α/µ.(2.16)

In Proposition 4.5, we will see that ζλ = lima→∞ ζ
λ
a exists, and that ζλ ∈ (0,∞) whenever

λ > λc. We now state our result for the emergence of the giant component for λ > λc:

THEOREM 2.6 (
√
n-asymptotics of size and uniqueness giant). Suppose that w satisfies

Assumption 2.1, and consider NRn(w, πn) with πn = λn−ηs for some λ > λc. Then, as
n→∞,

n−1/2|C(1)(πn)| P−→ ζλ, and n−1/2|C(2)(πn)| P−→ 0,(2.17)

where ζλ = lima→∞ ζ
λ
a with ζλa given by (2.15). Further, {v : wv ≥ n1/2+δ} ⊆ C(1)(πn) with

high probability for every δ > 0.

For λ > λc, a ‘tiny giant’ component will be shown to emerge inside the subset of vertices
with weight Ω(

√
n). The giant component in the whole graph consists primarily of the 1-

neighborhood of this tiny giant, which gives rise to (2.15). The intuition is discussed in more
detail in Section 2.5.

2.4. Discussion. In this section, we discuss some insights to our results, extensions and
open problems.

Critical window for other rank-1 models. Our results for the subcritical regime, and the
critical window, hold more generally for the Chung-Lu model CLn(w) and the generalized
random graph model GRGn(w) described in (2.3) and (2.4). To state this formally, define

ACL

α =

∫ ∞
0

min{1, z}z−1/αdz, AGRG

α =

∫ ∞
0

z1−1/α

1 + z
dz,(2.18)

and define BCL

α , BGRG

α , and the critical values λCL

c and λGRG

c identically as in (2.10) and (2.11)
with the above choices of ACL

α and AGRG

α , respectively. To define the limiting object, let

ΘCL

i (x) = min
{c2

F
i−αx−α

µ
,1
}
, ΘGRG

i (x) =
c2

F
i−αx−α

µ+ c2
F
i−αx−α

.(2.19)

Let the graphs CLn(w, π), GRGn(w, π) be obtained by independently keeping each edge of
the graph CLn(w) and GRGn(w), respectively.

THEOREM 2.7 (Extensions to other rank-1 models). Under Assumption 2.1, Theo-
rems 2.2, 2.3 hold for CLn(w, πc(λ)) and GRGn(w, πc(λ)) with λc replaced by λCL

c and
λGRG

c defined below (2.18), respectively, and the scaling limits given by Definition 2.4 with
Θi(x) replaced by ΘCL

i (x) and ΘGRG

i (x) defined in (2.19), respectively.
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The proof of Theorem 2.7 only requires minor adaptations of the proofs of Theo-
rems 2.2, 2.3. We point out the key modifications in Remarks 3.5, 3.9 and skip redoing the
whole proof for Theorem 2.7. We also believe that a result analogous to Theorem 2.6 holds
for the giant component in CLn(w, πn) and GRGn(w, πn), with

κCL(u, v) := min
{c2

F
(uv)−α

µ
,1
}
, κGRG(u, v) :=

c2
F
(uv)−α

µ+ c2
F
(uv)−α

.(2.20)

However, since the proof of Theorem 2.6 is extremely delicate, we leave this as an open
question.

When does the single-edge constraint matter?. In concurrent works [24, 25], we study per-
colation on scale-free networks around criticality for models that allow for multi-edges such
as the configuration model [25] and the Norros-Reittu model [24]. In the latter model, the
number of edges between vertices i and j is Poisson(wiwj/`n). It turns out that a giant
emerges in these multi-edge models when

πn = λnn
−(3−τ)/(τ−1), where λn→∞.(2.21)

Thus, the emergence of a giant happens in multi-edge models for much smaller πn values.
Interestingly, when πn = λn−ηs and λ > λc, both the single-edge and multi-edge version of
the Norros-Reittu model contain a giant component of size Θ(

√
n), but the description of

their asymptotic sizes are vastly different. In fact, we believe that the asymptotic proportions
are strictly different although we do not prove it in this article. On the other hand, if πn =
λnn

−ηs with λn→∞, then the giants in both the single and multi-edge Norros-Reittu model
turn out to have the same asymptotic size [24]. Such differences in multi-edge versus single-
edge cases are absent in the τ > 3 settings.

Critical windows: emergence of hub connectivity. The critical window changes due to the
single-edge constraint as noted in the previous paragraph. However, there are some common
features. First, the component sizes are of the order nαπc(λ) in both regimes. This is due to
the fact that the main contribution to the component sizes comes from hubs and their direct
neighbors. Second, in both cases, the critical window is the regime in which hubs start getting
connected. More precisely, the critical window is given by those values of π such that, for
any fixed i, j ≥ 1,

lim inf
n→∞

P(i, j are in the same component in the π-percolated graph) ∈ (0,1).(2.22)

For multi-edge models, hubs are directly connected with strictly positive probability, while
under the single-edge constraint, hubs are connected with positive probability via interme-
diate vertices of degree Θ(nρ). In the barely subcritical regime, instead, all the hubs are in
different components. Hubs start forming the critical components precisely when the connec-
tion probability π varies over the critical window. Finally, in the barely super-critical regime,
the giant component is formed, and this giant contains all the hubs. This feature is also ob-
served in the τ ∈ (3,4) case [14]. However, the distinction between τ ∈ (3,4) and τ ∈ (2,3)
is that, for τ ∈ (3,4), the paths between the hubs have lengths that grow with n, namely
as n(τ−3)/(τ−1).

2.5. Proof outline.
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FIG 1. Visualization of the core structure of components and the exploration of the neighborhood. Red vertices
indicate hubs with wi = Θ(nα), and blue vertices having wi = Θ(nρ) are intermediate vertices that connect
hubs via two-step paths (indicated by green edges).

The critical window (Section 3). The key idea is that the largest critical components cor-
respond to connected components containing macro-hubs (maximal-weight vertices). How-
ever, since πn→ 0 any two macro-hubs cannot be directly connected in the large network
limit, rather these have non-trivial probability of being connected via a two-step path pass-
ing through meso-scale intermediate hubs of weight Θ(nρ). In fact, we can couple the hubs
and these two-step connections to the infinite graph G∞(λ) as in Definition 2.4 in total vari-
ation distance (see Proposition 3.6 below). Next, we show that the primary contribution to
the component sizes comes from the 1-neighborhood of the subgraph consisting of hubs
and their two-step connections. This is reflected in the fact that, when we explore the graph
starting from hubs in a breadth-first manner, we see an alternating structure with the hubs
of weight Θ(nα) appearing in the odd generations, and the even generations consisting of
vertices having weight Θ(nρ), see Figure 1 and Proposition 3.11 below. The main technique
here is to use appropriate path-counting techniques (see Proposition 3.10 below). Finally, we
conclude the proof of Theorem 2.3 by showing that the vector of component sizes is tight
in `2↓ when λ < λc (see Proposition 3.16). The phase transition at λ = λc is exemplified in
Proposition 2.5, as G∞(λ) becomes connected for λ > λc.

Supercritical regime (Sections 4 and 5). The key observation is that the core of the giant
component can be identified by looking at a special set of vertices V consisting of vertices
with weight Ω(

√
n). Note that these vertices are present only in the τ ∈ (2,3) regime (for

τ > 3, the maximum weight is o(
√
n)). Now, the subgraph restricted to V is an inhomoge-

neous random graph with kernel approximately equal to κ given by (2.16). Using general
results from inhomogeneous random graphs [15], this allows us to conclude that the graph
restricted to V exhibits a phase transition, and a unique giant component of approximate size
|V |ρλ appears for some λ > λ1

c , where λ1
c is given by the inverse of the norm of a suitable in-

tegral operator. Thus, a giant component appears inside V precisely after λ1
c . This constitutes

the core of vertices, and the 1-neighborhood of this tiny giant spans almost the entire giant
component. The quantity ζλ in (2.15) should be interpreted as the size of the 1-neighborhood
of the small giant. Thus, we see two structural transitions occurring at λ= λc and at λ= λ1

c .
These values have rather different origins. Indeed, λc arises as the connectivity threshold for
the inhomogeneous percolation on the integers in Proposition 2.5, while λ1

c arises as the crit-
ical value of an appropriate inhomogeneous random graph, described in terms of an operator
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of some branching process. However, an explicit computation shows that, in fact, λc = λ1
c ,

see Lemma 4.4 below.

2.6. Open problems. We expect the results to hold for percolation problems on a variety
of scale-free random graph models. For example, we believe that our results carry over to
the setting of uniform random graphs with a given degree distribution (di)i∈[n], for which the
probability that hubs i and j are connected is close to didj/(`n + didj), with `n =

∑
i∈[n] di

(see, e.g., [29, Lemma 3]). In this case, we expect the scaling limits and λc to be identical
to that of the generalized random graph model. Similarly, for the erased configuration model
(where multi-edges are collapsed to a single edge), the scaling limits and λc are expected
to be identical to the Norros-Reittu model. The finite-time phase transition is expected for
a wide class of general inhomogeneous random graph models (as defined in [15]), where
the edge probability matrix is not approximately rank-1 as long as the asymptotic two-hop
connection probabilities satisfy a condition similar to Corollary 3.3 below, with h satisfying
the general conditions of [28, Theorem 1].

Investigation into scale-free settings beyond Assumption 2.1 is also of interest. We believe
that similar behavior can be observed if the weights are sampled in an iid manner from F . The
scaling limit is expected to be slightly different since the limit of (n−αwi)i≥1 is now random.
It is desirable to find general conditions similar to [25, Assumption 1] for the critical window
of configuration model multi-graphs. The interested reader should note that additional control
on intermediate weights is required to ensure the formation of suitable two-hop connections.

Figure 1 and the proof ideas suggest that the typical distances in large critical components
are quite small, and it would be of interest to describe their distributions in more detail. Fur-
ther, it would be of interest to derive the scaling limit of the diameter of the large critical com-
ponents. Finally, we show that the critical window in the single-edge case is πn = λn−(3−τ)/2

for λ ∈ (0, λc), which does not include the critical value λc. However, λc is included in the
critical case for the limiting graph in Proposition 2.5. This raises the question what happens
for πn = n−(3−τ)/2λc(1 + εn) for εn = o(1). Is barely supercritical behavior then observed,
or does a second type of critical behavior emerge? We leave this as an interesting open ques-
tion.

3. Proofs for subcritical and critical regimes. We begin with the proof of the criti-
cal regime, starting in Section 3.1 by proving Proposition 2.5 and in particular showing that
the asserted limiting object is finite. In Section 3.2, we set up technical ingredients to study
the connectivity structure between macro-hubs. In Section 3.3, we derive path-counting esti-
mates, which are used in Section 3.4 to show that if we start exploring a component from a
hub, then the total number of vertices at even distances is negligible, and the total number of
vertices at large and odd distances is also negligible (the same estimates will be useful in the
sub-critical regime, which explains why we start with the critical regime first). This allows us
to compute the size of the components containing hubs in Section 3.5. We conclude the proof
of Theorem 2.3 in Section 3.6 by showing that the vector of component sizes is tight in `2↓ .
The subcritical regime is analyzed in Section 3.7, where we use path-counting techniques to
show that the largest components are essentially stars with hubs as centers.

3.1. Finiteness of the limiting object for λ≤ λc: proof of Proposition 2.5. Recall λc from
(2.10), and the constants Aα,Bα from (2.11). Define the symmetric function h : (0,∞)2→
(0,∞) by

(3.1) h(x, y) :=Bα(x∧ y)−(1−α)(x∨ y)−α.

Note that h is perfectly homogeneous of exponent −1, i.e., h(tx, ty) = t−1h(x, y) for all
x, y, t > 0. Analogous to G∞(λ) in Definition 2.4, consider the following random graph which
belongs to a general class of models studied by Durrett and Kesten [28]:
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DEFINITION 3.1 (Inhomogeneous percolation model). Consider the random graph
GDK(λ) on Z+ where vertices i and j are joined with probability min{λ2h(i, j),1}, inde-
pendently across edges.

THEOREM 3.2 (Previous results for GDK(λ), [28, 41]). (a) By [28], the random graph
GDK(λ) is connected almost surely for λ > λc.

(b) For i, j ∈ Z+, writePλ,DK(i↔ j) for the probability that i, j are connected by some path
in GDK(λ). By [41], there exists c1 <∞ such that for λ= λc, and for any 1≤ i < j,

Pλc,DK(i↔ j)≤ c1 log(i∨ 2)/
√
ij.

To see that the λc in (2.10) gives the same critical value as [28, (1.5)], we compute[∫ ∞
0

h(1, y)
√
y

dy

]−1

=
1

Bα

[∫ 1

0

dy

y
1

2
+1−α +

∫ ∞
1

dy

y
1

2
+α

]−1

=
2α− 1

4Bα
=

η

4Bα
,(3.2)

where we have used that α ∈ (1
2 ,1). The square root in (2.10) is due to the fact that we have

used λ2 in Definition 3.1 instead of λ as in [28]. The factor λ2 arises for us, since we deal
with two-step paths. We next discuss an extension where the connection probabilities are
asymptotically equal to h(i, j) also proven in [28, Extension (a)]:

COROLLARY 3.3 (Extension to asymptotic edge probabilities, [28]). Consider the
graph G′

DK
(λ) constructed by keeping an edge between i and j independently with proba-

bility r(i, j), and let

lim
i→∞

lim
j→∞

r(i, j)/λ2h(i, j) = 1.(3.3)

Then, G′
DK

(λ) is connected almost surely if λ > λc.

We next state the following lemma which allows us to compare the connection proba-
bilities in Definitions 2.4 and 3.1. Let p∞(i, j) := 1 − e−λij , with λij as in (2.14), be the
probability that there is an edge between i, j in G∞(λ) in Definition 2.4:

LEMMA 3.4 (Asymptotics of two-step probabilities). For all i, j ∈ Z+, p∞(i, j) ≤
λ2h(i, j). Further,

(3.4) lim
i→∞

lim
j→∞

p∞(i, j)/λ2h(i, j) = 1.

Consequently, G∞(λ) is almost surely connected for λ > λc.

PROOF. Without loss of generality, let i < j. We first show the first assertion on domina-
tion. Using 1− e−x ≤ x for all x > 0 twice, as well as (2.14), we note that

p∞(i, j)≤ λij = λ2

∫ ∞
0

Θi(x)Θj(x)dx≤ λ2c2
F
j−α

µ

∫ ∞
0

(
1− e−

c2F
µ
i−αx−α

)
x−αdx.(3.5)

Substituting z = (i−αx−α)c2
F
/µwith x= c

2/α
F µ−1/αz−1/αi−1 and dz =−αc2

F
µ−1i−αx−α−1dx,

p∞(i, j)≤ λ2

jα

∫ ∞
0

(1− e−z)
c

2/α
F

µ1/α

dz

αi1−αz1/α
=
λ2c

2/α
F

αµ1/α

1

i1−αjα

∫ ∞
0

1− e−z

z1/α
dz,(3.6)

and thus using (2.11), it follows that p∞(i, j)≤ λ2h(i, j). For the second assertion, note that
limi→∞ limj→∞ λij = 0. Thus, we can use the same calculation as above, together with the
fact that limx→0[1 − e−x]/x = 1 to conclude (3.4). The last conclusion now follows from
Corollary 3.3. �
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REMARK 3.5 (Related rank-1 models). If we replace Θi(x) by ΘCL

i (x) and ΘGRG

i (x)
from (2.19) respectively, then Lemma 3.4 holds with h(i, j) replaced by hCL(i, j) =
(BCL

α /Bα)h(x, y) and hGRG(i, j) = (BGRG

α /Bα) respectively from (2.19).

PROOF OF PROPOSITION 2.5. Recall that θi = cFi
−αµ−1. Using Lemma 3.4, the graph

G∞(λ) is almost surely connected for λ > λc. Thus, Proposition 2.5 (b) follows from the fact
that

∑∞
i=1 θi =∞. Next, by the upper bound in Lemma 3.4 and monotonicity in λ for the

connection probabilities, it is enough to show Proposition 2.5 (a) for GDK(λc). To this end, let
C(j) denote the component of vertex j in GDK(λc). Define

(3.7) C≤(j) =

{
C(j) if j = min{i : i ∈ C(j)},
∅ otherwise.

Then it is enough to show that

(3.8) L :=E

( ∞∑
j=1

( ∑
i∈C≤(j)

θi

)2
)
<∞.

Expanding the above, we obtain

L≤
∞∑
j=1

θ2
j + 2

∑
i1>i2≥j

θi1θi2Pλc,DK(i1↔ i2 in [j,∞), i1, i2 ∈ C(j)) := ||θ||2 + 2L1.(3.9)

Here the event {i1↔ i2 in [j,∞)} is the event that there exists a path in GDK(λc) from i1 and
i2 with all intermediate vertices in [j,∞). Since θ ∈ `2↓ , it is enough to show that L1 <∞.
Splitting into cases depending on whether i2 = j or i2 > j, we get L1 = L2 +L3, where

(3.10) L2 :=

∞∑
j=1

∑
i1>j

θi1θjPλc,DK(i1↔ j in [j,∞))≤
∞∑
j=1

1

jα

∑
i>j

1

iα
c1 log j√

ij
<∞,

where the second inequality follows from Theorem 3.2 (b) and the last inequality uses
α > 1

2 . The final term to bound is L3. For any i1, i2 > j write {i1↔ i2}j for the event
{i1↔ i2 in [j,∞)} in GDK(λc). Next note that

(3.11) {i1↔ i2 in [j,∞), i1, i2 ∈ C(j)} ⊆
⋃
z≥j

[
{z↔ j}j ◦ {i1↔ z}j ◦ {i2↔ z}j

]
,

where {z↔ j}j ◦ {i1↔ z}j ◦ {i2↔ z}j denotes the event that the implied connections are
realized using disjoint sets of edges. The union bound combined with the BK-inequality [8,
Theorem 3.3] implies that, for fixed i1 > i2 > j,

Pλc,DK(i1↔ i2 in [j,∞), i1, i2 ∈ C(j))

≤
∑
z≥j

Pλc,DK({j↔ z}j)Pλc,DK({z↔ i1}j)Pλc,DK({z↔ i2}j)

≤
∑
z≥j

c3
1

log(j ∨ 2) log(i1 ∨ 2) log(i2 ∨ 2)√
i1i2jz3

≤C log(j ∨ 2) log(i1 ∨ 2) log(i2 ∨ 2)

j
√
i1i2

,

(3.12)
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where we have once again used Theorem 3.2(b) for the penultimate step. Thus, using θi =
cFi
−αµ−1 and α> 1

2 ,

L3 ≤C
∞∑
j=1

∑
i1>i2>j

θi1θi2
log(j ∨ 2) log(i1 ∨ 2) log(i2 ∨ 2)

j
√
i1i2

≤C ′
∞∑
j=1

log(j ∨ 2)

j

(∑
i1>j

log(i1 ∨ 2)

i
α+ 1

2

1

)(∑
i2>j

log(i2 ∨ 2)

i
α+ 1

2

2

)
≤C ′

∞∑
j=1

g(j)

j2α
,

(3.13)

where g(·) is a slowly varying function. Thus, we obtain that L3 <∞. This completes the
proof of (3.8) and hence Proposition 2.5 (a). �

3.2. Connectivity structure between hubs. In this section, we estimate the connection
probabilities between macro-hubs. Recall pij from (2.2). Henceforth, in this section we sim-
ply write πc for πc(λ). For any i 6= j, let Xij denote the number of paths of length 2 from
i to j. For v /∈ {i, j}, let ξij(v) denote the indicator that {i, v} and {v, j} create edges in
NRn(w, πc(λ)). Thus,

Xij =
∑
v 6=i,j

ξij(v), with ξij(v)∼Bernoulli
(
π2
cpivpvj

)
, independently.(3.14)

PROPOSITION 3.6 (Hub connectivity). For each fixed i, j ≥ 1,

lim
n→∞

dTV(Xij , Pij) = 0, where Pij ∼ Poisson(λij),(3.15)

λij is given by (2.14), and dTV(·, ·) denotes the total variation distance. Moreover, for any
fixed K ≥ 1, (Xij)1≤i<j≤K are asymptotically independent.

Before embarking on the proof of Proposition 3.6, we describe moment estimates on the
weights w. Recall that `n =

∑
i∈[n]wi, and an � bn denotes that an = bn(1 + o(1)).

LEMMA 3.7 (Moment estimates). Under Assumption 2.1, for any fixed a > 0,

#{k :wk ≥ a`n/wi} � n
(
cFwi
a`n

)τ−1

,(3.16)

∑
wk>a`n/wi

wk �
cτ−1

F
n

1− α

(
wi
a`n

)τ−2

,(3.17)

∑
k:wk≤a`n/wi

w2
k �

cτ−1
F

n

2α− 1

(
a`n
wi

)3−τ
,(3.18)

where the approximations are uniform over i ∈ [n].

PROOF. The first approximation follows from (2.6) by noting that

wk ≥
a`n
wi
⇐⇒ cF

(
n

k

)α
≥ a`n

wi
⇐⇒ k ≤ n

(
cFwi
a`n

)τ−1

.(3.19)

Moreover, ∑
k:wk>a`n/wi

wk = cFn
α

∑
k<n(cFwi/a`n)τ−1

k−α

� cFn
α

1− α

(
n
(cFwi
a`n

)τ−1
)1−α

� cτ−1
F

n

1− α

(
wi
a`n

)τ−2

,

(3.20)
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and ∑
k:wk≤a`n/wi

w2
k = c2

F
n2α

∑
k≥n(cFwi/a`n)τ−1

k−2α

� c2
F
n2α

2α− 1

(
a`n
cFwi

)3−τ
n1−2α � cτ−1

F
n

2α− 1

(
a`n
wi

)3−τ
,

(3.21)

where the approximations are uniform over i ∈ [n]. Thus, the proof follows. �

PROOF OF POISSON APPROXIMATION IN PROPOSITION 3.6. Recall πc = πc(λ) from
(2.9), pij from (2.2), and λij from (2.14). We first prove the Poisson approximation in (3.15),
followed by the asserted asymptotic independence. Fix δ > 0. Recall ρ = 1− α. Through-
out, we will use pij ≤ πcwiwj/`n. We start by splitting the sum in (3.14) over three sets
{v : wv < δnρ}, {v : δnρ ≤ wv ≤ δ−1nρ} and {v : wv > δ−1nρ}. Let us denote these three
partial sums by X (I)

ij (δ), X (II)

ij (δ) and X (III)

ij (δ) respectively. Now, using Lemma 3.7, (3.16),
(3.18)

E[X (I)

ij (δ)]≤ wiwjπ
2
c

`2n

∑
v:wv<δnρ

w2
v ≤Cδ3−τn2α−2+1+(3−τ)ρπ2

c ≤Cδ3−τ ,

E[X (III)

ij (δ)]≤ π2
c ×#{v :wv > δ−1nρ}=Cδτ−1.

(3.22)

For non-negative integer-valued random variables X,Y,Z , with X,Y being independent, by
the triangle inequality,

dTV(X + Y,Z) =

∞∑
k=0

∣∣P(X + Y = k)−P(Z = k)
∣∣

≤
∞∑
k=0

∣∣P(X = k)−P(Z = k)
∣∣+ ∞∑

k=0

∣∣P(X = k)−P(X = k,Y = 0)
∣∣+ ∞∑

k=0

P(X = k,Y ≥ 1)

≤ dTV(X,Z) + 2P(Y ≥ 1)≤ dTV(X,Z) + 2E[Y ],
(3.23)

where the last step uses Markov’s inequality. Using (3.22) and (3.23), in order to prove (3.15),
it suffices to show that

lim
δ→0

lim
n→∞

dTV(X (II)

ij (δ), Pij) = 0, where Pij ∼ Poisson(λij).(3.24)

Define

P (n)

ij (δ)∼ Poisson(λ(n)

ij (δ)), where λ(n)

ij (δ) =
∑

v:wv∈[δnρ,δ−1nρ]

π2
cpivpvj .(3.25)

Using standard inequalities from Stein’s method [31, Theorem 2.10], it follows that, as n→
∞,

dTV

(
X (II)

ij (δ), P (n)

ij (δ))
)
≤

∑
v:wv∈[δnρ,δ−1nρ]

(
π2
cpivpvj

)2 ≤Cn4α−4π4
c

∑
v:wv∈[δnρ,δ−1nρ]

w4
v

≤ C

δ2
n2α−2π4

c

∑
v:wv∈[δnρ,δ−1nρ]

w2
v =

C

δ2
n2α−2n−2(3−τ)n1+(3−τ)ρ =

Cn−(3−τ)

δ2
→ 0,

(3.26)
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where the third inequality uses ρ=−α+ 1. Further,

λ(n)

ij (δ)� π2
c

δ−(τ−1)n3−τ∑
k=δτ−1n3−τ

(
1− e−

c2F
µ
n

3−τ
τ−1 i−αk−α

)(
1− e−

c2F
µ
n

3−τ
τ−1 j−αk−α

)

� π2
c

∫ δ−(τ−1)n3−τ

δτ−1n3−τ

(
1− e−

c2F
µ
n

3−τ
τ−1 i−αy−α

)(
1− e−

c2F
µ
n

3−τ
τ−1 j−αy−α

)
dy

� λ2

∫ δ−(τ−1)

δτ−1

(
1− e−

c2F
µ
i−αx−α

)(
1− e−

c2F
µ
j−αx−α

)
dx := λij(δ).

(3.27)

As δ → 0, we have λij(δ)→ λij . Since the total variation distance between two Poisson
distributions is at most the difference of their means, we conclude (3.24), and hence the
proof of (3.15) also follows. �

REMARK 3.8 (No hubs connected via two-step paths in subcritical regime). When πn =
λnn

−ηs with λn = o(1), we can use identical argument as above to show that, for any K ≥ 1,

lim
n→∞

P(Xij ≥ 1 for some 1≤ i < j ≤K) = 0.(3.28)

Indeed, the bounds in (3.22), (3.26) and (3.27) would all tend to zero as n→∞.

PROOF OF ASYMPTOTIC INDEPENDENCE IN PROPOSITION 3.6. Fix K ≥ 1. Note that
for pairs (i, j), and (k, l) with {i, j}∩{k, l}= ∅, Xij and Xkl are independent due to the in-
dependence of the occupancy of edges in NRn(w, πc(λ)). The only dependence betweenXij

and Xik arises due to potential connections (i, v), (v, j) and (v, k). To simplify notation we
give a full proof for the asymptotic independence of (X12,X13), and a minor adaptation of
this proof holds for any general K ≥ 1. Fix δ > 0 and let Vn(δ) = {v : δnρ ≤ wv ≤ δ−1nρ}.
Let X (II)

12 (δ),X (II)

13 (δ) be the random variables as in (3.24). Recall the definition of the con-
stant λij(δ) from (3.27). Arguing as in the convergence of the marginals, it is enough to prove
that, as n→∞,

dTV

(
(X (II)

12 (δ),X (II)

13 (δ)), (P12(δ), P13(δ))
)
→ 0,(3.29)

where P12(δ), P13(δ) are independent Poisson random variables with means λ12(δ), λ13(δ)
respectively. We will use a technique called the Poisson Cramér–Wold device from [5] that
allows us to prove (3.29) by showing that the sum of any binomial thinnings of X (II)

12 (δ) and
X (II)

13 (δ) converges to a Poisson distribution (see (3.31) below).
We need some additional notation to this end. For v ∈ Vn(δ) and for i ∈ {1,2,3}, let Iiv be

the indicator representing the presence of edge {i, v} in NRn(w, πc(λ)), so that the two-hop
indicator equals ξij(v) = IivIjv . Fix two constants p, q ∈ [0,1] and for each v ∈ Vn(δ), let
J2v, J3v be Bernoulli p, q random variables, respectively, independent of each other and all
the other indicator random variables. Write

(3.30) Rn :=
∑

v∈Vn(δ)

[J2vI1vI2v + J3vI1vI3v] =
∑
β∈I

1β,

where the index set I is given by I = ∪v∈Vn(δ) {(v,1,2), (v,1,3)} and 1β = JkvI1vIkv for
β = (v,1, k). Our main tool is the Poisson Cramér–Wold device in [5, Corollary 2.2], which
implies that in order to prove (3.29), it is enough to show that, for every p, q ∈ [0,1], as
n→∞,

(3.31) dTV(Rn, P )→ 0, P ∼ Poisson(pλ12(δ) + qλ13(δ)).
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Although [5, Corollary 2.2] is stated in terms of convergence in distribution, note that for
discrete random variables, this is equivalent to convergence in total variation distance. There-
fore, it suffices to prove (3.31).

Letting P (n) be a Poisson random variable with mean pλ(n)

12 (δ) + qλ(n)

13 (δ) with λ(n)

ij (δ)

as in (3.27), it is enough to show that dTV(Rn, P
(n))→ 0. We aim to apply Poisson ap-

proximation via Stein’s method [34, Theorem 6.23]. For any β1 = (v1,1, k1) ∈ I and
β2 = (v2,1, k2) ∈ I , Iβ1

and Iβ2
are not independent only if v1 = v2. Thus, [34, Theorem

6.23] implies

(3.32) dTV(Rn, P
(n))≤

∑
β1∈I

(E[1β1
])2 +

∑
β1,β2∈I:v1=v2,β1 6=β2

E[1β1
1β2

] := 2(b1 + b2).

Thus it is enough to show b1, b2→ 0 as n→∞. Indeed, using pij ≤ πnwiwj/`n,

b1 ≤C
∑

v1∈Vn(δ),k1=2,3

(
π2
c

w1w
2
v1
wk1

`2n

)2

≤Cn4α−4π4
c

∑
v1∈Vn(δ)

w4
v1
→ 0,(3.33)

where the last step uses (3.26). Similarly,

b2 ≤C
∑

v1∈Vn(δ),k1,k2=2,3

π3
c

w1w
3
v1
wk1

wk2

`3n
≤Cπ

3
cw

3
1

`3n

∑
v1:wv1≤δ−1nρ

w3
v1

≤Cπ
3
cw

3
1n

ρ

δ`3n

∑
v:wv≤δ−1nρ

w2
v ≤Cπ3

cn
3α−3+ρ+1+(3−τ)ρ =O(πc).

(3.34)

This completes the proof of (3.32) and thus we have proven the asymptotic independence
stated in Proposition 3.6 for K = 2. The proof of the asymptotic independence in Propo-
sition 3.6 for general K follows the same line of argument, now using a K(K − 1)/2-
dimensional version of the Poisson Cramér–Wold device in [5, Corollary 2.2]. We omit fur-
ther details. �

REMARK 3.9 (Related rank-1 models). The proof of Proposition 3.6 extends verbatim
to the Chung-Lu model and generalized random graph with λij replaced by λCL

ij (x) and
λGRG

ij (x), respectively, where

λCL

ij (x) = λ2

∫ ∞
0

ΘCL

i (x)ΘCL

j (x)dx, λGRG

ij (x) = λ2

∫ ∞
0

ΘGRG

i (x)ΘGRG

j (x)dx,(3.35)

with ΘCL

i (x) and ΘGRG

i (x) defined in (2.19). Indeed, all the asymptotic bounds only use the
fact that puv ≤min{wuwv/`n,1}. The mean of the Poisson approximation changes depend-
ing on the model due to the computations in (3.27).

3.3. Path-counting estimates. In this section, we prove path-counting estimates for
NRn(w, πc(λ)) for λ < λc. Such estimates will play a pivotal role in showing that, when
we start exploring from a hub, most vertices are found within a finite distance (see Propo-
sition 3.11 in the next section). Similar estimates arise also in the context of preferential
attachment model for example [26, Lemma 2.4]. For two distinct vertices i 6= j ∈ [n], let
f2k(i, j) denote the probability that there exists a self-avoiding path of length 2k from i to j
in NRn(w, πc(λ)).
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PROPOSITION 3.10 (Connection probabilities at even distance). Fix ε > 0 and λ < λc.
There exists n0 = n0(ε) ≥ 1 and b = b(ε) ∈ (1

2 , α) such that for all n ≥ n0, k ≥ 1, and
i 6= j ∈ [n],

f2k(i, j)≤ (1 + ε)2k
( λ
λc

)2k 1

(i∧ j)1−b(i∨ j)b
,(3.36)

where λc is defined in (2.10).

PROOF. Fix ε > 0. Without loss of generality, let i < j so that wi > wj . Recall h
from (3.1). Let us first relate the expected number of two-step connections to h. We achieve
this by showing that there exists n0 = n0(ε)≥ 1 such that for all n≥ n0 and i 6= j, i, j ∈ [n],

(3.37) µn(i, j) :=
∑

v∈[n]\{i,j}

π2
cpivpvj ≤ (1 + ε)λ2h(i, j).

Using that 1− e−x ≤ x for all x > 0 and `n = (1 + o(1))nµ, we can bound

µn(i, j)≤ (1 + ε)λ2n−(3−τ) c
2
F
n2α−1

µjα

∑
v∈[n]

(
1− e−

c2F
µ
n

3−τ
τ−1 i−αv−α

)
v−α

≤ (1 + ε)λ2 c2
F

µjα

∫ ∞
0

(
1− e−

c2F
µ
i−αz−α

)
z−αdz.

(3.38)

The final term is identical to the right hand side of (3.5), and using the exact same argument
following (3.5), the proof of (3.37) follows.

We next investigate more general even-length paths. For any k ≥ 1, define Ik = Ik(i, j) :=
{v = (vl)

k
l=0 : v0 = i, vk = j, and vj’s are distinct}. Using (3.37),

f2k(i, j)≤
(
(1 + ε)λ2

)k ∑
v∈Ik

k∏
r=1

h(vr−1, vr).(3.39)

Using λc =
√
η/4Bα from (2.10), it is enough to show that, for any k ≥ 1,

γk(i, j) :=
∑
v∈Ik

k∏
r=1

1

(vr−1 ∧ vr)1−α(vr−1 ∨ vr)α
≤ (1 + ε)k

(4

η

)k 1

(i∨ j)1−b(i∧ j)b
.

(3.40)

We use induction on k. For k = 1,

γ1(i, j) =
1

i1−αjα
=

1

i

( i
j

)α
<

1

i

( i
j

)b
< (1 + ε)

4

η

1

(i∨ j)1−b(i∧ j)b
,(3.41)

where the third step follows using i < j and b < α, and the final step follows using η < 4.
Next, let us indicate the choice of b that works. For b ∈ (1− α,α), let

f(b) =
1

α+ b− 1
+

1

α− b
,

which has a unique minimum at b= 1
2 and f(1

2) = 4
η . Since f is continuous, we can choose

b= b(ε)> 1
2 such that f(b)< (1 + ε) 4

η . This will be the b that we work with from now on.
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The induction step for proving (3.40) is given by

γk+1(i, j)≤
∑
v<i

1

iαv1−αγk(v, j) +
∑
v>i

1

i1−αvα
γk(v, j)

≤ (1 + ε)k
(4

η

)k[ 1

iαjb

∑
v<i

1

v2−α−b +
1

i1−αjb

∑
i<v<j

1

v1−b+α +
1

i1−αj1−b

∑
v>j

1

vb+α

]

≤ (1 + ε)k
(4

η

)k[ 1

iαjb

∫ i

0

dv

v2−α−b +
1

i1−αjb

∫ j

i

dv

v1−b+α +
1

i1−αj1−b

∫ ∞
j

dv

vb+α

]
= (1 + ε)k

(4

η

)k[ 1

iαjb
iα+b−1

α+ b− 1
+

1

i1−αjb

(
jb−α

b− α
− ib−α

b− α

)
+

1

i1−αj1−b
j1−α−b

α+ b− 1

]
= (1 + ε)k

(4

η

)k[ 1

i1−bjb

(
1

α+ b− 1
+

1

α− b

)
+

1

i1−αjα

(
1

α+ b− 1
− 1

α− b

)]
≤ (1 + ε)k+1

(4

η

)k+1 1

i1−bjb
,

(3.42)

where in the last step we have bounded the first term using our choice of b, and the second
term is negative since α+ b− 1>α− b for b > 1

2 . Thus, the proof follows. �

3.4. Negligible contributions to the total weight. Throughout the rest of the paper,
let dG(·, ·) denote the graph distance on the graph G. We often write d(·, ·) when the un-
derlying graph is clear from the context.

Let C (i) denote the component in NRn(w, πc(λ)) containing vertex i. Define Wk(i) =∑
v∈C (i),d(v,i)=kwv . We will later see that |C (i)|, appropriately normalized, is close to

W (i) =
∑∞

k=1Wk(i). In this section, we identify the terms that provide negligible contri-
butions to W (i). The next proposition states that the contribution to the total weight arising
from vertices in odd neighborhoods is small. Moreover, the total weight outside a large, but
finite, neighborhood of i is also negligible. Intuitively, this is due to the hubs appearing only
in finite even distances due to the two-hop connections. Also, due to the geometric decay in
Proposition 3.10, hubs lie within O(1) distance of each other.

PROPOSITION 3.11. Suppose that λ ∈ (0, λc). For any fixed i≥ 1 and ε′ > 0,
(3.43)

lim
K→∞

lim sup
n→∞

P

(∑
k>K

W2k(i)> ε′nα
)

= 0 and lim
n→∞

P

( ∞∑
k=0

W2k+1(i)> ε′nα
)

= 0.

PROOF. We start by proving the result on even distances. Recall the definition of fk(i, j)
from Proposition 3.10. Since λ < λc, we can choose ε > 0 sufficiently small such that Λ =
(1 + ε)2(λ/λc)

2 < 1. Therefore, using Proposition 3.10,

n−αE[W2k(i)]=n
−α
∑
j∈[n]

wjf2k(i, j)≤ cFΛk
[∑
j≤i

1

ibj1−b+α +
∑
j>i

1

i1−bjα+b

]
≤ CΛk

ib
,

(3.44)

for some constant C > 0, where in the last step we have used that b ∈ (1
2 , α). Since

Λ < 1, an application of Markov’s inequality proves the first part of (3.43). Next, we com-
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pute E[W2k+1(i)]. Therefore, using (3.44),

n−αE[W2k+1(i)]≤ n−α
∑
v∈[n]

P({i, v} is an edge)E[W2k(v)]≤ n−α
∑
v∈[n]

πcpiv
CΛknα

vb
.

(3.45)

Let us split the above sum in two terms by taking partial sums over {v : wiwv ≤ `n} and
{v : wiwv > `n}, respectively. Denote the two terms by (I) and (II) respectively. Then, by
(3.20),

(I)≤Cπc
Λkn2α−1

iα

∑
v>Cn(wi/`n)τ−1

1

vα+b
≤Cπc

Λkn2α−1

iα

(
n
(wi
`n

)τ−1)1−α−b
≤ CΛkn−ε0

i1−b
,

(3.46)

where ε0 = (3− τ)(b− 1
2)> 0. Similarly, using the trivial bound piv ≤ 1,

(II)≤CπcΛk
∑

v≤Cn(wi/`n)τ−1

v−b ≤CπcΛk
(
n
(wi
`n

)τ−1)1−b
≤ CΛkn−ε0

i1−b
,(3.47)

and thus we conclude that

E[W2k+1(i)]≤ CΛkn−ε0

i1−b
.(3.48)

The second assertion of (3.43) again follows using Markov’s inequality. �

The next proposition states that for each fixed k ≥ 1, the primary contribution to W2k(i)
arises only due to the hubs. In its statement, we let W>R

k (i) :=
∑

v/∈[R],d(v,i)=kwv .

PROPOSITION 3.12 (Weight of non-hubs at even distances). Suppose that λ ∈ (0, λc).
For any fixed i≥ 1, and ε′ > 0,

(3.49) lim
R→∞

lim sup
n→∞

P

( ∞∑
k=1

W>R

2k (i)> ε′nα
)

= 0.

PROOF. As before, in Proposition 3.10 choose ε > 0 sufficiently small such that Λ =
(1 + ε)2(λ/λc)

2 < 1. Choose R large so that i ∈ [R]. Using Proposition 3.10,

(3.50) E[W>R

2k (i)]≤C
∑
v>R

nα

vα
Λk

i1−bvb
≤ CnαΛk

i1−b

∑
v>R

1

vα+b
≤ CΛknα

i1−bRα+b−1
,

where we have used that α+ b > 1. Therefore,

(3.51) n−αE

[ ∞∑
k=1

W>R

2k (i)

]
≤ C

(1−Λ)i1−bRα+b−1
.

Once again an application of Markov’s inequality completes the proof. �

3.5. Sizes of components containing hubs. In this section, we consider the asymptotic
size of C (i), the component containing vertex i. Recall the asserted limit object G∞(λ)
from Section 2.3.2 and θj := cFj

−αµ−1. In G∞(λ), let Wk(i) =
∑

j:d(i,j)=k θj . Thus the total
weight of the component containing i in G∞(λ) is W (i) =

∑∞
k=0 Wk(i). We start by relating

the asymptotics of the total weight W (i) =
∑∞

k=0Wk(i) in NRn(w, πc(λ)), defined in the
previous section to W (i):



20

THEOREM 3.13 (Weight of components with hubs). Suppose that λ ∈ (0, λc). Then, as
n→∞, (n−αW (i))i≥1

d−→ (W (i))i≥1 with respect to the product topology on R∞.

PROOF. Fix any L ≥ 1, (il)
L
l=1 ⊂N and let R > maxl il. Recall the notation Xjj′ from

Proposition 3.6, and consider the graph G [R]

n on vertex set [R] where an edge {j, j′} is present
if and only if Xjj′ = 1. This also gives a coupling between G [R]

n and NRn(w, πc(λ)). Recall
G∞(λ) from Definition 2.4 and let G [R]

∞ (λ) be its subgraph restricted to [R]. For any i≥ 1, let

W̃≤R
k (i) :=

∑
j∈[R]

wj1{d
G[R]
n

(i,j)=k}, W≤R
k (i) :=

∑
j∈[R]

wj1{dNRn(w,πc(λ))(i,j)=k},

W ≤R
k (i) :=

∑
j∈[R]

θj1{d
G

[R]
∞ (λ)

(i,j)=k}.
(3.52)

Since
∑K

k=0 W̃
≤R
k (il) is a function of (Xjj′)j,j′∈[R], by Proposition 3.6,(

n−α
K∑
k=0

W̃≤R
k (il)

)
1≤l≤L

d−→
( K∑
k=0

W ≤R
k (il)

)
1≤l≤L

.(3.53)

Also, by Proposition 3.12, for all 1≤ l≤ L,

n−α
K∑
k=0

W≤R
2k (il)− n−α

K∑
k=0

W̃≤R
k (il)

P−→ 0.(3.54)

Thus, for any K ≥ 1,(
n−α

K∑
k=0

W≤R
2k (il)

)
1≤l≤L

d−→
( K∑
k=0

W ≤R
k (il)

)
1≤l≤L

.(3.55)

Now,
∑K

k=0 W ≤R
k (il)↗

∑K
k=0 Wk(il) almost surely, as R→∞. Thus, an application of

Proposition 3.12 yields(
n−α

K∑
k=0

W2k(il)

)
1≤l≤L

d−→
( K∑
k=0

Wk(il)

)
1≤l≤L

.(3.56)

Finally,
∑K

k=0 Wk(i)↗ W (i) almost surely, as K →∞, and thus we conclude the proof
using Proposition 3.11. �

THEOREM 3.14 (Component sizes of hubs). Suppose that λ ∈ (0, λc). Then, as n→∞,
((nαπc)

−1|C (i)|)i≥1
d−→ (W (i))i≥1 with respect to the product topology on R∞.

We start by identifying the main contributions on the component sizes by proving ana-
logues of Propositions 3.11–3.12 for cluster sizes instead of cluster weights. Define Ck(i) :=
{v ∈ C (i) : d(v, i) = k}. Thus Ck(i) denotes the set of vertices at distance exactly k from
vertex i. Also, let C R

k (i) ⊂ Ck(i) denote the vertices of Ck(i) that are neighbors of some
vertex in Ck−1(i)∩ [R].

LEMMA 3.15 (Main contributions to cluster sizes). Suppose that λ ∈ (0, λc). For any
fixed i≥ 1 and ε > 0,
(3.57)

lim
n→∞

P

( ∞∑
k=0

|C2k(i)|> εnαπc

)
= 0, lim

K→∞
lim sup
n→∞

P

(∑
k>K

|C2k+1(i)|> εnαπc

)
= 0,
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and

(3.58) lim
R→∞

lim sup
n→∞

P

( ∞∑
k=0

|C2k+1(i) \C R

2k+1(i)|> εnαπc

)
= 0.

PROOF. Note that

E

[
|Ck+1(i)|

∣∣∣ k⋃
r=1

Cr(i)
]
≤

∑
v1∈Ck(i)

∑
v2∈[n]

πcpv1v2
≤ πcWk(i),(3.59)

and therefore E[|Ck+1(i)|] ≤ πcE[Wk(i)]. Now the estimates in Proposition 3.11 prove
(3.57). Using an identical argument as in (3.59) yields

E[|C2k+1(i) \C R

2k+1(i)|]≤ πcE[W>R

2k (i)],

and (3.58) follows from Proposition 3.12. �

PROOF OF THEOREM 3.14. Let us consider the breadth-first exploration of C (i) starting
from vertex i. Let Fk denote the sigma-algebra that contains information about the explo-
ration when all vertices at depth k have been explored. Thus, ∪kr=1Cr(i) is measurable with
respect to Fk. Using Lemma 3.15, and (3.56), it is now enough to show that, for each fixed
i ≥ 1 and k,R ≥ 1, |C R

2k+1(i)| = πcW
≤R
2k (i) + oP(nαπc). This follows from Chebyshev’s

inequality if we can show that for any fixed k,R≥ 1,

(3.60) E
[
|C R

2k+1(i)|
∣∣ F2k

]
= πcW

≤R
2k (i) + oP(nαπc), Var

(
|C R

2k+1(i)|
∣∣ F2k

)
≤En,

where E[En] = o(n2απ2
c ). To this end, we first note that

E[|C R

2k+1(i)| | F2k]=E

[ ∑
u∈C2k(i)∩[R]

∑
v/∈∪r≤2kCr(i)

1{{u,v} is an edge of NRn(w,πc(λ))}

∣∣∣∣ F2k

]
=

∑
u∈C2k(i)∩[R]

∑
v/∈∪r≤2kCr(i)

πcpuv.

(3.61)

Further, we observe that

1

nαπc

∑
u∈C2k(i)∩[R]

∑
v∈∪r≤2kCr(i)

πc

(
1− e−wuwv/`n

)

≤ 1

nα`n

(∑
r≤2k

Wr(i)

)2

=OP(nα−1) = oP(1),

(3.62)

where in the second step, we have used Theorem 3.13. It thus follows that

E[|C R

2k+1(i)|
∣∣F2k] =

∑
u∈C2k(i)∩[R]

∑
v∈[n]

πcpuv + oP(nαπc).(3.63)

We now simplify the right hand side of (3.63). Fix ε ∈ (0, ρ2), and let us split the sum in two
parts with {v : wv ≤ nρ−ε}, {v : wv > nρ−ε}, and denote them by (I) and (II) respectively.
Using Lemma 3.7, (3.16), and the fact that −ρ(τ − 2) + ε(τ − 1)< 0 since ε < ρ2,

(II)

nαπc
≤CRn

1−(τ−1)ρ+ε(τ−1)

nα
≤CRn−ρ(τ−2)+ε(τ−1) = o(1), almost surely,(3.64)
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while

(I) = πc
∑

u∈C2k(i)∩[R]

∑
v : wv≤nρ−ε

wuwv
`n(1 + o(1))

= πc
∑

u∈C2k(i)∩[R]

wu

(
1−

∑
v : wv>nρ−ε

wv

`n(1 + o(1))

)
= πcW

≤R
2k (i)(1 + o(1)),

(3.65)

almost surely. The estimate for the expectation term in (3.60) now follows.
For u ∈ C2k(i), let Nu denote the number of neighbors of u in C2k+1(i). For the variance

term, it follows using the independence of edge occupancies that

Var
(
|C R

2k+1(i)|
∣∣ F2k

)
=

∑
u∈C2k(i)∩[R]

Var (Nu)≤
∑

u∈C2k(i)∩[R]

∑
v∈[n]

πcpuv ≤ πcW≤R
2k (i) =:En.

(3.66)

Using (3.55) and the fact that n−αW≤R
2k (i) is bounded with respect to n, we see that E[En] =

O(nαπc) = o(n2απ2
c ), which proves the required estimate in (3.60). Hence, the proof of

Theorem 3.14 is complete. �

3.6. Tightness of component sizes and weights: Proof of Theorem 2.3. The goal of this
section is to show that the vector of component sizes and their weights (appropriately nor-
malized) is tight in `2. The proof will also show that the largest connected components cor-
respond to those containing hubs. Then the proof of Theorem 2.3 will follow using Theo-
rems 3.13–3.14. To this end, define

C≤(j) =

{
C (j) if j = min{v : v ∈ C (j)},
∅ otherwise,

(3.67)

and letW≤(j) :=
∑

k∈C≤(j)wk. The main ingredient is the following proposition:

PROPOSITION 3.16 (Tightness in `2). Suppose that λ ∈ (0, λc). For any ε > 0,

lim
K→∞

lim sup
n→∞

P

(∑
j>K

|C≤(j)|2 > επ2
cn

2α

)
= 0,(3.68)

lim
K→∞

lim sup
n→∞

P

(∑
j>K

(
W≤(j)

)2
> εn2α

)
= 0.(3.69)

PROOF. Recall that C(i) is the i-th largest component of NRn(w, πc(λ)), W(i) =∑
v∈C(i)

wv (we have suppressed the dependence of πc = πc(λ) in the notation). For a fixed
K ≥ 1, consider the graph NRn(w, πc(λ)) \ [K]. We augment a previously defined nota-
tion with a superscript >K to denote the corresponding quantity for NRn(w, πc(λ)) \ [K].
Since the components {C≤(j) : j >K} do not contain any vertices in [K],

∑
j>K |C≤(j)|2 ≤∑

i≥1 |C >K

(i)
|2 and

∑
j>K(W≤(j))2 ≤

∑
i≥1(W>K

(i)
)2. Therefore, it is enough to show that for

any ε > 0,
(3.70)

lim
K→∞

lim sup
n→∞

P

(∑
i≥1

|C >K

(i)
|2 > επ2

cn
2α

)
= 0, lim

K→∞
lim sup
n→∞

P

(∑
i≥1

(W>K

(i)
)2 > εn2α

)
= 0.
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Using the weight sequence (wi)i>K , let V ∗,>Kn denote a vertex chosen in a size-biased manner
from [n] \ [K] chosen independently from NRn(w, πc(λ)) (i.e. for any i > K , P(V ∗,>Kn =
i)∝wi). Let `>Kn :=

∑
i>K wi. Then, `>Kn ≤ `n for all K ≥ 1. Note that (3.59) yields

E

[∑
i≥1

|C >K

(i)
|2
]

=E

[ ∑
v∈[n]\[K]

|C >K(v)|
]
≤ πcE

[ ∑
v∈[n]\[K]

W>K(v)

]

= πcE

[∑
i≥1

|C >K

(i)
| ×W>K

(i)

]
= `>Kn πcE[|C >K(V ∗,>Kn )|]≤ `>Kn π2

cE[W>K(V ∗,>Kn )].

(3.71)

Further,

E

[∑
i≥1

(W>K

(i)
)2

]
= `>Kn E[W>K(V ∗,>Kn )].(3.72)

Now, by (3.44) and (3.48), for any fixed v ∈ [n], E[W>K(v)] ≤ Cnα(v−b + n−ε0v−(1−b)),
where C > 0 is independent of K , and hence,

`>Kn E[W>K(V ∗,>Kn )]≤Cn2α
∑
v>K

1

vb+α
+ n2α−ε0

∑
v>K

1

v1−b+α .(3.73)

Since b ∈ (1
2 , α), both

∑
v>K

1
vb+α and

∑
v>K

1
v1−b+α go to zero as K→∞. Therefore,

lim
K→∞

lim sup
n→∞

(nαπc)
−2
E

[∑
i≥1

|C >K

(i)
|2
]

= 0, lim
K→∞

lim sup
n→∞

n−2α
E

[∑
i≥1

(W>K

(i)
)2

]
= 0.

(3.74)

Thus, (3.70) follows using Markov’s inequality, which completes the proof of Proposi-
tion 3.16. �

PROOF OF THEOREM 2.3. We give the proof for the component sizes. The proof for their
weights follows similarly. Let C(i),K be the i-th largest component among {C≤(j) : j ≤K}.
ForK =∞, C(i),K = C(i). We first show that for each fixed i≥ 1, C(i)=C(i),K with sufficiently
high probability if K is large. More precisely, for any fixed r ≥ 1,

lim
K→∞

lim sup
n→∞

P
(
∃i≤ r : C(i),K = C(i)

)
= 0.(3.75)

Indeed, if C(1),K 6= C(1), then C(1) = max{|C≤(j)| : j >K}, and therefore∣∣|C(1),K| − |C(1)|
∣∣≤max{|C≤(j)| : j >K} ≤

(∑
j>K

|C≤(j)|2
)1/2

.(3.76)

Next, on the event {C(1),K = C(1)}, we can similarly bound
∣∣|C(2),K|−|C(2)|

∣∣≤ (
∑

j>K |C≤(j)|2)1/2.
In general, for any l ≤ r, on the event {∪i∈[l−1]C(i),K = ∪i∈[l−1]C(i)}, we can bound∣∣|C(i),K| − |C(i)|

∣∣≤ (
∑

j>K |C≤(j)|2)1/2. Thus, using Proposition 3.16

lim
K→∞

lim sup
n→∞

P

(
∀l≤ r :

⋃
i∈[l]

C(i),K =
⋃
i∈[l]

C(i)

)
= 0.(3.77)

Consequently, (3.75) follows.
Next, note that (C≤(j))j∈[K] is the collection of components (C (j))j∈[K] with multiplic-

ities removed and replaced by empty sets (recall (3.67)). Thus, |C(1),K| = maxj∈[K] |C (j)|,
and similar identities holds for |C(i),K|. Thus, using (3.75) and Theorem 3.14, we conclude
that ((nαπc)

−1|C(i)|)i≥1 converges to our desired limiting object in the finite-dimensional
sense. The `2↓ -tightness follows by observing that

∑
j>K |C(j)|2 ≤

∑
j>K |C≤(j)|2. �



24

3.7. Sub-critical behavior: proof of Theorem 2.2. The proof of Theorem 2.2 can be com-
pleted by modifying the arguments for the critical regime. In fact, if πn = λnn

−(3−τ)/2 for
some λn→ 0, then the hub-connection probabilities tend to zero as shown in (3.28). More-
over, we can follow identical arguments as in Proposition 3.11 and Lemma 3.15 to show that
W (i) =wi(1+oP(1)) and |C (i)|= πnwi(1+oP(1)). To successfully apply Chebyshev’s in-
equality to get these asymptotics, we need πnwi→∞, which is true since πn� n−α by the
assumptions of Theorem 2.2. Finally, we can use identical arguments as in Proposition 3.16
to deduce the `2↓−tightness of the vector of component sizes and weights. Thus, the proof of
Theorem 2.2 follows. �

4. The giant in the embedded inhomogeneous random graph. Henceforth, we con-
sider the supercritical case, i.e., πn = λn−ηs = λn−(3−τ)/2 for λ > λc. In this section, we
proceed to set up the main conceptual ingredients for the emergence of the giant for λ > λc.
Fix a parameter a > 0, and define

(4.1) Nn(a) = ban(3−τ)/2c.

We also denote

(4.2) Nn =Nn(1).

Observe that πn � λ/Nn � aλ/Nn(a). By (2.6), we note that, for i ∈ dNnue and u ∈ (0, a]

wdNnue = cFu
−α
( n

Nn

)α
= cFu

−α(n(τ−1)/2
)α �√ncFu

−α,(4.3)

and thus [Nn(a)] consists of vertices with weight at least of order
√
na−α.

The key conceptual step is that, for large enough a, a giant component emerges inside
[Nn(a)] that forms the core connectivity structure of the giant component in the whole graph.
In turn, this graph is an inhomogeneous random graph, for which the critical value can be
determined exactly, as we explain in more detail now.

To this end, consider the percolated graph NRn(w, πn), restricted to [Nn(a)], and denote
this subgraph by GNn(a). Then, GNn(a) is distributed as an inhomogeneous random graph that
is sparse in that the number of edges grows linearly in the number of vertices in the graph.
Thus, the emergence of the giant component within GNn(a) can be studied using the general
setting of inhomogeneous random graphs developed by Bollobás, Janson and Riordan in
[15]. In particular, the results of [15] gives a critical value λ1

c(a), such that, for λ > λ1
c(a), a

unique giant with concentrated size exists inside [Nn(a)], that is stable to the addition of a
small proportion of edges. The stability result is used later in Section 5 below to understand
the perturbation on this giant after adding all the edges outside [Nn(a)]. In Section 4.1, we
make the connection with the key results from [15] explicit and state the relevant results for
our proof. The rest of the section is devoted to analysis of the limiting quantities as a→∞.
In Section 4.2, we first show that lima→∞ λ

1
c(a) = λc, where λc is given by (2.10). The

connection between λ1
c(a) and λc is quite remarkable given the vastly different descriptions

of these quantities. We prove this fact by an explicit computation. The convergence of λ1
c(a)

is also a key conceptual step, since it shows that, whenever λ > λc, one can choose a to
be large enough to make a tiny giant appear inside [Nn(a)]. Finally, the asymptotics for
particular functionals of the giant inside GNn(a) are given by properties of certain multitype
branching processes that depend sensitively on a. In Section 4.3, we analyze these survival
probabilities as a→∞. This sets the stage for Section 5, where we identify the primary
contributions to the size of the giant in the whole graph using the giant inside [Nn(a)], for a
large enough.
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4.1. Size and weight of the giant core. We will first verify that GNn(a) satisfies the con-
ditions of [15]. Consider the measure space Sa = ((0, a],B((0, a]),Λa), where B((0, a])
denotes the Borel sigma-algebra on (0, a], and Λa(dx) = dx

a is the normalized Lebesgue
measure on (0, a]. Recall from (2.2) that the probability that there is an edge between i and j
after percolation equals pij = πn[1− e−wiwj/`n ]. For u, v ∈ (0, a], define the kernel

(4.4) κ(a)

Nn
(u, v) =Nn(a)pdNnuedNnve/λ.

Then putting uni = i/Nn, we have that for all i ∈ [Nn(a)], pij = λκ(a)

Nn
(uni , u

n
j )/Nn(a). Ob-

viously, the empirical measure Λn,a of (uni )i∈[Nn(a)] converges in the weak topology, with
limiting measure Λa. This verifies [15, (2.2)], and thus (Sa, ((uni )i∈[Nn(a)])n≥1) is a vertex
space according to the definition in [15, Section 2].

Next, we verify that (κ(a)

Nn
)n≥1 is a sequence of graphical kernels on Sa according to [15,

Definition 2.9]. For any (un)n≥1, (vn)n≥1 ⊂ (0, a] and u, v ∈ (0, a] with un→ u and vn→ v,
it follows using (4.3) that

(4.5) κ(a)

Nn
(un, vn)→ κ(a)(u, v) := a[1− e−c

2
F(uv)−α/µ] for all u, v ∈ (0, a].

Note that κ(a) is bounded and continuous, and thus the first two conditions of [15, Defini-
tion 2.7] are satisfied. Next, note that

1

Nn(a)

∑
i,j∈[Nn(a)]

i<j

πn[1− e−wiwj/`n ]→ λ

2a

∫ a

0

∫ a

0
[1− e−c

2
F(uv)−α/µ]dudv

=
1

2

∫ a

0

∫ a

0
λκ(a)(u, v)Λa(du)Λa(dv),(4.6)

which verifies [15, (2.11)], and thus all the conditions of [15, Definition 2.9] have now been
verified. Finally, κ(a) > 0, so that it is irreducible according to [15, Definition 2.10]. Hence
we have verified that GNn(a) is an inhomogeneous random graph with kernels (κ(a)

Nn
)n≥1 sat-

isfying all the requisite good properties in [15].
To describe the phase transition, define the integral operator Tκ(a) : L2(Sa)→L2(Sa) by

(4.7) (Tκ(a)f)(u) =

∫ a

0
κ(a)(u, v)f(v)Λa(dv) =

∫ a

0
[1− e−c

2
F(uv)−α/µ]f(v)dv.

Indeed, the image of this map is contained in L2(Sa) since

‖Tκ(a)f)‖L2(Sa) =

∫ a

0

(∫ a

0
[1− e−c

2
F(uv)−α/µ]f(v)dv

)2 du

a

≤ 1

a

∫ a

0
f2(v)dv

∫ a

0
[1− e−c

2
F(uv)−α/µ]2dvdu≤ a

∫ a

0
f2(v)dv <∞,

(4.8)

where the second step uses the Cauchy-Schwarz inequality and the penultimate step uses
1 − e−x ≤ 1. Let ‖Tκ(a)‖ denote its operator norm. Let C a

(i)
denote the size of i-th largest

component of the graph GNn(a). Also, let T a≥k denote the set of vertices that belong to some
component of size at least k in GNn(a).

Throughout this section, we suppress πn in the notation. To describe the size of the gi-
ant component in [Nn(a)], let X λa (u) be a multi-type branching process with type space
Sa, where we start from one vertex with type u ∈ Sa, and a particle of type v ∈ Sa pro-
duces progeny in the next generation according to a Poisson process on Sa with intensity
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λκ(a)(v,x)Λa(dx). Let ρλa(u) be the survival probability of X λa (u), and ρλa,≥k denote the
probability that X λa (u) has at least k individuals. Define

ρλa =

∫ a

0
ρλa(u)Λa(du) =

1

a

∫ a

0
ρλa(u)du, ρλa,≥k =

∫ a

0
ρλa,≥k(u)Λa(du) =

1

a

∫ a

0
ρλa,≥k(u)du.

(4.9)

The following proposition describes the emergence of the giant component for GNn(a):

PROPOSITION 4.1 (Emergence of giant in GNn(a)). Under Assumption 2.1, the following
hold for any a > 0:

(i) For λ > ‖Tκ(a)‖−1, |C a
(1)
|=Nn(a)ρλa(1 + oP(1)), and |C a

(2)
|=OP(log(n)). Further, for

each fixed k ≥ 1, |T a≥k|=Nn(a)ρλa,≥k(1 + oP(1)). Finally, T a≥k is stable, in the sense that,
for every ε > 0, there exists a δ > 0 such that, with high probability, removing at most δn
edges from GNn(a) changes T a≥k by at most εn vertices.

(ii) For λ < ‖Tκ(a)‖−1, |C a
(1)
|=OP(log(n)).

PROOF. The asymptotics of |C a
(1)
| and |C a

(2)
| follow directly by applying [15, Corollary

3.2] and [15, Theorem 3.12], and further noting that supn,x,y κ
(a)

Nn
(x, y) <∞. The asymp-

totics of |T a≥k| follows using [15, Theorem 9.1]. The stability of the giant in part (i) is proved
in [15, Theorem 11.1]. �

We conclude this section by providing the asymptotics of the total weight inside C a
(1)

:

PROPOSITION 4.2 (Weight of the giant in GNn(a)). Under Assumption 2.1, for any fixed
a > 0, as n→∞, ∑

i∈C a
(1)

πnwi√
n

P−→ ζλa ,(4.10)

where ζλa := λ
∫ a

0 cFu
−αρλa(u)du.

PROOF. We apply [15, Theorem 9.10]. First the contribution due to i ≤ Nn(ε) can be
almost surely bounded by

(4.11)
1

Nn(a)

∑
i∈[Nn(ε)]

wi√
n
≤ cFn

α

Nn(a)
√
n

∑
i≤εNn

i−α ≤ Cε1−α

a
.

Further, for all i ∈ [Nn(a)] \ [Nn(ε)], the function i 7→ wi√
n

is bounded. Thus, [15, Theorem
9.10] is applicable and we have∑

i∈C a
(1)

πnwi√
n

=
λa

Nn(a)

∑
i∈C a

(1)

wi√
n

P−→ aλ

∫ a

0
cFu
−αρλa(u)Λa(du) = ζλa ,(4.12)

and the proof follows. �

4.2. Equality of the critical values. In this section, we relate the critical values in the
inhomogeneous random graph GNn(a), for a large, to the critical value λc defined in (2.10).
Let us denote λ1

c(a) = ‖Tκ(a)‖−1. We start by observing a monotonicity of λ1
c(a):

LEMMA 4.3 (Monotonicity of a 7→ λ1
c(a)). The function a 7→ λ1

c(a) is non-increasing on
[0,∞).
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PROOF. Fix b > a, and let Nn(·) be as in (4.1). Fix λ > λ1
c(a). We will prove that then

also λ > λ1
c(b), which proves that λ1

c(a)≥ λ1
c(b), as required.

Since λ > λ1
c(a), Proposition 4.1 implies that the graph GNn(a) on vertex set [Nn(a)] has

a giant component of size ρλaNn(a)(1 + oP(1)), where ρλa > 0 since λ > λ1
c(a). Denote

this component by C a
(1)

. Since [Nn(a)]⊆ [Nn(b)], and since the edge probabilities in GNn(a)

and GNn(b) are equal on [Nn(a)], we can find a coupling under which GNn(a) is a subgraph of
GNn(b) with probability one. Under this coupling, there exists a component of C ⊂ GNn(b) such
that C a

(1)
⊆ C . For any q > 0, if |C a

(1)
| ≥ qNn(a), then |C b

(1)
| ≥ |C | ≥ qNn(a)≥ q(a/b)Nn(b).

Thus, for any ε > 0, as n→∞,P(|C b
(1)
|/Nn(b)≥ (1− ε)abρ

λ
a)→ 1, and therefore λ > λ1

c(b)
by Proposition 4.1, as required. �

Lemma 4.3 implies that lima→∞ λ
1
c(a) exists and is finite. Let

(4.13) λ1
c := lim

a→∞
λ1
c(a) = inf

a>0
λ1
c(a).

We next show that λ1
c = λc:

LEMMA 4.4 (Equality of critical values). λ1
c = λc, with λc, λ1

c defined in (2.10), (4.13)
respectively.

PROOF. Fix a > 0. For two functions f, g : [0, a]2→ [0,∞), we define the operation

(4.14) (f ? g)(x, y) =

∫ a

0
f(x, v)g(v, y)Λa(dv).

We also recursively define f?(n+1) = f ? f?n, with f?1 = f . We claim that

(4.15) ‖Tκ(a)‖= lim
k→∞

(∫ a

0

∫ a

0

(
κ(a)
)?2k

(u, v)Λa(du)Λa(dv)
)1/(2k)

.

Indeed, κ(a) is a bounded function, so that the integral operator Tκ(a) defined on L2([0, a],Λa)
given by (4.7) is Hilbert-Schmidt and thus compact [36, Theorem 4 in Chapter 22]. Further, it
is a positive and self-adjoint operator, since κ(a) is positive and symmetric. Thus, the largest
eigenvalue of Tκ(a) is positive and separated from the second largest in absolute value [36,
Theorem 1 in Chapter 23]. Finally, as a compact and self-adjoint operator, it has an othonor-
mal basis of eigenfunctions [36, Theorem 3 in Chapter 28], so that the claim follows by an ex-
pansion in terms of the eigenfunctions. We can rewrite this with κ(a)

2 (u, v) = (κ(a) ?κ(a))(u, v)
as

(4.16) ‖Tκ(a)‖= lim
k→∞

(∫ a

0

∫ a

0

(
κ(a)

2

)?k
(u, v)Λa(du)Λa(dv)

)1/(2k)
,

and a similar expression holds for ‖T
κ

(a)
2
‖ as well. This yields

(4.17) ‖Tκ(a)‖= ‖T
κ

(a)
2
‖1/2.

Next, note that, for any u, v ∈ (0, a],

κ(a)

2 (u, v) =

∫ a

0
κ(a)(u,x)κ(a)(x, v)Λa(dx) = a

∫ a

0
[1− e−c

2
F(ux)−α/µ][1− e−c

2
F(vx)−α/µ]dx

= a

∫ a

0
Θu(x)Θv(x)dx,
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where we recall (2.14). When the integral is evaluated on [0,∞), κ(a)

2 (u, v) would be equal
to aλuv/λ2. Thus,

(4.18) ‖T
κ

(a)
2
‖= ‖Tλ̄(a)‖L2(0,a) = ‖Tλ̄(a)‖L2(0,∞),

where, for u, v ∈ (0, a], we let

(4.19) λ̄(a)(u, v) = 1{u,v∈(0,a]}

∫ a

0
Θu(x)Θv(x)dx.

Obviously, a 7→ λ̄(a)(u, v) is increasing, and it converges pointwise to λuv/λ2. As a result,
also

(4.20) ‖Tκ(a)‖= ‖Tλ̄(a)‖L2(0,∞)↗‖Tλ‖L2(0,∞),

where λ(u, v) = λuv/λ
2. Next, recall h(·, ·) from (3.1). An argument identical to (3.4) yields

limu→∞ limv→∞ λ(u, v)/h(u, v) = 1. Thus, by [28, Lemma 1],

(4.21) ‖Tλ‖L2(0,∞) =

∫ ∞
0

h(1, u)√
u

du= 4Bα/η,

where the last step follows using (3.2) and Corollary 3.3. Therefore,

(4.22) λ1
c = lim

a→∞
‖Tκ(a)‖−1 = lim

a→∞

1

‖T
κ

(a)
2
‖1/2

=

√
η

4Bα
= λc,

as required. �

4.3. Survival probability of the multi-type branching process. In this section, we analyze
the asymptotics in Proposition 4.2 as a→∞. Recall the multi-type Poisson branching pro-
cess X λa (u), and its survival probability ρλa(u) from Section 4.1. Recall the definition of ζλa
from Proposition 4.2. The following is the main result of this section:

PROPOSITION 4.5 (Large a asymptotics of 1-neighborhood giant). For any λ > λc, as
a→∞,

(4.23) ζλa := λ

∫ a

0
cFu
−αρλa(u)du→ ζλ ∈ (0,∞).

Before starting with the proof, we give some background on the object in (4.23). ρλa(u)
is the survival probability of a vertex of type u, which in the pre-limit corresponds to vertex
duNne. The factor cFu

−α then corresponds to the rescaled version of wduNne, recall (4.3).
Thus, ζλa can be viewed as the rescaled total weight or the rescaled size of the 1-neighborhood
of the giant in [Nn(a)]. Since, for a large, this 1-neighborhood is approximately the entire
connected component of this giant in [n], as shown in Section 5, this explains the relevance
of Proposition 4.5.

We would like to stress some subtleties. First, u 7→ cFu
−α is not integrable, so we cannot

think of ζλ as a survival probability of a branching process starting with a type chosen in a
size-biased manner. Further, κ(u, v) = 1 − e−c

2
F(uv)−α/µ is not integrable on ((0,∞),dx ⊗

dy). As a result, we cannot express the limit of survival probabilities (ρλa(u))u≥0 in terms of
a maximum fixed point equation, which is how a survival probability is often expressed. This
is reflected in the fact that the maximum solution of the fixed point equation f = 1− e−Tκf

is always 1 for non-integrable κ. However, the limit of ζλa still exists, and we can prove this
using alternative arguments.

The proof is organised as follows. We start by stating an upper bound on our random graph
in terms of an unpercolated Norros-Reittu model. This upper bound is also useful in Section 5.
Then, we perform a limiting argument on the survival probabilities to prove Proposition 4.5.
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Upper bound by an unpercolated Norros-Reittu model. We next discuss a Norros-Reittu
model without percolation, which contains the graph GNn(a) as a subgraph. The nice thing
about unpercolated Norros-Reittu models is that the total progeny can be coupled to a branch-
ing process as shown in [39], and it is possible to do direct computations on the limiting
branching process as we will see in Lemma 4.7 below. This will be useful in showing finite-
ness of limiting quantities such as ζλ in (4.23). Note that

(4.24) πnpij = πn[1− e−wiwj/`n ]≤ 1− e−πnwiwj/`n .

Indeed, the inequality in the second step of (4.24) is equivalent to the fact that, for every
p ∈ [0,1] and x≥ 0,

(4.25) 1− e−x ≤ 1

p
[1− e−px].

For x = 0, both sides are equal. Differentiating with respect to x gives that e−x ≤ e−px,
which is true since p ∈ [0,1], x ≥ 0. Now, recall the connection probabilities in the original
model from (2.2). Then (4.24) shows that there exists a coupling such that NRn(w, πn) is a
subgraph of NRn(πnw) with probability one. Henceforth, we will always work under this
coupling.

For NRn(πnw), it is known that, starting from any vertex j, the size of the connected
component of j can be bounded from above by the total progeny of a branching process,
where the root has offspring distribution that is Poisson(πnwj), while for all other vertices,
the offspring distribution is mixed Poisson with mixing distribution πnW ?

n , where W ?
n has a

size-biased distribution, i.e.,

(4.26) P(W ?
n ≤ x) =

∑
i∈[n]wi1{wi≤x}∑

i∈[n]wi
.

This is proved by Norros and Reittu in [39]. Similar results can be proven when we restrict
connected components to fixed subsets of [n], as we will frequently rely on below. In par-
ticular, we can use this observation to the restricted set [Nn(a)] when considering the graph
GNn(a). For this, we start by introducing some notation. For A⊆ [n], denote

(4.27) w(A) =
∑
a∈A

wa.

Then, we note that when restricting to [Nn(a)], the parameter of the Poisson random variable
of the root when starting from vertex j ∈ [Nn(a)] is replaced with πnwjw([Nn(a)])/`n, and
that, for other vertices, the offspring becomes Poisson with mixing distribution

(4.28) W λ
[Nn(a)]

:= πnW
?
[Nn(a)]w([Nn(a)])/`n,

where now

(4.29) P(W ?
[Nn(a)] ≤ x) =

∑
i∈[Nn(a)]wi1{wi≤x}

w([Nn(a)])
.

This is formalized in the following lemma, which we state more generally, as we will rely
upon it in various parts of the proof as well:

LEMMA 4.6 (Branching process upper bound on components restricted to subsets). Let
A⊆ [n], and consider the connected component of NRn(πnw) of a vertex j ∈A restricted to
A. The size of this connected component is stochastically upper bounded by the total progeny
of a mixed-Poisson branching process, where the root has Poisson offspring with parameter
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πnwjw(A)/`n, and all other vertices have mixed-Poisson offspring with mixing distribution
πnW

?
Aw([Nn(a)])/`n with

(4.30) P(W ?
A ≤ x) =

∑
i∈Awi1{wi≤x}

w(A)
.

PROOF. Fix A⊆ [n]. In NRn(πnw), two vertices i and j with i, j ∈A share an edge with
probability 1− e−πnwiwj/`n , and all edges are independent. We now present another way to
generate such independent edges.

For j ∈A, we draw a Poisson random variable with parameter πnwiw(A)/`n. We consider
these to be the potential neighbors of j. Then we assign a label to each of these potential
neighbors, and this label equals i with probability

(4.31) qA(i) =
wi
w(A)

, i ∈A.

Retain an edge between i and j when there is at least one potential neighbor of j with label i.
Then, for fixed j, the numbers of neighbors with label i are independent Poisson random
variables with parameters

(4.32) qA(i)
πnwjw(A)

`n
=
πnwiwj
`n

,

so that the probability that there is at least one potential neighbor with label j equals 1 −
e−πnwiwj/`n , as required.

The above shows how the neighbors of a vertex i can be chosen. In order to obtain the
stochastic upper bound on the connected components in Lemma 4.6, we explore the con-
nected component in a breadth-first way. Then, it follows that the connected components
with edge probabilities 1 − e−πnwiwj/`n are obtained through a thinning of the above con-
struction, where vertices in the tree are ordered in the breadth-first manner, and repetitions of
the labels (as well as all their offspring) are removed.

Finally, we note that the above process of potential neighbors is a Poisson branching pro-
cess with mixing distribution given by W ?

A in (4.30). Indeed, we explore a single potential
neighbors by first drawing its mark, and, given that its mark equals i, drawing a Poisson
random variable with parameter πnwiw(A)/`n of potential neighbors. Then, the collection
of potential neighbors (which includes the percolation component, due to the thinning) is a
mixed-Poisson branching process where the root (which corresponds to the vertex with label
j) has a Poisson offspring with parameter πnwjw(A)/`n, while all other vertices have off-
spring of a mixed-Poisson distribution with mixing parameter W ?

A in (4.30). Thus the proof
of Lemma 4.6 is complete. �

Next, let us investigate the survival probabilities of the above branching process for A=

[Nn(a)]. Let ρ̄?,λn,a denote the survival probability of the above branching process with root
also having the mixed Poisson offspring distribution with W λ

[Nn(a)]
in (4.28). Also, let ρ̄λn,a(u)

denote the survival probability when we start with vertex j = duNne. The following lemma
investigates the asymptotics of these survival probabilities when n→∞:

LEMMA 4.7 (Survival probability for upper bounding branching process). For any λ >
λ1
c(a), as n→∞, ρ̄?,λn,a→ ρ̄?,λa , where ρ̄?,λa is the maximum solution satisfying

ρ̄?,λa = (1− α)aα−1

∫ a

0
u−α[1− e−λc̄Fu

−αa1−αρ̄?,λa ]du,(4.33)
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with c̄F = c2F
(1−α)µ . Moreover, for all sufficiently large n,

ρ̄λn,a(u)≤Cmin{1, u−α},(4.34)

for some constant C =C(λ,α)> 0 independent of a.

PROOF. We write

(4.35) w̃i =
wiπnw([Nn(a)])

`n
.

Note that E[(1− t)X ] = e−ct for X ∼ Poisson(c). Now, conditioning on the type of the root,
the branching process dies out precisely when all the progeny of generation one dies out.
Equating these probabilities, we get

(4.36) ρ̄?,λn,a = 1−
∑

i∈[Nn(a)]

wi
w([Nn(a)])

e−w̃iρ̄
?,λ
n,a =

∑
i∈[Nn(a)]

wi
w([Nn(a)])

[1− e−w̃iρ̄
?,λ
n,a ].

Recalling Nn from (4.2), we rewrite the sum in an integral to obtain

(4.37) ρ̄?,λn,a =Nn

∫ a

0

wduNne

w([Nn(a)])
[1− e−w̃duNneρ̄

?,λ
n,a ]du.

We further simplify

(4.38) w([Nn(a)]) = cF

Nn(a)∑
j=1

(n/j)α � cF

1− α
nαNn(a)1−α =

cF

1− α
√
nNna

1−α,

while wduNne � cF

√
nu−α by (4.3). We then conclude that

(4.39)

w̃duNne =wduNneπn
w([Nn(a)])

`n
� cF

√
n

uα

(
cF

1− α
√
nNna

1−α
)
πn
µn

= λc̄Fu
−αa1−α.

Thus, by (4.29), and using w̃i defined in (4.39),

P(W λ
[Nn(a)]

≤ x) =
1

w([Nn(a)])

∑
i∈Nn(a)

wi1{w̃i≤x} �
Nn

w([Nn(a)])

∫ a

0
wduNne1{w̃duNne≤x}du

(4.40)

� (1− α)aα−1

∫ a

0
u−α1{λc̄Fu−αa1−α≤x}du.

Let W λ
∞,a be a random variable with distribution function given by the right hand side of

(4.40). Then W λ
[Nn(a)]

d−→W λ
∞,a. Thus, if ρ̄?,λa denotes the survival probability of the branching

process with starting distribution and progeny distribution given by a mixed-Poisson random
variable with parameter W λ

∞,a, also

ρ̄?,λn,a→ ρ̄?,λa .(4.41)

We conclude (4.33) by taking limit as n→∞ in (4.37).
For (4.34), let us start with vertex j = duNne. The limit of ρ̄λn,a(u) exists using (4.40). By

the fact that the branching process is i.i.d. after the first generation, using a union bound, this
survival probability is at most the expected offspring of j = duNne times ρ̄?,λn,a. The expected
offspring is
(4.42)

πnwduNne
w[Nn(a)]

`n
=
c2

F

µ
u−απnn

−1/2

Nn(a)∑
j=1

(n
j

)α
=Cu−απnNn(a)1−αnα−1/2 =Cu−αa1−α.
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Thus, for all sufficiently large n,

ρ̄λn,a(u)≤Cu−αa1−αρ̄?,λa .(4.43)

The proof of (4.34) follows if we can show that lim supa→∞ a
1−αρ̄?,λa <∞. Using (4.33),

and writing za = a1−αρ̄?,λa ,

za = (1− α)

∫ a

0
u−α[1− e−λc̄Fu

−αza ]du≤ (1− α)

∫ a

0
u−αmin{1, λc̄Fu−αza}du

≤C1

[∫ C2z
1
α
a

0
u−αdu+ za

∫ ∞
C2z

1
α
a

u−2αdu

]
≤Cz

1−α
α

a .

(4.44)

Since 1−α
α < 1, it follows that lim supa→∞ za = lim supa→∞ a

1−αρ̄?,λa <∞. The proof of
(4.34) is now completed using (4.43). �

PROOF OF PROPOSITION 4.5. First, note that ζλa is non-decreasing in a. Indeed, for
b > a, there exists a coupling under which GNn(a) ⊂ GNn(b). Under this coupling, by Propo-
sition 4.1, the component of GNn(b) containing C a

(1)
has size ΘP(Nn), and since C b

(2)
=

OP(logn), it must be the case that C a
(1)
⊂ C b

(1)
with high probability. By Proposition 4.2,

it now follows that ζλa ≤ ζλb . Thus lima→∞ ζ
λ
a exists and is positive.

Next, by (4.24), for any a > 0, ρλa(u)≤ lim supn→∞ ρ̄
λ
n,a(u). Therefore, an application of

(4.34) yields that

lim
a→∞

ζλa ≤C
∫ ∞

0
u−αmin{1, u−α}du <∞,(4.45)

since α ∈ (1
2 ,1), and the proof of Proposition 4.5 follows. �

5. Size of the tiny giant. In this section, we complete the proof of Theorem 2.6. To this
end, fix λ > λc. By Lemmas 4.3 and 4.4, λ > λ1

c(a) for all sufficiently large a. Therefore,
by Proposition 4.1, the graph restricted to [Nn(a)] has a giant component C a

(1)
of approxi-

mate size Nn(a)ρλa , where ρλa > 0. We denote the component of NRn(w, πn) containing C a
(i)

by C a,?
(i) . The main idea is to show that the component C a,?

(1) is the unique giant component C(1)

of NRn(w, πn), in the iterated limit as first n→∞, followed by a→∞.
Let us now explain in more detail how we aim to approach the proof. For j ∈

[Nn(a)], define Spana({j}) to be the set of vertices v ∈ [Nn(a)]c such that there ex-
ists a path between j and v that lies entirely in [Nn(a)]c. For V ⊆ [Nn(a)], we write
Spana(V ) = ∪j∈V Spana({j}). We have that Spana(C

a
(1)

) ⊆ C a,?
(1) , but C a,?

(1) may be larger
since Spana(C

a
(1)

) may intersect with Spana(C
a
(j)

) for some j ≥ 2, in which case C a,?
(1) gets

merged with C a,?
(j) . To study the effect of such mergers, let us say that there is a re-entry path

between i, j ∈ [Nn(a)] if a path exists between i and j with at least one intermediate vertex
in [Nn(a)]c. In other words, for any two vertices i, j ∈ [Nn(a)] lying in different components
of GNn(a), the existence of a re-entry path means that i, j become part of the same component
only after adding the edges in [Nn(a)]c.

Let Ra
(1)

denote the set of vertices v ∈ [Nn(a)] such that v is connected to some j ∈ C a
(1)

only via a re-entry path. Then,

(5.1) C a,?
(1)

= C a
(1)
∪ Spana(C

a
(1)

)∪Ra
(1)
∪ Spana(Ra(1)

).

Our objective is to show that, for λ > λ1
c(a) and large enough a, the main contribution in

|C a,?
(1) | comes from Spana(C

a
(1)

). An important ingredient to such a proof is that |Spana(C
a
(1)

)|
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is asymptotically close to the size of the 1-neighborhood of C a
(1)

(see also Proposition 4.5 and
the intuition below it).

The remainder of this section is organised as follows: We start by proving a lower and an
upper bound on the span of C a

(1)
in Sections 5.1 and 5.2 respectively. In Section 5.3, we show

that the contributions to the spans due to re-entry paths is asymptotically negligible. In fact,
we will show that the span of small subsets of vertices is small uniformly over the choice
of the vertex sets (see Lemma 5.9). In Section 5.4 we show that with high probability there
is no large component outside of [Nn(a)]. We conclude with the proof of Theorem 2.6 in
Section 5.5.

5.1. Concentration of the spans: lower bound. Fix a > 0 and recall the definitions of C a
(i)

from Section 4, and that of Spana(V ) for V ⊆ [Nn(a)] above (5.1). In this section, we obtain
a lower bound on the asymptotic size of Spana(C

a
(1)

), by proving a sharp approximation for
the 1-neighborhood of C a

(1)
:

PROPOSITION 5.1 (Lower bound for the span). Fix λ > λc. For any ε > 0, there exists
a1 = a1(ε)> 0 such that, for all a≥ a1,

lim
n→∞

P

( |Spana(C
a
(1)

)|
√
n

≥ ζλ − ε
)

= 1,(5.2)

where ζλ is as in (4.23).

For V ⊆ [Nn(a)], let Nl(V ) denote the vertices in Spana(V ) that are at distance l from
V , and let N≥l(V ) = ∪l′≥lNl′(V ). Thus,

(5.3) Spana(V ) =N1(V )∪N≥2(V ).

Lemma 5.2 below identifies the asymptotics of the first term in (5.3). In the next section,
where we analyze the upper bound on |Spana(C

a
(1)

)|, we show that the second term in (5.3)
gives a negligible contribution (see Lemma 5.5 below), but this is not needed for the lower
bound in Proposition 5.1:

LEMMA 5.2 (Direct neighbors of [Nn(a)]). Let V ⊆ [Nn(a)] be a random subset of
vertices that is measurable with respect to the minimum sigma-algebra generated by the
events {{i, j} is an edge} for i, j ∈ [Nn(a)]. Suppose that

∑
i∈V πnwi ≥ c0

√
n with high

probability for some constant c0 > 0. Then, for any fixed a > 0, and ε > 0, as n→∞,

P

(∣∣∣|N1(V )| −
∑
i∈V

πnwi

∣∣∣> ε
√
n

∣∣∣∣ GNn(a)

)
P−→ 0.(5.4)

PROOF. Let Pa and Ea denote the conditional probability and expectation, respectively,
conditionally on GNn(a), and restricted to the event that

∑
i∈V πnwi ≥ c0

√
n. Let us first show

that

Ea

[∣∣N1(V )
∣∣]= (1 + o(1))

∑
i∈V

πnwi + o(
√
n).(5.5)

Note that

(5.6)
∣∣N1(V )

∣∣= ∑
j /∈[Nn(a)]

1{{i,j} is an edge for some i∈V }.
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Thus, by a union bound,

Ea

[∣∣N1(V )
∣∣]≤∑

i∈V

∑
j∈[n]

πn
(
1− e−wiwj/`n

)
.(5.7)

Moreover, using inclusion-exclusion, the expectation in (5.5) is at least

∑
i∈V

∑
j /∈[Nn(a)]

πn
(
1− e−wiwj/`n

)
−
∑

i1,i2∈V

∑
j /∈[Nn(a)]

π2
n

(
1− e−wi1wj/`n

)(
1− e−wi2wj/`n

)
.

(5.8)

Now, by (4.38),
∑

i∈V wi ≤
∑

i∈[Nn(a)]wi ≤Ca1−α√nNn, and thus, using 1− e−x ≤ x, the
second term is at most

π2
n

(∑
i∈V

wi

)2 1

`2n

∑
j /∈[Nn(a)]

w2
j ≤Ca2−2απ2

n(
√
nNn)2n−2+2α

∑
j>Nn(a)

j−2α

≤Ca3−4αn(3−τ)/2 = o(
√
n).

(5.9)

Moreover, ∑
i∈V

∑
j∈[Nn(a)]

πn
(
1− e−wiwj/`n

)
≤ πnNn(a)2 ≤Ca2n(3−τ)/2 = o(

√
n).(5.10)

Thus, (5.7) and (5.8) together imply that

Ea

[∣∣N1(V )
∣∣]=

∑
i∈V

∑
j∈[n]

πn
(
1− e−wiwj/`n

)
+ o(
√
n).(5.11)

Let εn be such that εn ↘ 0 sufficiently slowly (to be specified later). Let us split the first
term of (5.11) in two parts by restricting the sum over j ∈ [n] to {j : wiwj ≤ εn`n} and
{j : wiwj > εn`n}, respectively. Denote the two terms by (I) and (II), respectively. Note
that

(II)≤ πn
∑

i∈[Nn(a)]

#{j : wiwj>εn`n}=Cπnε
−(τ−1)
n n2−τ

∑
i∈[Nn(a)]

wτ−1
i

=Cn(3−τ)/2ε−(τ−1)
n

∑
i≤an(3−τ)/2

1

i
=Cn(3−τ)/2ε−(τ−1)

n log(an(3−τ)/2) = o(
√
n),

(5.12)

where in the second step we have used Lemma 3.7, (3.16), and the choice of εn is such that
the final step holds. Moreover, since 1− e−x = x(1 + o(1)) as x→ 0,

(I)≥ (1 + o(1))
∑
i∈V

∑
j : wj≤εn`n/wi

πn
wiwj
`n

≥ (1 + o(1))
∑
i∈V

∑
j : wj≤Cεnnρ

πn
wiwj
`n

= (1 + o(1))
∑
i∈V

πnwi.
(5.13)

Also, (I)≤
∑

i∈V πnwi. We conclude that∑
i∈V

∑
j∈[n]

πn
(
1− e−wiwj/`n

)
= (1 + o(1))

∑
i∈V

πnwi + o(
√
n),(5.14)

and thus (5.5) follows by combining (5.11) and (5.14).
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To complete the proof of (5.4), we apply Chebyshev’s inequality for which we need to
bound the variance of |N1(V )|. Let Vara denote the variance conditionally on GNn(a). Note
that (5.6) is a sum of conditionally independent indicators, given GNn(a). Therefore,

Vara
(∣∣N1(V )

∣∣)≤Ea[∣∣N1(V )
∣∣],(5.15)

and an application of Chebyshev’s inequality completes the proof. �

Now we are ready to complete the proof of Proposition 5.1:

PROOF OF PROPOSITION 5.1. Clearly, |Spana(V )| ≥ |N1(V )| by (5.3). We apply Lemma
5.2 with V = C a

(1)
, and rely on Proposition 4.2 to estimate |N1(C a

(1)
)|. Finally, by Proposi-

tion 4.5, we can take a > 1 sufficiently large, so that ζλa ≥ ζλ − ε/2. Thus, Proposition 5.1
follows. �

5.2. Concentration of the spans: upper bound. Fix a > 0 and recall the definition of T a≥k
from Section 4, and that of Spana(V ) for V ⊆ [Nn(a)] above (5.1). In this section, we obtain
an upper bound on Spana(T a≥k):

PROPOSITION 5.3 (Upper bound on the span of large clusters). Fix λ > λc. For any
ε > 0, there exists a1 = a1(ε) > 0 such that for all a ≥ a1 there exists k0 = k0(ε, a) such
that, for all k ≥ k0,

lim
n→∞

P

( |Spana(T a≥k)|√
n

≤ ζλ + ε

)
= 1,(5.16)

where ζλ is as in (4.23).

Together with Proposition 5.1, Proposition 5.3 provides the following law of large numbers
on Spana(C

a
(1)

):

COROLLARY 5.4 (Law of large numbers for Spana(C
a
(1)

)). Under the conditions of
Proposition 5.3, with high probability, ζλ − ε≤ |Spana(C

a
(1)

)|/
√
n≤ ζλ + ε.

Our goal will be to first show that, given any arbitrary V ⊆ [Nn(a)], Spana(V ) is pre-
dominantly carried by the 1-neighborhood of V , when a is large. Recall the notation Nl(V ),
N≥2(V ) before (5.3), and that Spana(V ) =N1(V )∪N≥2(V ). Lemma 5.2 has studiedN1(V )
in detail, and now we focus on studying N≥2(V ) for a > 1 large:

LEMMA 5.5 (Additional neighborhood of [Nn(a)]). Let V ⊆ [Nn(a)] be a random subset
of vertices that is measurable with respect to the minimum sigma-algebra generated by the
events {{u, v}is an edge} for u, v ∈ [Nn(a)]. Suppose that

∑
i∈V πnwi ≤ C0

√
n with high

probability, for some constant C0 > 0 (i.e., C0 does not depend on a and n). Then, for any
ε > 0, there exists a0 = a0(ε)> 0 such that for any a > a0, as n→∞,

(5.17) P
(
|N≥2(V )|> ε

√
n
∣∣ GNn(a)

) P−→ 0.

PROOF. Recall that Pa and Ea denote the conditional probability and expectation, re-
spectively, given GNn(a), and restricted to the event that

∑
i∈V πnwi ≤ C0

√
n. We first show

that there exists a0 = a0(ε)> 0 such that, for all a > a0,

Ea[|N≥2(V )|]√
n

<
ε

2
, with high probability.(5.18)
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For any i, j ∈ [n], let Al(i, j) denote the event that there exists l − 1 vertices i1, . . . , il−1 ∈
[Nn(a)]c such that (i, i1, . . . , il−1, j) is a path in NRn(w, πn). In words, Al(i, j) is the event
that there exists a path of length l between i and j in NRn(w, πn) with all the intermediate
vertices in [Nn(a)]c. Now, with i0 = i, il = j, note that

Pa(Al(i, j))≤
∑

i1,...,il−1 /∈[Nn(a)]

l∏
s=1

πnwis−1
wis

`n

≤ πn
wiwj
`n

( ∑
v/∈[Nn(a)]

πnw
2
v

`n

)l−1
= πn

wiwj
`n

ν̄n(a)l−1,

(5.19)

where

ν̄n(a) =
1

`n

∑
v/∈[Nn(a)]

πnw
2
v =

Cn2απn
n

∑
v>an(3−τ)/2

v−2α

=
Cn2απn

n

(
an(3−τ)/2

)1−2α
=Ca−(3−τ)/(τ−1).

Thus, using
∑

i∈V πnwi ≤C0
√
n,

Ea[|N≥2(V )|]≤
∑
l≥2

∑
i∈V

∑
j /∈[Nn(a)]

Pa(Al(i, j))(5.20)

≤Cν̄n(a)
πn
`n

∑
i∈V

wi
∑

j /∈[Nn(a)]

wj ≤Cν̄n(a)
√
n,

and (5.18) follows using (5.20).
Next, we compute Vara(|N≥2(V )|), where we recall that Vara denotes the conditional

variance given GNn(a). Let Iij(a) be the indicator of the event ∪l≥2Al(i, j). For two vertices
i, j, we will use the shorthand notation [i, j] to denote a path between i and j. Note that

Ea[|N≥2(V )|2]≤
∑

i1,i2∈V

∑
j1,j2∈[Nn(a)]c

Pa(Ii1j1(a) = 1, Ii2j2(a) = 1).(5.21)

We split the sum over possible choices of i1, i2, j1, j2. If i1 = i2 and j1 = j2, then we get the
same bound as in (5.20). Let i1 = i2 = i and j1 6= j2. If Iij1(a) = 1 and Iij2(a) = 1, then we
have two cases:

B Case 1: There are two vertex-disjoint paths [i, j1] and [i, j2] with all intermediate vertices
in [Nn(a)]c.
B Case 2: There exists a vertex k ∈ [Nn(a)]c such that there are three vertex-disjoint paths
[i, k], [k, j1] and [k, j2] with all intermediate vertices in [Nn(a)]c.

Since the paths described above are vertex-disjoint, we can apply the BK-inequality [8, The-
orem 3.3]. Let A(i, k) = ∪l≥1Al(i, k). By (5.19),

Pa(A(i, k))≤ Cπnwiwk
`n

∀i, k.(5.22)
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We will often use this upper bound throughout the rest of the proof. Thus, when Case 1
occurs, we can bound the term in (5.21) by∑

i∈V

∑
j1,j2∈[Nn(a)]c

Pa(Iij1(a) = Iij2(a) = 1, and Case 1 occurs)

≤
∑
i∈V

∑
j1,j2∈[Nn(a)]c

Pa(A(i, j1))Pa(A(i, j2))≤ Cπ2
n

`2n

∑
i∈V

w2
i

( ∑
j∈[Nn(a)]c

wj

)2

≤Cπ2
n

∑
i∈[n]

w2
i ≤C(nαπn)2 = o(n).

(5.23)

Again, using a union bound over the choices of k and applying the BK-inequality, we obtain

∑
i∈V

∑
j1,j2∈[Nn(a)]c

Pa(Iij1(a) = Iij2(a) = 1, and Case 2 occurs)

≤
∑
i∈V

∑
j1,j2∈[Nn(a)]c

∑
k∈[Nn(a)]c

Pa(A(i, k))Pa(A(j1, k))Pa(A(j2, k))

≤ Cπ3
n

`3n

∑
i∈V

∑
j1,j2∈[Nn(a)]c

∑
k∈[Nn(a)]c

wiwj1wj2w
3
k ≤C

√
n
π2
n

`n

∑
k∈[Nn(a)]c

w3
k ≤Ca1−3αnπn,

(5.24)

where in the penultimate step we have used our assumption that
∑

i∈V πnwi ≤ C0
√
n, and

the final step follows by using∑
k∈[Nn(a)]c

w3
k ≤

∑
k>Nn(a)

c3
F
n3α

k3α
=Cn3α(aNn)1−3α =Ca1−3αNnn

3/2.(5.25)

We can similarly treat the case i1 6= i2 and j1 = j2. In that case, we no longer have to split in
two cases as above, since k may be equal to j. Thus, the same argument as (5.24) shows that∑

i1,i2∈V

∑
j∈[Nn(a)]c

Pa(Ii1j(a) = Ii2j(a) = 1)≤Ca1−3α√n.(5.26)

Note also that |N≥2(V )|=
∑

j /∈[Nn(a)] 1{A(i,j) occurs for some i∈V }, and thus (5.26) also implies
that

Ea

[
|N≥2(V )|

]
≥
∑
i∈V

∑
j∈[Nn(a)]c

Pa(Iij(a) = 1)−
∑

i1,i2∈V

∑
j∈[Nn(a)]c

Pa(Ii1j(a) = Ii2j(a) = 1)

=
∑
i∈V

∑
j∈[Nn(a)]c

Pa(Iij(a) = 1)− Err(a,
√
n),

(5.27)

where lima→∞ lim supn→∞ Err(a,
√
n) = 0. Finally, consider the case where i1, i2, j1, j2 are

all distinct. Let B(i1, j1, i2, j2) denote the event that there exist disjoint paths [i1, j1] and
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[i2, j2]. By the BK-inequality,

∑
i1,i2∈V,j1,j2∈[Nn(a)]c

i1 6=i2,j1 6=j2

Pa(B(i1, j1, i2, j2))

≤
∑

i1,i2∈V,j1,j2∈[Nn(a)]c

i1 6=i2,j1 6=j2

Pa(Ii1j1(a) = 1)Pa(Ii2j2(a) = 1)≤
(
Ea[|N≥2(V )|] + o(

√
n)
)2
,

(5.28)

where we have used (5.27) in the last step.
Let B′(i1, j1, i2, j2) denote the event that [i1, j1] and [i2, j2] intersect. If B′(i1, j1, i2, j2)

occurs, then there are two vertices k1, k2 ∈ [Nn(a)]c in [i1, j1] such that [i1, k1], [k1, k2],
[k2, j1], [i2, k1] and [j2, k2] are edge-disjoint. There are two cases depending on whether
k1 = k2 (we denote this event by B′1(i1, j1, i2, j2)) or k1 6= k2 (and we denote this event by
B′2(i1, j1, i2, j2)). The BK-inequality implies that

∑
i1,i2∈V

∑
j1,j2∈[Nn(a)]c

Pa(B′1(i1, j1, i2, j2))

≤
∑

i1,i2∈V

∑
j1,j2∈[Nn(a)]c

∑
k∈[Nn(a)]c

Pa(A(i1, k))Pa(A(j1, k))Pa(A(i2, k))Pa(A(j2, k))

≤ Cπ4
n

`4n

∑
i1,i2∈V

∑
j1,j2∈[Nn(a)]c

∑
k∈[Nn(a)]c

wi1wi2wj1wj2w
4
k

≤Cnπ
2
n

`2n

∑
k∈[Nn(a)]c

w4
k ≤Ca1−4αnπn,

(5.29)

where we have used that
∑

k∈[Nn(a)]c w
4
k ≤ Ca1−4αNnn

2, as can be derived similarly as in
(5.25).

To compute Pa(B′2(i1, j1, i2, j2)), we again apply the BK-inequality, and (5.25) again im-
plies that

∑
i1,i2∈V

∑
j1,j2∈[Nn(a)]c

Pa(B′2(i1, j1, i2, j2))

≤
∑

i1,i2∈V

∑
j1,j2∈[Nn(a)]c

∑
k1,k2∈[Nn(a)]c

Pa(A(i1, k1))Pa(A(k1, k2))Pa(A(j1, k2))Pa(A(i2, k1))Pa(A(j2, k2))

≤ Cπ5
n

`5n

∑
i1,i2∈V

∑
j1,j2∈[Nn(a)]c

∑
k∈[Nn(a)]c

wi1wi2wj1wj2w
3
k1
w3
k2

≤Cnπ
3
n

`3n

( ∑
k∈[Nn(a)]c

w3
k

)2

≤Ca2−6αnπn.

(5.30)

To complete the proof, we conclude from (5.23), (5.24), (5.26), (5.28), (5.29) and (5.30)
that Vara(|N≥2(V )|) = o(n) for each fixed a > 0, where we recall that Vara denotes the
conditional variance given GNn(a). Thus, on the event that Ea[|N≥2(V )|] ≤ ε

√
n/2, which
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occurs with high probability, (5.18) and the Chebychev inequality imply that

Pa

(
|N≥2(V )|> ε

√
n
)
≤Pa

(∣∣∣|N≥2(V )| −Ea[|N≥2(V )|]
∣∣∣> ε
√
n/2

)
(5.31)

≤ 4Vara(|N≥2(V )|)
ε2n

P−→ 0,

and thus the proof of Lemma 5.5 follows. �

Next we bound the total weight of small sets of vertices which will be required in the proof
of Proposition 5.3:

LEMMA 5.6 (Small sets have small weight). Fix any δ > 0, and V ⊂ [Nn(a)] such that
|V | ≤ δNn. Then 1√

n

∑
k∈V πnwk ≤

cFδ1−α

1−α .

PROOF. Note that 1√
n

∑
k∈V πnwk ≤

1√
n

∑
k≤δNn πnwk. Using (2.6), we conclude that

1√
n

∑
k≤δNn

πnwk ≤ cFn
− 3−τ

2
− 1

2
+α

∑
k≤δNn

k−α ≤ cF

1− α
δ1−α.(5.32)

�

We are now ready to prove Proposition 5.3:

PROOF OF PROPOSITION 5.3. Let λ > λc and fix ε > 0. We first show that there exists
a1 = a1(ε)> 0 such that for all a≥ a1 there exists k0 = k0(ε, a) such that, for all k ≥ k0,

lim
n→∞

P

(
1√
n

∑
i∈T a≥k

πnwi ≤ ζλ +
ε

2

)
= 1,(5.33)

We take δ = (ε/4C0)1/(1−α), where C0 = cF/(1− α) as in Lemma 5.6, i.e.,
∑

k∈V πnwk ≤
ε
√
n/4, whenever |V | ≤ δNn. Recall the notation ρλa,≥k from (4.9). Since ρλa,≥k ↘ ρλa as

k→∞, we can choose k0 = k0(ε, a) such that, for all k ≥ k0, ρλa,≥k ≤ ρλa + δ/2a. Using
Proposition 4.1, with high probability,

|T a≥k| ≤ |C a
(1)
|+ δNn =⇒ |T a≥k \C a

(1)
| ≤ δNn,(5.34)

where the last implication uses that C a
(1)
⊂ T a≥k with high probability, since |C a

(1)
| =

ΘP(Nn(a)). By our choice of δ, and Lemma 5.6, with high probability,

1√
n

∑
i∈T a≥k

πnwi ≤
1√
n

∑
i∈C a

(1)

πnwi +
ε

4
≤ ζλ +

ε

2
,(5.35)

for all a > a1 (a1 is sufficiently large, not depending on k), where the final step follows using
Propositions 4.2 and 4.5. This concludes the proof of (5.33). Also, we can take a1 to be large
enough such that for all a≥ a1 there exists k0 = k0(ε, a) such that, for all k ≥ k0,

lim
n→∞

P

(
1√
n

∑
i∈T a≥k

πnwi ≥ ζλ −
ε

2

)
= 1,(5.36)

which can be concluded using Propositions 4.2 and 4.5 and the fact that C a
(1)
⊂ T a≥k with high

probability.
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Using (5.33) and (5.36), we can now apply Lemmas 5.2 and 5.5 for T a≥k, to conclude that,
for any a >max{a0, a1},

|Spana(T a≥k)|√
n

= (1 + oP(1))
∑
j∈T a≥k

πnwj√
n
,(5.37)

where a0 is as in Lemma 5.5. This concludes the proof of Proposition 5.3. �

5.3. Negligible contribution due to re-entry paths. Let us start by constructing the graph
ḠNn(a) as follows: {i, j} is an edge of ḠNn(a) if and only if {i, j} is an edge of GNn(a), or
there exists a path from i to j with all intermediate vertices in [Nn(a)]c. We will term the
additional edges in ḠNn(a) as re-entry edges. Henceforth, we augment a previously used no-
tation with a bar to denote the corresponding quantity for ḠNn(a). For example, C̄ a

(i)
and T̄ a≥k,

respectively, denote the i-th largest component and the set of vertices in components of
size at least k in ḠNn(a). Our candidate giant component in the whole graph NRn(w, πn)
is C̄ a

(1)
∪ Spana(C̄

a
(1)

) for large a. Note that the vertices in C̄ a
(1)
\ C a

(1)
added due to the

re-entry edges are precisely the re-entry vertices, as explained before (5.1). In particular,
C̄ a

(1)
= C a

(1)
∪Ra

(1)
, so that also

(5.38) C̄ a
(1)
∪ Spana(C̄

a
(1)

) = C a
(1)
∪ Spana(C

a
(1)

)∪Ra
(1)
∪ Spana(Ra(1)

) = C a,?
(1)
.

The goal of this section is to show that the addition of the re-entry edges can only increase
the asymptotics of the span by a negligible amount:

PROPOSITION 5.7 (Span with re-entry vertices). There exists ε0 > 0 such that for any
ε ∈ (0, ε0), there exists a2 = a2(ε) > 0 such that, for all a ≥ a2, there exists k1 = k1(ε, a)
such that, for all k ≥ k1,

lim
n→∞

P

( |Spana(T̄ a≥k)|√
n

≤ ζλ + ε

)
= 1,(5.39)

where ζλ is as in (4.23).

Let us explain the intuition behind the proof. The main idea is that T a≥k is robust in the
sense that its size does not change too much by adding edges to the graph arbitrarily, as long
as the number of added edges is small (see Lemma 5.8 below). For this reason, the span of
the added vertices is also small (see Lemma 5.9 below). In order to make use of this idea,
we later show that there are not many re-entry edges for large a (see Lemma 5.11 below). To
make these ideas precise, we start with the following elementary fact from [15, Lemma 9.4]:

LEMMA 5.8 ([15, Lemma 9.4]). LetG1,G2 be two graphs on the same set of vertices and
the edge set ofG1 is contained in that ofG2. Let k ≥ 1 andN≥k(Gi) be the set of vertices with
component size at least k in Gi for i= 1,2. Then N≥k(G1)≤N≥k(G2)≤N≥k(G1) + k∆,
where ∆ is the difference between the number of edges in G1,G2.

The next lemma shows that spans of small subsets of [Nn(a)] are uniformly small:

LEMMA 5.9 (Span of small sets in [Nn(a)]). Given any ε1 > 0, there exists a0 =
a0(ε1)> 0 such that, for all a≥ a0,

lim
n→∞

P

(
max

V⊂[Nn(a)]:|V |≤ε1Nn
|Spana(V )| ≤C0ε

1−α
1

√
n

)
= 1,(5.40)

for some absolute constant C0 > 0.
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PROOF. Recall that ν̄n(a) = 1
`n

∑
j∈[Nn(a)]c πnw

2
j , and Al(i, j) is the event that there ex-

ists a path of length l between i and j in NRn(w, πn) with all the intermediate vertices
in [Nn(a)]c. Let

ZL :=
∑

i∈[Nn(a)],j∈[Nn(a)]c

∑
l>L

1Al(i,j).(5.41)

Fix any δ > 0. Recall that
∑

i∈[Nn(a)] πnwi =Ca1−α√n. By Markov’s inequality and similar
calculations as in (5.19),

P

(
ZL >

C0

2
ε1−α

1

√
n
)
≤ 2

C0ε
1−α
1

√
n

∑
i∈[Nn(a)],j∈[n]

∑
l>L

πn
wiwj
`n

(ν̄n(a))l−1

=
(ν̄n(a))L

1− ν̄n(a)

C

ε1−α
1

√
n

∑
i∈[Nn(a)]

πnwi ≤C1e
−C2L loga+C3 loga+C4 log 1

ε1 ≤ δ,
(5.42)

for some L = L0 = L0(δ) (the choice of L0 does not depend on ε1, a as long as a ≥
min{2,1/ε1}).

Next, fix any V ⊂ [Nn(a)] such that |V | ≤ ε1Nn. We claim that, for any 1≤ l ≤ L0, and
any choice of V above,

P

(
|Nl(V )|> C0

2
ε1−α

1

√
n

)
≤ 2le−CNna

1−α
2 ,(5.43)

where C may depend only on ε, and the inequality holds for all sufficiently large n. We first
check that (5.43) implies Lemma 5.9, and then prove (5.43). Indeed, by (5.42),

P

(
max

V⊂[Nn(a)]:|V |≤ε1Nn
|Spana(V )|>C0ε

1−α
1

√
n

)
≤ δ+

(
Nn(a)

bε1Nnc

)
max

V⊂[Nn(a)]:|V |≤ε1Nn
P

(
|Spana(V )|>C0ε

1−α
1

√
n, ZL ≤

C0

2
ε1−α

1

√
n

)
≤ δ +L0e

ε1Nn log a

ε1e max
V⊂[Nn(a)]:|V |≤ε1Nn

max
l≤L0

P

(
|Nl(V )|> C0

2
ε1−α

1

√
n

)
≤ δ + ne

ε1Nn log a

ε1e
−CNna

1−α
2

= δ + o(1),

(5.44)

for all large enough a, where in the third step we have used Stirling’s approximation(
Nn(a)

ε1Nn

)
≤ (Nn(a))ε1Nn

(bε1Nnc)!
∼
(

Nn(a)

bε1Nnc/e

)ε1Nn

∼ eε1Nn log(a/ε1e).(5.45)

Since δ > 0 is arbitrary, this completes the proof of Lemma 5.9.

It remains to prove (5.43). We will prove (5.43) inductively, along also with the companion
estimate

P

( ∑
j∈Nl(V )

πnwj >
C0

14
ε1−α

1

√
n

)
≤ e−CNna

1−α
2 ,(5.46)

for all sufficiently large n. For l = 0, (5.43) holds trivially and (5.46) holds by Lemma 5.6.
At step l ≥ 1, let El denote the good event that the events in (5.43) and (5.46) do not occur.
Then,

E
[
|Nl+1(V )|

∣∣ Nl(V ),El
]
≤

∑
i∈Nl(V )

∑
j∈[n]

πn
wiwj
`n

=
∑

i∈Nl(V )

πnwi ≤
C0

14
ε1−α

1

√
n,(5.47)
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where the last step uses (5.46). Note that |Nl+1(V )| is, conditionally on ∪r≤lNr(V ), a sum
of independent indicators. Thus, standard concentration inequalities [34, Corollary 2.4, The-
orem 2.8] imply

P

(
|Nl+1(V )|> C0

2
ε1−α

1

√
n

)
≤P(Ecl ) + e−C

′√n.(5.48)

Thus (5.43) follows. To inductively verify (5.46), note that

E

[ ∑
j∈Nl+1(V )

πnwj

∣∣∣ Nl(V ),El
]
≤

∑
j∈[Nn(a)]c

∑
i∈Nl(V )

πnwj
πnwiwj
`n

≤ C0

14
ε1−α

1

√
n×

∑
j∈[Nn(a)]c

πnw
2
j

`n
≤ C0

14

λ2c2
F

µ
a1−2αε1−α

1

√
n≤ C0

14
a−α+ 1−α

2 ε1−α
1

√
n,

(5.49)

for all large enough a, where the third inequality uses (3.18). For the concentration, we will
use the following elementary fact:

FACT 5.10. Fix k ≥ 1, let Xi ∼ Bernoulli(pi) independently for i ∈ [k], and let ai be
such that maxi ai > 0 and E[

∑
i aiXi] =

∑
i aipi ≤ x. Then,

P

(∑
i

aiXi > 3x

)
≤ e
− x

maxi ai .(5.50)

PROOF. For any t ≤ 1/maxi ai, Markov’s inequality and the independence of (Xi)i≥1

imply that

P

(∑
i∈[k]

aiXi > 3x

)
≤ e−3tx

∏
i∈[k]

E[etaiXi ] = e−3tx
∏
i∈[r]

(
1− pi + pie

tai
)

≤ e−3txe
∑
i∈[k] pi(e

tai−1) ≤ e−tx,

(5.51)

where in the third step we have used that 1 + x≤ ex for any x∈R, and in the final step we
have used that ex − 1≤ 2x for all x ∈ [0,1] and t≤ 1/maxi ai. The proof follows by taking
t= 1/maxi ai. �

Finally, to complete the proof of (5.46), we apply Fact 5.10 withXj = 1{j has an edge withNl(V )}
and aj =wjπn for j /∈ ∪l′≤lNl′(V ), along with the bound on the expectation from (5.49) and
the fact that wj ≤ cFa

−α√n for j ∈ [Nn(a)]c. This completes the proof of Lemma 5.9. �

In addition to Lemmas 5.8 and 5.9, we need one final ingredient. Fix b > a. We say that
i and j have a re-entry path passing through [Nn(b)]c when there is a path between i to j
with all intermediate vertices in [Nn(a)]c, and at least one of the intermediate vertices in
[Nn(b)]c. Let rn(a, b) be the total number pairs of vertices i, j ∈ [Nn(a)] such that i and j
have a re-entry path passing through [Nn(b)]c. The following lemma shows that, given a, we
can choose b so large that the number of re-entry paths passing through [Nn(b)] can be made
arbitrarily small by choosing b sufficiently large:

LEMMA 5.11 (Re-entry path passing through [Nn(b)]c). There exists a1 > 0 such that
for any δ > 0 and a > a1,

lim
b→∞

lim
n→∞

P(rn(a, b)≤ δNn) = 1.(5.52)
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PROOF. By the Markov inequality, it is enough to show that, for every a > 0 fixed,

lim
b→∞

lim sup
n→∞

E[rn(a, b)]

Nn
= 0.(5.53)

For i, j ∈ [Nn(a)], let Iij(a, b) denote the indicator that there is a re-entry path from i to j
passing through [Nn(b)]c. We writeA′l(i, j) to denote the event that there exists l−1 vertices
i1, . . . il−1, with ik /∈ [Nn(a)] for all k ≤ l − 1 and ij /∈ [Nn(b)] for at least one j, such that
(i, i1, . . . il−1, j) is a path in NRn(w, πn). In words, A′l(i, j) is the event that there exists a
path of length l between i and j in NRn(w, πn) with all the intermediate vertices in [Nn(a)]c

and at least one intermediate vertex in [Nn(b)]c.
A re-entry path has minimum length two, so that l≥ 2. Thus,

E[rn(a, b)] =
∑

i,j∈[Nn(a)],i<j

P(Iij(a, b) = 1)≤
∑
l≥2

∑
i,j∈[Nn(a)]

P(A′l(i, j)).(5.54)

We first consider the sum with l = 2. Recall the notation from (4.5) that κ(u, v) = 1 −
e−c

2
F(uv)−α/µ. Let i = duNne and j = dvNne, where u, v ∈ (0, a]. Consider another vertex

dxNne with x > b, which corresponds to the vertex outside [Nn(b)] on the re-entry path
from i to j passing through [Nn(b)]c. Note that

P(A′2(i, j)) =
∑

k∈[Nn(b)]c

π2
n

(
1− e−wiwk/`n

)(
1− e−wjwk/`n

)
≤ λ2

Nn

∫ ∞
b

κ(u,x)κ(v,x)dx,

(5.55)

and thus
1

Nn

∑
i,j∈[Nn(a)]

P(A′2(i, j))≤ λ2

∫ a

0

∫ a

0

∫ ∞
b

κ(u,x)κ(v,x)dxdudv,(5.56)

which tends to zero in the iterated limit limb→∞ lim supn→∞ since the above integral over
x ∈ [0,∞) is finite for all a fixed.

For l ≥ 3, the path is of the form (i0, i1, . . . , il−1, il) with i0 = i, il = j. We split these
sums in three cases. We say that A′l(i, j,1) happens if i1 ∈ [Nn(b)]c, A′l(i, j,2) happens if
il−1 ∈ [Nn(b)]c, and A′l(i, j,3) happens if ij ∈ [Nn(b)]c for some 1< j < l− 1. We compute

P(A′l(i, j,1))

≤
∑

i2,...,il−1∈[Nn(a)]c,i1∈[Nn(b)]c

l−1∏
s=0

πn
(
1− e−wiswis+1

/`n
)

≤ πn
`n

( ∑
k∈[Nn(a)]c

πnw
2
k

`n

)l−3 ∑
i1∈[Nn(b)]c

πnwi1
(
1− e−wiwi1/`n

) ∑
il−1∈[Nn(a)]c

πnwil−1

(
1− e−wjwil−1

/`n
)

≤ (ν̄n(a))l−3λ
2c2

F

µ
πn

∫ ∞
b

x−ακ(u,x)dx

∫ ∞
a

y−ακ(v, y)dy.

(5.57)

Similarly,

P(A′l(i, j,2))≤ (ν̄n(a))l−3λ
2c2

F

µ
πn

∫ ∞
a

x−ακ(u,x)dx

∫ ∞
b

y−ακ(v, y)dy,(5.58)

and

P(A′l(i, j,3))≤ ν̄n(b)(ν̄n(a))l−4λ
2c2

F

µ
πn

∫ ∞
a

x−ακ(u,x)dx

∫ ∞
a

y−ακ(v, y)dy.(5.59)
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Taking a large enough so that ν̄n(a)< 1, it follows that
1

Nn

∑
l≥3

∑
i,j∈[Nn(a)]

P(A′l(i, j))

≤C
[
2

(∫ a

0

∫ ∞
b

x−ακ(u,x)dxdu

)(∫ a

0

∫ ∞
a

x−ακ(u,x)dxdu

)
+ ν̄n(b)

(∫ a

0

∫ ∞
a

x−ακ(u,x)dxdu

)2]
.

(5.60)

Since
∫ a

0

∫∞
b x−ακ(u,x)dxdu <∞ for every fixed a > 0, the expression in (5.60) tends to

zero in the iterated limit limb→∞ lim supn→∞. Thus, the proof of (5.53) follows by combin-
ing (5.54), (5.56) and (5.60) and the proof of Lemma 5.11 is thus complete. �

We need one final fact before completing the proof of Proposition 5.7. Fix b > a, and define
V0(b)⊂ [Nn(b)]c to be the collection of j ∈ [Nn(b)]c such that there is a path from j to some
vertex i ∈ [Nn(a)] with all intermediate vertices in [Nn(a)]c and at least one intermediate
vertex in [Nn(b)]c. The following lemma proves an upper bound on the size of V0(b):

LEMMA 5.12 (Span passing through [Nn(b)]c). There exists a1 such that for any ε > 0
and a > a1,

lim
b→∞

lim sup
n→∞

P(|V0(b)|> ε
√
n) = 0.(5.61)

PROOF. Fix any i ∈ [Nn(a)] and j ∈ [Nn(b)]c. LetA′l(i, j) be the event that there is a path
from j to i of length l with all intermediate vertices in [Nn(a)]c and at least one intermediate
vertex in [Nn(b)]c. Using identical computations as in (5.19), for any l≥ 2,

P(A′l(i, j))≤ (l− 1)πn
wiwj
`n

(ν̄n(a))l−2ν̄n(b).(5.62)

The ν̄n(b) term is due to the intermediate vertex in [Nn(b)]c and the factor (l− 1) is due to a
union bound over possible positions of this vertex in the path of length l. Take a1 to be large
enough such that ν̄n(a)< 1 for all a > a1. Then,

E[V0(b)]≤
∑

i∈[Nn(a)],j∈[Nn(b)]c

∑
l≥2

P(A′l(i, j))≤
ν̄n(b)

1− νn(a)

∑
i∈[Nn(a)]

πnwi,(5.63)

where in the last step we have used that
∑

j∈[Nn(b)]c wj ≤ `n. Using (4.38),
∑

i∈[Nn(a)] πnwi ≤
Ca1−α√n and ν̄n(b) ≤ Cb−(3−τ)/(τ−1) by (5.20). Therefore, limb→∞ limn→∞E[V0(b)] =
0, and the proof follows using Markov’s inequality. �

Let us close this section by completing the proof of Proposition 5.7:

PROOF OF PROPOSITION 5.7. Fix ε > 0 small enough. Take ε1 = [ε/C0]1/(1−α), so
that the bound on the span from Lemma 5.9 is ε

√
n. Next, choose a2 such that Lem-

mas 5.9, 5.11, 5.12 and Propositions 5.1, 5.3 hold. Fix a≥ a2 and let k0 = k0(ε, a) be such
that the above results work. Also, the perturbation k∆ in Lemma 5.8 will be taken to be at
most ε1Nn. Fix any δ > 0 (sufficiently small) such that Lemma 5.11 holds. This sets the stage
for our proof, and fixes the necessary parameters.

Fix b > a large. We add the additional edges due to re-entry paths leaving [Nn(a)] in two
stages, by first adding the edges due to re-entry paths not passing through [Nn(b)]c (i.e., with
all intermediate vertices in [Nn(b)] \ [Nn(a)]), and then adding edges due to re-entry paths
passing through [Nn(b)]c.
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Stage 1. Suppose that we first add the edges due to re-entry paths not passing through
[Nn(b)]c to GNn(a). Let G+

Nn(a)
be the graph obtained by starting with GNn(a), and additionally

creating an edge between two vertices if such a re-entry path exists between them. Define
T a,+

≥k for the set of vertices with components size at least k in G+

Nn(a)
. We seek to upper bound

Spana(T a,+

≥k ).
Let v ∈ Spana(T a,+

≥k ). By definition, there exists a path (v, i1, . . . , il, u) such that il′ ∈
[Nn(a)]c for all l′ ∈ [l], and u ∈ T a,+

≥k . We write P as a shorthand for (i1, . . . , il). Consider
the following set of exhaustive cases (where in fact several cases can occur at the same time,
due to the fact that P is not necessarily unique):

(1) v ∈ [Nn(b)].
(2) v ∈ [Nn(b)]c and P = ∅. In that case, v ∈ Spanb(T b

≥k) (in fact v lies in the 1-
neighborhood of T b

≥k).
(3) v ∈ [Nn(b)]c and P 6= ∅. Then, we have the following sub-cases:

(a) If P ⊂ [Nn(b)]c, then v ∈ Spanb(T b

≥k), using that T a,+

≥k ⊂ T b

≥k;
(b) If P ⊂ [Nn(b)] \ [Nn(a)], then v ∈ Spanb(T b

≥k) (since v lies in the 1-neighborhood of
T b

≥k);
(c) If P intersects both [Nn(b)]c and [Nn(b)] \ [Nn(a)], then v ∈ V0(b), where V0(b) is

defined in Lemma 5.12.

The above shows that

|Spana(T a,+

≥k )| ≤Nn(b) + |Spanb(T b

≥k)|+ |V0(b)|.(5.64)

Using Proposition 5.3 and Lemma 5.12, for all a≥ a2,

lim
b→∞

lim
n→∞

P

( |Spana(T a,+

≥k )|
√
n

≤ ζλ + ε

)
= 1.(5.65)

Stage 2. Next, we add the re-entry paths passing through [Nn(b)]c to G+

Nn(a)
. On top of

G+

Nn(a)
, if we additionally create an edge between two vertices if a re-entry path passing

through [Nn(b)]c exists between them, then the resulting graph will be ḠNn(a) defined above
Proposition 5.7. By Lemma 5.8, |T̄ a

≥k \ T a,+

≥k | ≤ ε1Nn on the event that {rn(a, b) ≤ δNn}.
Thus, Lemmas 5.9 and 5.11 show that, for all a≥ a2 and k ≥ k0,

lim
b→∞

lim
n→∞

P
(
|Spana(T̄ a

≥k \ T a,+

≥k )| ≤ ε
√
n
)

= 1.(5.66)

The proof of Proposition 5.7 now follows by combining (5.65) and (5.66). �

5.4. No large components outside of [Nn(a)]. So far, we have studied the maximal com-
ponent involving vertices from [Nn(a)]. We are left to study the maximal size of compo-
nents that are completely outside of [Nn(a)]. Recall from (3.67) that C≤(j) is empty when
j 6= min{i : i ∈ C (j)} and equals C (j) otherwise. The main estimate on the cluster size
outside of [Nn(a)] is the following lemma:

LEMMA 5.13 (No large components outside [Nn(a)]). For each fixed a > 0, as n→∞,

(5.67) (πnn
α)−1 max

j∈[n]\[Nn(a)]
|C≤(j)| P−→ 0.

PROOF. It suffices to prove the statement for |C≤(j) \ {j}|. Let Dj denote the degree of
j. Fix ε > 0. We bound
(5.68)
P

(
max

j∈[n]\[Nn(a)]
|C≤(j)\{j}| ≥ 2επnn

α
)
≤

∑
j>Nn(a)

[
P(Dj ≥ επnnα)+P(|N ′≥2

(j)| ≥ επnnα)
]
,
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where N ′≥2
(j) is the part of the component of C≤(j) at distance at least 2 away from j.

Now Dj is a sum of independent Bernoulli
(
πn(1 − e−wjwk/`n)

)
random variables, and

E[Dj ] ≤ πnwj . Since πnwj = o(πnn
α), standard concentration arguments [34, Corollary

2.4, Theorem 2.8] show that, for all sufficiently large n,

P(Dj ≥ επnnα)≤ e−πnn
α

.(5.69)

For the second summand in (5.68), we use the Markov inequality to bound

(5.70) P(|N ′≥2
(j)| ≥ επnnα)≤ (επnn

α)−2
E[|N ′≥2

(j)|2].

The expectation can be computed using path counting again similar to (5.21). Since j is the
minimum index of C≤(j), we will need the paths to have vertices with indices higher than
j only. Let Jij denote the indicator that i and j are connected via a path of length at least 2
with all intermediate vertices having index at least j.

Thus

(5.71) E[|N ′≥2
(j)|2] =

∑
i1,i2≥j

P(Ii1j = 1, Ii2j = 1),

where Iij is the indicator that there is a path from i to j with all intermediate vertices having
index at least j. We can decompose the above in two cases depending on whether the paths
[i1, j] and [i2, j] are disjoint or not. Denote the two cases by (I) and (II), respectively. Using
the BK-inequality [8, Theorem 3.3] again yields

(I)≤
(∑
i1≥j

P(Ii1j = 1)

)2

≤
(∑
i1>j

∑
l≥2

∑
k1,...,kl−1≥j
k0=i1,kl=j

l∏
s=1

πnwks−1
wks

`n

)2

≤ (πnwj)
2

(∑
l≥2

νn(j)l−1

)2

,

(5.72)

where now

(5.73) νn(j) = πn
∑
k≥j

w2
k

`n
≤Cπnn2α−1j1−2α.

If the paths [i1, j] and [i2, j] are not disjoint, then there exist three disjoint paths [i1, k], [i2, k]
and [k, j] for some k > j. Therefore, applying the BK-inequality [8, Theorem 3.3] once again,

(II)≤
∑

i1,i2,k>j

∏
k0∈{i1,i2,j}

∑
l≥2

∑
k1,...,kl−1≥j,kl=k

l∏
s=1

πnwks−1
wks

`n

≤ (πnwj)
π2
n

∑
k≥j w

3
k

`n

(∑
l≥2

νn(j)l−1

)3

≤ (πnwj)
π2
n

∑
k≥j w

3
k

`n
,

(5.74)

since νn(j) ≤ Cπcn(n/j)2α−1 ≤ 1
2 for j > Nn(a). Using

∑
k>j w

3
k/`n = O(n3α−1j1−3α),

we conclude that

P(|N ′≥2
(j)| ≥ επnnα)≤O(1)(επnn

α)−2
[
π4
nn

6α−2j2−6α + π3
nn

4α−1j1−4α
]

(5.75)

=O(1)
[
π2
nn

4α−2j2−6α + πnn
2α−1j1−4α

]
,
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so that

∑
j>Nn(a)

P(|N ′≥2
(j)| ≥ επnnα)≤O(1)

∑
j>Nn(a)

[
π2
nn

4α−2j2−6α + πnn
2α−1j1−4α

](5.76)

=O(1)
[
π2
nn

4α−2N3−6α
n + πnn

2α−1N2−4α
n

]
=O(1)N1−2α

n = o(1),

since α> 1
2 . This proves Lemma 5.13. �

5.5. Completing the proof of Theorem 2.6. We now have all the ingredients to complete
the proof of Theorem 2.6. First, by Lemma 5.13, the giant component C(1) for the whole
graph is one of the components of vertices in [Nn(a)] with high probability. Recall from
the beginning of Section 5 that C a,?

(i) denotes the component of NRn(w, πn) containing C a
(i)

.
Also, recall the definition of ḠNn(a) and its functionals from Section 5.3. Fix ε > 0. Since
C a

(1)
⊂ C̄ a

(1)
⊂ T̄ a≥k with high probability, Propositions 5.1 and 5.7 show that we can choose

a0 > 0 so large that, for a > a0,

lim
n→∞

P
(√
n(ζλ − ε)≤ |C a,?

(1)
| ≤
√
n(ζλ + ε)

)
= 1.(5.77)

Moreover, Proposition 5.7 and (5.77) also show that there exists a large enough k0 = k0(ε, a)
such that for all a > a0 and k ≥ k0,

lim
n→∞

P

(
max

C⊂T̄ a≥k\C̄ a
(1)

∣∣C ∪ Spana(C )
∣∣≤ ε√n)= 1.(5.78)

Further, since all components outside T̄ a≥k have size at most k0, an application of Lemma 5.9
shows that

lim
n→∞

P

(
max

C⊂(T̄ a≥k)c

∣∣C ∪ Spana(C )
∣∣≤ ε√n)= 1,(5.79)

where the maximum runs over all connected components C ⊂ (T̄ a≥k)c. Finally, in Lemma 5.13
we have shown that the components not involving vertices in [Nn(a)] have size at most
o(
√
n). Thus, with high probability, C a,?

(1) is the unique giant component of NRn(w, πn) with
size given by (5.77), and the second largest component has size at most ε

√
n. This proves the

statements in Theorem 2.6 about the uniqueness of the giant component.
We complete the proof by showing that hubs are very likely to be in the newly-born giant.

Fix δ > 0, and consider the set of hubs given by H = {h : wh ≥ n1/2+δ}. We will show that
H ⊆ C(1)(πn) with high probability. Remove the set of hubs H from the graph. The giant
C a,H

(1)
in [Nn(a)] \H has all the same characteristics as the original giant in [Nn(a)] in the

sense that Proposition 4.1 and 4.2 holds for C a,H

(1)
with identical limits. This is due to the fact

that removal of H has no effect in the asymptotics in Section 4.1.
Fix h ∈ H . We will condition on C a,H

(1)
, and consider the two-hop paths between h and

C a,H

(1)
consisting of paths h−→ j −→ C a,H

(1)
for j ∈ [n] \ [Nn(a)]. Write

(5.80) Mn,h =
∑

j∈[n]\[Nn(a)]

1{h−→j−→C a,H
(1) }

for the number of j that are forming the two-hop paths. For fixed h, and conditionally on
C a,H

(1) , the indicators are independent. We next consider their success probabilities.
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Denote the conditional probability given C a,H

(1)
by P1,H . Note that, for v ∈ C a,H

(1)
, the prob-

ability that there is no edge between v and j after percolation equals 1− πn + πne−wvwj/`n .
Thus, the conditional probability given C a,H

(1)
that j is connected to some v ∈ C a,H

(1)
equals

(5.81) P1,H(j −→ C a,H

(1)
) = 1−

∏
v∈C a,H

(1)

(
1− πn + πne−wvwj/`n

)
.

Since, for v /∈ C a,H

(1)
, the event {v←→ j} is independent of the event {j −→ C a,H

(1)
}, this leads

to

P1,H(h−→ j −→ C a,H

(1)
) = πn[1− e−whwj/`n ]

[
1−

∏
v∈C a,H

(1)

(
1− πn + πne−wvwj/`n

)]
.

(5.82)

Restrict the product over v to v ∈ C a,H
(1) \ [Nn(1)]. Then, wvwj/`n ≤ 1

2 for a large, since
j >Nn(a), and, in turn, e−x ≤ 1− x/2 when x≤ 1

2 . This leads to the upper bound

(5.83) 1− πn + πne−wvwj/`n ≤ 1− wvwjπn
2`n

≤ e−
πnwvwj

2`n ,

which in turn implies the lower bound

P1,H(h−→ j −→ C a,H

(1)
)≥ πn[1− e−whwj/`n ]

[
1−

∏
v∈C a,H

(1) \[Nn(1)]

e−
πnwvwj

2`n

]

= πn[1− e−whwj/`n ]

[
1− exp

(
− πnwj

∑
v∈C a,H

(1) \[Nn(1)]

wv
2`n

)]
.

(5.84)

Using an analogous argument to Proposition 4.2, an application of [15, Theorem 9.10] also
yields that

∑
v∈C a,H

(1) \[Nn(1)]

πnwi√
n

=
λa

Nn(a)

∑
v∈C a,H

(1)

wv1{v/∈[Nn(1)]}√
n

P−→ aλ

∫ a

1
cFu
−αρλa(u)Λa(du),

(5.85)

which implies that πn
∑

v∈C a,H
(1) \[Nn(1)]wv ≥ ε`n/

√
n with high probability for ε > 0 suffi-

ciently small. Thus, we obtain, with high probability and for some ε′ > 0 small,

P1,H(h−→ j −→ C a,H
(1)

)≥ πn[1− e−whwj/`n ][1− e−εwj/
√
n]

≥ ε′ wj√
n
πn[1− e−whwj/`n ].

(5.86)

This is true for all j >Nn(a). By independence, we conclude that

(5.87) P1,H(Mn,h = 0)≤
∏

j>Nn(a)

(
1− ε′ wj√

n
πn[1− e−whwj/`n ]

)
.

We compute ∑
j>Nn(a)

wj√
n
πn[1− e−whwj/`n ]≥

∑
j>Nn(a)

wj√
n
πn[1− e−wjn

1/2+δ/`n ](5.88)

≥ [1− e−n/`n ]
∑

j>Nn(a) : wj≤n1/2−δ

wjπn√
n
,
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and

(5.89)
∑

j>Nn(a) : wj≤n1/2−δ

wjπn√
n

= (1 + o(1))
`nπn√
n
→∞

faster than any power of logn. Therefore, P1,H(Mn,h = 0) = o(1/n), and thus,

(5.90) P1,H(∃h ∈H : Mn,h = 0)→ 0,

which completes the proof of the fact that all the hubs are in the giant component. Hence, the
proof of Theorem 2.6 is also complete. �
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