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Abstract

The Smith embedding of a finite planar map with two marked vertices, possibly with conductances on the
edges, is a way of representing the map as a tiling of a finite cylinder by rectangles. In this embedding,
each edge of the planar map corresponds to a rectangle, and each vertex corresponds to a horizontal
segment. Given a sequence of finite planar maps embedded in an infinite cylinder, such that the random
walk on both the map and its planar dual converges to Brownian motion modulo time change, we prove
that the a priori embedding is close to an affine transformation of the Smith embedding at large scales. By
applying this result, we prove that the Smith embeddings of mated-CRT maps with the sphere topology
converge to γ-Liouville quantum gravity (γ-LQG).
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1 Introduction

1.1 Motivation

Over the past few decades, there has been a large amount of interest in the study of random planar maps,
i.e., graphs embedded in the plane viewed modulo orientation-preserving homeomorphisms. Since the foun-
dational work of Polyakov in the context of bosonic string theory [Pol81], it has been believed that various
types of random planar maps converge, in various topologies, to limiting random surfaces called Liouville
quantum gravity (LQG) surfaces. The rigorous mathematical study of LQG has been explored, e.g., in works
by Duplantier and Sheffield [DS11] and Rhodes and Vargas [RV11]. Roughly speaking, LQG surfaces can be
thought of as random two-dimensional Riemannian manifolds parameterized by a fixed underlying Riemann
surface, indexed by a parameter γ ∈ (0, 2]. These surfaces are too rough to be Riemannian manifolds in the
literal sense, but one can still define, e.g., the associated volume form (area measure) and distance function
(metric) via regularization procedures [Kah85, DS11, RV11, Ber17, DDDF20, DFG+20, GM20, GM21]. Many
properties of the γ-LQG area measure are well-known [RV14,Ber23,BP24].

One way of formulating the convergence of random planar maps toward LQG surfaces is to consider so-
called discrete conformal embeddings of the random planar maps. Here, a discrete conformal embedding
refers to a particular way of drawing the map in the plane, which is in some sense a discrete analog of
the Riemann mapping. Suppose we have a random planar map with n vertices, along with a discrete
conformal embedding of the map that maps each vertex to a point in C. This embedding creates a natural
measure on the plane, with each vertex given a mass of 1/n. In many settings, it is natural to conjecture
that as n tends to infinity, the measure should converge weakly to the γ-LQG area measure, with the
parameter γ depending on the particular planar map model under consideration. Additionally, the random
walk on the embedded map is expected to converge in law to two-dimensional Brownian motion modulo
time parameterization (more precisely, the parameterized walk should converge to the so-called Liouville
Brownian motion [Ber15,GRV16,BG22]). Several precise scaling limit conjectures for random planar maps
toward LQG surfaces were formulated, e.g., in [DS11, DKRV16, She16, DMS21]. However, this very general
convergence ansatz has only been rigorously proven in a few specific settings (see below).

One of the challenges in formulating a general scaling limit result for the embedding of random planar maps
is the existence of numerous discrete conformal embeddings that could be regarded as natural in some sense.
We collect here some of the most commonly employed discrete conformal embeddings.

• The circle packing (see [Nac20] for a review), which represents the map as the tangency graph of a
collection of non-overlapping circles1.

• The Smith embedding (a.k.a. rectangle packing), which will be the focus of the present paper, was in-
troduced by Brooks, Smith, Stone, and Tutte in [BSST40]. It is another popular method of embedding
planar graphs, and it is defined by means of a rectangle tiling of either a cylinder or a rectangle, and
in which vertices of the planar map correspond to horizontal segments in the Smith embedding, and
edges of the planar map correspond to rectangles in the Smith embedding2. Several papers have studied
properties of the Smith embedding of planar maps [BS96,Geo16,HP17,CG20].

• Other examples of discrete conformal embeddings include the Tutte embedding [GMS21], the Cardy–
Smirnov embedding [HS21], and the Riemann uniformization embedding, obtained by viewing the planar
map as a piecewise flat two-dimensional Riemannian manifold where the faces are identified with unit
side length polygons.

Some cases of the aforementioned conjecture, that LQG describes the scaling limit of random planar maps
under discrete conformal embeddings, have been proven. For example, in [GMS21], Gwynne, Miller, and
Sheffield established the convergence to γ-LQG under the Tutte embedding for a one-parameter family of
random planar maps defined using pairs of correlated Brownian motions, known as the mated-CRT maps

1We refer to [RS87] for a proof of the fact that the circle packing for lattice approximations of planar domains gives an
approximation of the Riemann mapping.

2We refer to [GP20] for a proof of the fact that the Smith embedding for fine-mesh lattice graphs gives an approximation of
the Riemann mapping.
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(see below for a definition of this family of random planar maps). Moreover, in [GMS20], the same authors
proved that the Tutte embedding of the Poisson Voronoi tessellation of the Brownian disk converges to

√
8/3-

LQG. In [HS21], Holden and Sun proved that the scaling limit of uniformly sampled triangulations under
the Cardy–Smirnov embedding converges to

√
8/3-LQG. Finally, let us also mention that in [GGJN19], the

authors studied the circle-packing of the mated-CRT map and showed that there are no macroscopic circles
in the circle packing of this random planar map. Roughly speaking, the main goal of this paper is to provide
a general convergence result for the Smith embedding of planar maps, which works whenever random walk
on both the map and its dual approximate Brownian motion.

1.2 Main result

The main result of this paper concerns the scaling limit of general (random) planar maps under the Smith
embedding. More precisely, we consider a sequence of finite planar maps, each of which comes with an
embedding into an infinite cylinder, referred to as the a priori embedding. Under the assumption that both
the sequence of maps and their duals satisfy an invariance principle, we show that the a priori embedding is
close to an affine transformation of the Smith embedding at large scales. We then apply this result to prove
the convergence of the Smith embeddings of mated-CRT maps to γ-LQG.

One advantage of the version of the Smith embedding considered in this paper is that its definition is
particularly natural for random planar maps without boundary. This is in contrast to other embeddings
under which random planar maps have been shown to converge to LQG (such as the Tutte embedding
[GMS21] and the Cardy–Smirnov embedding [HS21]) which are most naturally defined for planar maps with
boundary.

Throughout the paper, we always write weighted planar map for a planar map with edge conductances.
Moreover, throughout the article, we allow all of our planar maps to have multiple edges and self-loops. In
order to state our main theorem, we need to introduce some notation. Given a planar graph G, we denote
the sets of vertices, edges, and faces of G by VG, EG, and FG, respectively. We consider a doubly marked
finite weighted planar map (G, c, v0, v1), where v0, v1 ∈ VG are the two marked vertices, and c = {ce}e∈EG
is a collection of positive unoriented weights called conductances. We assume that we are given a proper
embedding of the map in the infinite cylinder C2π := R/2πZ× R in the sense of the following definition.

Definition 1.1. An embedding of the quadruplet (G, c, v0, v1) in the infinite cylinder C2π is said to be proper
if:

(a) the edges in EG are continuous and do not cross;

(b) the graph G is connected;

(c) the two marked vertices v0 and v1 are mapped to −∞ and +∞, respectively.

We observe that, if (G, c, v0, v1) is properly embedded in C2π, then the set of unmarked vertices VG is
contained in C2π; each edge in EG is a curve in C2π that does not cross any other edge, except possibly at its
endpoints; and each face in FG is a connected component in C2π of the complement of the embedded graph
G. Since the two marked vertices are mapped to ±∞, this implies that there is an infinite face at each end
of the cylinder C2π. In what follows, we use the convention to identify each vertex in VG with its a priori
embedding, i.e., if x ∈ VG then we view x as a point in C2π. Furthermore, for a set K ⊂ C2π, we write

VG(K) :=
{
x ∈ VG : x ∈ K

}
.

We denote by (Ĝ, ĉ) the dual weighted planar graph associated to (G, c), where the conductance ĉê of a dual
edge ê ∈ EĜ is equal to the resistance of the corresponding primal edge e ∈ EG, i.e., we set ĉê := 1/ce. We
assume that (Ĝ, ĉ) is properly embedded in the infinite cylinder C2π in the sense of the following definition.

Definition 1.2. An embedding of the dual weighted planar graph (Ĝ, ĉ) associated to (G, c) in the infinite
cylinder C2π is said to be proper if:

(a) every vertex of Ĝ is contained in a face of G;
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(b) every edge e of G is crossed exactly at one point by a single edge ê of Ĝ which joins the two faces
incident to e.

If an edge e ∈ EG is oriented, the orientation of the corresponding dual edge ê ∈ EĜ can be obtained by
rotating e counter-clockwise. As for the primal graph, given a set K ⊂ C2π, we write

VĜ(K) :=
{
x̂ ∈ VĜ : x̂ ∈ K

}
.

1.2.1 Smith embedding

We are now ready to provide a somewhat informal description of the Smith embedding of a given doubly
marked finite weighted planar map (G, c, v0, v1). The precise definition will be given in Section 2. As
mentioned earlier, the Smith embedding of a planar map was first introduced by Brooks, Smith, Stone, and
Tutte in [BSST40], and later generalized to infinite planar graphs by Benjamini and Schramm in [BS96].

The Smith embedding of the quadruplet (G, c, v0, v1) is constructed by means of a tiling by rectangles of a
finite cylinder Cη := R/ηZ× [0, 1], where η is a positive number which depends on (G, c) to be specified later.
Each vertex x ∈ VG is represented by a horizontal line segment Hx, each edge e ∈ EG by a rectangle Re, and
each dual vertex x̂ ∈ VĜ by a vertical line segment Vx̂. In particular, since each edge e ∈ EG corresponds
to a rectangle in the tiling, we need to specify four coordinates for each edge. This is done by means of the
voltage function h : VG → [0, 1] and its discrete harmonic conjugate w : VĜ → R/ηZ.

The function h is the unique function on VG which is discrete harmonic on VG \{v0, v1} (with respect to the
conductances c) with boundary conditions given by h(v0) = 0 and h(v1) = 1, i.e.,

h(x) = Px
(
X hits v1 before v0

)
, ∀x ∈ VG,

where Px denotes the law of the (weighted) random walk Xx on (G, c) started from x. We refer to Subsec-
tion 2.3 for more details.

The function w is the function on VĜ that satisfies the discrete Cauchy–Riemann equation associated to h,
i.e., it is the function on the set of dual vertices VĜ whose difference at the endpoints of each edge of Ĝ is
equal to the difference of h at the endpoints of the corresponding primal edge times its conductance. As we
will see in Subsection 2.4, the function w is only defined modulo ηZ and modulo an additive constant that
can be fixed by imposing that w is equal to zero on a chosen dual vertex. In particular, the choice of the
additive constant of w fixes the rotation of the cylinder in which the tiling takes place.

Now, we can specify the various objects involved in the definition of the Smith embedding.

• For each edge e ∈ EG, the rectangle Re corresponds to the rectangle on Cη such that the height coordinates
of the top and bottom sides are given by the values of h at the endpoints of e, and the width coordinates
of the left and right sides of Re are given by the values of w at the endpoints of the corresponding dual
edge ê.

• For each vertex x ∈ VG, the horizontal segment Hx corresponds to the maximal horizontal segment which
lies on the boundaries of all the rectangles corresponding to the edges incident to x.

• For each dual vertex x̂ ∈ VĜ, the vertical segment Vx̂ corresponds to the maximal vertical segment which
is tangent with all rectangles corresponding to primal edges surrounding x̂.

We call the map S : EG ∪ VG ∪ VĜ → Cη such that S(e) := Re, S(x) := Hx, and S(x̂) := Vx̂ the tiling
map associated to the quadruplet (G, c, v0, v1). We refer to Figure 1 for a diagrammatic illustration of the
tiling map associated to a given quadruplet (G, c, v0, v1). We define the Smith embedding Ṡ associated to
the quadruplet (G, c, v0, v1) as the function from VG to R/ηZ× [0, 1] given by

Ṡ(x) := mid(Hx), ∀x ∈ VG, (1.1)

where mid(Hx) corresponds to the middle point of the horizontal line segment Hx
3. We refer to Subsection 2.5

for precise definitions.

3This definition of the Smith embedding is somewhat arbitrary. Indeed, for each x ∈ VG, one can define Ṡ(x) to be any
arbitrary point inside the horizontal segment Hx.
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C2π
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e

x̂

x

Figure 1: Left: A doubly marked finite weighted planar graph (G, c, v0, v1), drawn in gray, properly embedded
in the infinite cylinder C2π with the two marked vertices v0 and v1 drawn in black. Drawn in red is the
corresponding weighted dual planar graph (Ĝ, ĉ), which is also properly embedded in C2π. Right: The Smith
diagram associated to (G, c, v0, v1) constructed via the tiling map S. The blue horizontal segment Hx corresponds
to the vertex x ∈ VG. The blue vertical segment Vx̂ corresponds to the dual vertex x̂ ∈ VĜ. The blue rectangle
Re corresponds to the edge e ∈ EG. In both the left and right figure, the two vertical lines with an arrow are
identified with each other.

1.2.2 Assumptions and statement of the main result

To state our main result, we need to consider a sequence of doubly marked finite weighted planar maps{
(Gn, cn, vn0 , vn1 )

}
n∈N,

and the sequence of associated weighted dual planar graphs {(Ĝn, ĉn)}n∈N. We make the following assump-
tions.

(H1) (Cylindrical embedding) For each n ∈ N, the quadruplet (Gn, cn, vn0 , vn1 ) is properly embedded in
the infinite cylinder C2π in the sense of Definition 1.1. Furthermore, the associated weighted dual
planar graph (Ĝn, ĉn) is also properly embedded in C2π in the sense of Definition 1.2.

(H2) (Invariance principle on the primal graphs) For each n ∈ N, view the embedded random walk
on (Gn, cn), stopped when it hits either vn0 or vn1 , as a continuous curve in C2π obtained by piecewise
linear interpolation at constant speed. For each compact subset K ⊂ C2π and for any z ∈ K, the law
of the random walk on (Gn, cn) started from the vertex xnz ∈ VGn nearest to z weakly converges as
n→∞ to the law of the Brownian motion on C2π started from z with respect to the local topology on
curves viewed modulo time parameterization specified in Subsection 2.1.2, uniformly over all z ∈ K.

(H3) (Invariance principle on the dual graphs) For each n ∈ N, view the embedded random walk on

(Ĝn, ĉn) as a continuous curve in C2π obtained by piecewise linear interpolation at constant speed. For

each compact subset K ⊂ C2π and for any z ∈ K, the law of the random walk on (Ĝn, ĉn) started from

the vertex x̂nz ∈ VĜn nearest to z weakly converges as n → ∞ to the law of the Brownian motion on
C2π started from z with respect to the local topology on curves viewed modulo time parameterization
specified in Subsection 2.1.2, uniformly over all z ∈ K.

Remark 1.3. It is natural to ask whether assumptions (H2) and (H3) are actually equivalent, i.e., if one
implies the other. We don’t have any strong reason to either believe or dismiss the equivalence of these
two assumptions. However, we emphasize that the local structure of the dual graph can differ significantly
from the primal one. For example, the Tutte embedding of a graph and its dual can look very different,
particularly in cases where one allows vertices of very high degree (which corresponds to having a very large
face in the dual graph). Therefore, without any restrictions on the sequences of planar maps, it might be
possible to construct examples where the walk and the dual walk behave very differently.
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In what follows, given a point x ∈ C2π, we write Re(x) ∈ [0, 2π) for its horizontal coordinate and Im(x) ∈ R
for its height coordinate. Similarly, if x ∈ Cη, then Re(x) ∈ [0,η) denotes its horizontal coordinate and
Im(x) ∈ [0, 1] denotes its height coordinate. We are now ready to state our main theorem.

Theorem 1.4 (Main theorem). Consider a sequence {(Gn, cn, vn0 , vn1 )}n∈N of doubly marked finite weighted
planar maps and let {(Ĝn, ĉn)}n∈N be the sequence of associated dual weighted planar graphs. Assume that
assumptions (H1), (H2), (H3) are satisfied. For each n ∈ N, let Ṡn : VGn → Cηn be the Smith embedding
associated with the quadruplet (Gn, cn, vn0 , vn1 ) as specified in (1.1). There exist sequences {chn}n∈N, {bhn}n∈N,
{bwn }n∈N ⊂ R such that, if we let Tn : Cηn

→ C2π be the affine transformation of the form

Re(Tnx) :=

(
2π

ηn
Re(x) + bwn

)
mod(2π) and Im(Tnx) := chn Im(x) + bhn, ∀x ∈ Cηn

,

then, for all compact sets K ⊂ C2π, it holds that

lim
n→∞

sup
x∈VGn(K)

d2π

(
TnṠn(x), x

)
= 0,

where d2π denotes the Euclidean distance on the cylinder C2π.

Theorem 1.4 tells us that in order to say that the Smith embedding of (Gn, cn, vn0 , vn1 ) is close to a given a
priori embedding (up to translation and scaling), we only need to know a certain invariance principle for
random walk under the a priori embedding. This result is in some ways not surprising, since it is natural to
expect that if a simple random walk (and its dual) approximate Brownian motion, then discrete harmonic
functions (and their conjugate duals) should approximate continuum harmonic functions. However, showing
that this is actually true in the limit, and that the convergence is to the right continuum harmonic functions,
will require some new coupling tricks, which we hope may prove useful in other settings as well. More
precisely, the particular statement we obtain is far from obvious a priori, for two main reasons.

• Our hypotheses only concern the macroscopic behavior of the random walk on (Gn, cn) in the bulk of the
cylinder. We do not need any hypotheses about how the random walk behaves when it gets close to the
marked vertices vn0 and vn1 . This may seem surprising at first glance since one could worry, e.g., that the
structure of (Gn, cn) in small neighborhoods of vn0 and vn1 makes it much easier for random walk to hit
vn0 than for it to hit vn1 , and so the height coordinate function hn is close to zero on all of VGn. What
allows us to get around this is the scaling and translation sequences {chn}n∈N and {bhn}n∈N. We refer to
Subsection 4.1 for more details.

• The width coordinate wn is discrete harmonic but does not admit a simple direct description in terms of
the random walk on (Ĝn, ĉn). For this reason, a fair amount of work is required to get from the invariance
principle for this random walk to a convergence statement for wn. We refer to Subsection 4.2 for more
details.

We remark that the Smith embedding can be very far from the identity near the ends of the cylinder: what
is interesting, and perhaps surprising, is the generality in which we can show that the “bad behavior” gets
“smoothed out” in the middle of the cylinder. This is apparent in the simulations presented in Figure 2.

As we will discuss in the next section, one application of Theorem 1.4 is the convergence of the mated-CRT
map with the sphere topology to LQG under the Smith embedding. More generally, Theorem 1.4 reduces
the problem of proving the convergence to LQG under the Smith embeddings for other types of random
planar maps to the problem of finding some a priori embeddings of the map and its dual under which the
counting measure on vertices converges to the LQG measure and the random walk on the map converges to
Brownian motion modulo time parameterization.

1.3 Application to the mated-CRT map

Mated-CRT maps are a one-parameter family of random planar maps constructed and studied, e.g., in
[GHS19, GMS19, DMS21, GMS21]. The mated-CRT maps are parameterized by a real parameter γ ∈ (0, 2)
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Figure 2: Consider a planar map M with unit edge conductances and n edges, and a distinguished spanning
tree T . Then (M, T ) determines a quadrangulation G with n quadrilaterals obtained by replacing each edge of
M by a quadrilateral. Moreover, the path that “snakes” between T and its dual crosses the edges of G in order.
Shown here is the Smith diagram of an instance of G corresponding to a uniformly random (M, T ) pair with
two random points chosen as roots. Left: The squares in the figure are colored according to their order with
respect to the space-filling path that snakes between T and its dual, i.e., based on their position in the cyclic
ordering. Right: The squares in the figure are colored according to their Euclidean size. It is interesting to
compare the figure on the right with the square subdivisions associated to the γ-LQG measure appearing, e.g.,
in [DS11, Figures 1, 2, 3]. The interested reader can find the Mathematica code used to generate the above
simulations at the following link: https://github.com/federico-bertacco/smith-embedding.git. Furthermore, at
the same link, there is also a PDF file available that provides further explanation on how these simulations
were produced.

and are in the universality class of γ-LQG. In this paper, we will be interested in mated-CRT maps with
the sphere topology. For each n ∈ N and γ ∈ (0, 2), the n-mated-CRT map with the sphere topology is the
random planar triangulation Gn with vertex set given by

VGn :=
1

n
Z ∩ (0, 1],

and an edge set defined by means of a condition involving a pair of linear Brownian motions. More precisely,
consider a two dimensional Brownian motion (L,R) with covariance matrix given by

Var(Lt) = Var(Rt) = |t|, Cov(Lt, Rt) = − cos

(
πγ2

4

)
|t|, (1.2)
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and conditioned to stay in the first quadrant for one unit of time and end up at (0, 0), i.e., (L,R) is an
excursion. Then, two vertices x1, x2 ∈ VGn are connected by an edge if and only if either

max

{
inf

t∈[x1−1/n,x1]
Lt, inf

t∈[x2−1/n,x2]
Lt

}
≤ inf
t∈[x1,x2−1/n]

Lt, or

max

{
inf

t∈[x1−1/n,x1]
Rt, inf

t∈[x2−1/n,x2]
Rt

}
≤ inf
t∈[x1,x2−1/n]

Rt.

(1.3)

The vertices in VGn are connected by two edges if |x1 − x2| 6= 1/n and both the conditions in (1.3) hold.
We observe that the condition for L in (1.3) is equivalent to the existence of a horizontal line segment
below the graph of L whose end points are of the form (t1, Lt1) and (t2, Lt2) for t1 ∈ [x1 − 1/n, x1] and
t2 ∈ [x2 − 1/n, x2], and similarly for R. This allows us to give an equivalent, more geometric, version of the
definition of Gn. In particular, this procedure assigns a natural planar map structure to the mated-CRT map
Gn, under which it is a triangulation. We refer to Figure 3 for a diagrammatic explanation of this procedure.

1
n
Z ∩ (0, 1]

1
8

1
4

3
8

1
2

5
8

3
4

7
8

1

1
n
Z ∩ (0, 1]

L

C −R

Figure 3: Left: A diagram showing the construction of the mated-CRT map with sphere topology and n = 8
vertices. To geometrically construct the mated-CRT map Gn, we draw the graphs of L and C−R with a chosen
large constant C > 0 to ensure that the graphs do not intersect. The region between the graphs is then divided
into vertical strips. Each strip corresponds to the vertex x ∈ VGn which is the horizontal coordinate of its
rightmost point. Two vertices x1, x2 ∈ VGn are connected by an edge if and only if their respective vertical
strips are connected by a horizontal line segment that is either below the graph of L or above the graph of
C − R. For each pair of vertices for which the condition holds for L (resp. C − R), we have drawn the lowest
(resp. highest) segment which joins the corresponding vertical strips. We note that consecutive vertices are
always connected by an edge. Right: The graph Gn can be represented in the plane by connecting two vertices
x1, x2 ∈ VGn with an arc below (resp. above) the real line if their vertical strips are connected by a horizontal
segment below (resp. above) the graph of L (resp. C−R). Additionally, each pair of consecutive vertices in VGn
is connected by an edge. This representation gives Gn a planar map structure under which it is a triangulation.
A similar illustration was shown in [GMS21].

In [GMS21], Gwynne, Miller, and Sheffield proved that the Tutte embeddings of mated-CRT maps with the
disk topology converge to γ-LQG. Thanks to our main theorem, we can prove an analogous result for the
Smith embeddings of mated-CRT maps with the sphere topology. More precisely, for each n ∈ N, pick two
marked vertices vn0 , vn1 ∈ VGn4. Then, we can conformally map the sphere into the infinite cylinder C2π so
that the marked points are mapped to ±∞, and (Gn, vn0 , vn1 )5 is properly embedded in C2π.

Theorem 1.5 (Convergence of mated-CRT map). Fix γ ∈ (0, 2) and let {(Gn, vn0 , vn1 )}n∈N be the sequence of
doubly marked n-mated CRT map with the sphere topology embedded in C2π as specified above. There exists a
sequence of random affine transformations {Tn}n∈N from Cηn to C2π of the form specified in the statement of
Theorem 1.4 such that, if we let µn be the push-forward with respect to the mapping z 7→ Tnz of the counting
measure on the set Ṡn(VGn) scaled by 1/n, then we have the following convergences in probability as n→∞.

4We refer to Section 5 for an explanation of how these two marked vertices are selected.
5Here, each edge in EGn has unit conductance and so we do not specify the sequence of weights c as in the general case.
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(a) On each compact subset of C2π, the measure µn weakly converges to the γ-LQG measure associated to
a doubly marked unit area quantum sphere parameterized by C2π in such a way that its marked points
are at ±∞, as defined in [DMS21, Definition 4.21].

(b) On each compact subset of C2π, the image under the mapping z 7→ Tnz of the space-filling path on the
Smith embedded mated-CRT map on Cηn

obtained from the left-right ordering of the vertices converges
uniformly with respect to the two-point compactification topology on the cylinder to space-filling SLEκ
on C2π, with κ = 16/γ2, parameterized by γ-LQG mass.

(c) For z ∈ C2π, let xnz ∈ VGn be the vertex nearest to z. The conditional law given Gn of the image under
the mapping z 7→ Tnz of the simple random walk on the Smith-embedded mated-CRT map started
from Ṡn(xnz ) and stopped when it hits one of the horizontal segments associated to the marked vertices
weakly converges to the law of Brownian motion on C2π started from z, modulo time parameterization
and uniformly over all z in a compact subset of C2π.

To conclude, let us point out that item (a) of Theorem 1.5 solves [ABL16, Question 1] for the case of
mated-CRT maps.

1.4 Outline

Most of the paper is dedicated to proving Theorem 1.4, and it is organized as follows. In the first part
of Section 2, we provide some background material on weighted planar graphs and the theory of electrical
networks. We then move on to the precise construction of the tiling map and the definition of the Smith
embedding in Subsection 2.5. As mentioned earlier, this is achieved by introducing two harmonic maps: one
on the planar map itself and one on the associated dual planar map.

In Section 3, we state and prove several properties of the Smith embedding. The most significant result of
this section is Lemma 3.17, which heuristically states that the conditional expected horizontal winding of the
Smith-embedded random walk given the vertical coordinate of the walk is equal to zero. This property plays
a key role in proving our main theorem. In order to prove this intermediate result, we rely on Lemma 3.14,
which essentially states that the conditional probability, given the vertical coordinate of the walk, that
Smith-embedded random walk hits a certain horizontal line segment is proportional to its width. We point
out that a similar result, but without conditioning on the vertical component of the walk, has been obtained
by Georgakopoulos [Geo16, Lemma 6.2] in the setting of infinite weighted planar graphs.

Section 4 is the core of this article and contains the proof of Theorem 1.4, which can be divided into two main
blocks: in Subsection 4.1 we study the height coordinate function, and in Subsection 4.2 we study the width
coordinate function. Specifically, the main result of Subsection 4.1 is Proposition 4.3, which roughly states
that the height coordinate of the a priori embedding is asymptotically close to an affine transformation of the
height coordinate of the Smith embedding. Similarly, the main result of Subsection 4.2 is Proposition 4.8,
which states the analogous fact for the width coordinate. We refer to Subsections 4.1 and 4.2 for the proof
outlines of the height and width coordinate results, respectively. Finally, in Subsection 4.3, we show how to
combine the results for the height coordinate and width coordinate to prove Theorem 1.4.

In Section 5, we provide a brief introduction to the relationship between mated-CRT maps and LQG. We
then demonstrate in Subsection 5.2 that this family of random planar maps satisfies the assumptions of our
main result. Specifically, in Subsection 5.3, we apply our result to show that the scaling limit of mated-CRT
maps is γ-LQG, thereby proving Theorem 1.5.

Acknowledgements. F.B. is grateful to the Royal Society for financial support through Prof. M. Hairer’s
research professorship grant RP\R1\191065. E.G. was partially supported by a Clay research fellowship.
Part of this work was carried out during the Probability and Mathematical Physics ICM satellite conference
at Helsinki in Summer 2022. We thank the organizers of this conference for their hospitality.
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2 Background and setup

2.1 Basic definitions

2.1.1 Basic notation

We write N for the set of positive integers and N0 for the set of non-negative integers. Given n ∈ N and
j ∈ N0, we let [n] := {1, . . . , n} and [n]j := {j, . . . , n}, Furthermore, for n ∈ N and j ∈ N0, we write [xn] to
denote the collection of objects {x1, . . . , xn} and [xn]j to denote the collection of objects {xj , . . . , xn}. If a
and b are two real numbers, we write a . b if there is a constant C > 0, independent of the values of a or b
and certain other parameters of interest, such that a ≤ Cb, and we highlight the dependence of the implicit
constants when necessary. If a and b are two real numbers depending on a variable x, we write a = ox(b) if
a/b tends to 0 as x→∞. We use the convention to identify R2 with C. In particular, given a point x ∈ R2,
we write Re(x) (resp. Im(x)) for its horizontal (resp. vertical) coordinate.

2.1.2 Metric on curves modulo time parameterization

For T1, T2 > 0, let P1 : [0, T1] → R2 and P2 : [0, T2] → R2 be two continuous curves defined on possibly
different time intervals. We define

dCMP
(
P1, P2

)
:= inf

φ
sup

t∈[0,T1]

∣∣P1(t)− P2(φ(t))
∣∣, (2.1)

where the infimum is taken over all increasing homeomorphisms φ : [0, T1]→ [0, T2]. It is known that dCMP

induces a complete metric on the set of curves viewed modulo time parameterization (see [AB99, Lemma 2.1]).

For curves defined for infinite time, it is convenient to have a local variant of the metric dCMP. Assume that
P1 : [0,∞)→ R2 and P2 : [0,∞)→ R2 are two such curves. Then, for r > 0, let T1,r (resp. T2,r) be the first
exit time of P1 (resp. P2) from the ball B(0, r) centred at 0 with radius r, or 0 if the curve starts outside
B(0, r). We define

dCMP
loc

(
P1, P2

)
:=

∫ ∞
1

e−r
(
1 ∧ dCMP

(
P1|[0,T1,r], P2|[0,T2,r]

))
dr. (2.2)

Moreover, we observe that given a sequence {Pn}n∈N of continuous curves defined for infinite time, then
limn→∞ dCMP

loc (Pn, P ) = 0, if and only if, for Lebesgue almost every r > 0, Pn stopped at its first exit time
from B(0, r) converges to P stopped at its first exit time from B(0, r) with respect to the metric (2.1).

Remark 2.1. In the remaining part of the article, we also need to consider curves taking values in the
infinite cylinder C2π. We equip the spaces specified above, but with C2π in place of R2, with the same
metrics. It will be clear from the context whether the metric under consideration refers to curves in R2 or
in C2π.

2.1.3 Graph notation

Given a finite planar graph G, besides the notation related to G specified in the introduction, we need to
introduce some further nomenclature. In particular, in what follows, we use e ∈ EG to denote both oriented
and unoriented edges. An oriented edge e ∈ EG is oriented from its tail e− to its head e+. Furthermore,
given a vertex x ∈ VG, we write VG(x) for the set of vertices y adjacent to x, i.e., such that there exists an
edge connecting x to y. For a vertex x ∈ VG, we denote by EG(x) the set of edges in EG incident to x. For a
fixed orientation of the edges in EG(x), we let EG↓(x) (resp. EG↑(x)) be the set of edges in EG(x) with heads

(resp. tails) equal to x. Similar notation will also be used for the dual planar graph Ĝ.

Metric graph. We will need to consider the metric space associated to a planar graph G which can be
canonically built as follows. For each edge e ∈ EG, we choose an arbitrary orientation of e and we let Ie be
an isometric copy of the real unit interval [0, 1]. We define the metric space G associated with G to be the
quotient of ∪e∈EGIe where we identify the endpoints of Ie with the vertices e− and e+, and we equip it with
the natural path metric dG. More precisely, for two points x, y lying on an edge of G, we define dG(x, y) to
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be the Euclidean distance between x and y. For points x, y lying on different edges, we use the metric given
by the length of the shortest path between the two points, where distances are measured along the edges
using the Euclidean distance. We can also define the dual metric graph Ĝ, and the associated metric dĜ, in
a similar way.

2.2 Universal cover

The concept of universal cover of a graph will play an important role in our analysis. If G is a graph embedded
in the infinite cylinder C2π, then there is a canonical way to define its lift G† to the universal covering space
of C2π. More precisely, consider the universal cover (R2,σ2π) of C2π, where the covering map σ2π : R2 → C2π
is defined by

σ2π(t, x) :=
(
eit, x

)
, ∀(t, x) ∈ R2. (2.3)

Then, the lifted graph G† can be constructed by taking every lift of every vertex and every edge of G in C2π
to the covering space R2. We denote by VG† and EG† the set of vertices and edges of the lifted graph G†,
respectively. Moreover, we can also construct the lift of the dual graph Ĝ to the universal covering space
R2 in a similar way, and we denote it by Ĝ†. We adopt the following notational convention: if x ∈ VG is a
vertex, then we denote by x ∈ VG† a lift of x; if e ∈ EG is an edge, then we denote by e ∈ EG† a lift of e; if
x̂ ∈ VĜ is a dual vertex, then we denote by x̂ ∈ VĜ† a lift of x̂.

0 2π 4π

C2π R2

v1

v0

C2π
v1

v0

Figure 4: Left: A doubly marked finite weighted planar graph (G, c, v0, v1), drawn in gray, properly embedded
in the infinite cylinder C2π with the two marked vertices v0 and v1 drawn in black. Middle: The same doubly
marked finite weighted planar graph as in the left figure together with its dual planar weighted graph (Ĝ, ĉ),
drawn in red, properly embedded in C2π. Right: A portion of the lifted weighted graph (G†, c†), drawn in grey,
and the associated dual lifted graph (Ĝ†, ĉ†), drawn in red. In both the left and middle figure, the two vertical
lines with an arrow are identified with each other.

Moreover, if (G, c) is a finite weighted planar graph embedded in C2π, we can naturally assign to each lifted
edge e the conductance c†e := ce, and we denote by (G†, c†) the lifted weighted graph. By definition, the
lifted graph G† is periodic in the sense that if x1, x2 ∈ VG† are two points in R2 such that Im(x1) = Im(x2)
and |Re(x1)− Re(x2)| ∈ N0, then σ2π(x1) = σ2π(x2). Finally, for a set K ⊂ R2, we write

VG†(K) :=
{
x ∈ VG† : x ∈ K

}
, VĜ†(K) :=

{
x̂ ∈ VG† : x̂ ∈ K

}
.

Before proceeding, we recall the following simple result. An oriented path in G is a collection of oriented
edges e1 · · · en in EG such that e+j = e−j+1, for all j ∈ [n− 1]. Furthermore, if also e+n = e−1 , then e1 · · · en is
called an oriented loop.

Lemma 2.2. Let e1 · · · en be an oriented path in G. Let e1 be a lift of e1 to the lifted graph G†, then there
exists a unique path e1 · · · en in G† such that ej is a lift of ej, for all j ∈ [n]2.

The main advantage of working in the universal cover of the cylinder is that we can keep track of the winding
of paths.
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Definition 2.3. Let 0 ≤ t1 < t2, consider a path P : [t1, t2] → C2π, and let P : [t1, t2] → R2 be a lift of P
to the universal cover. We define the winding of P by letting

wind2π(P ) :=
Re(P(t2))− Re(P(t1))

2π
.

We say that P winds around the cylinder if |wind2π(P )| ≥ 1. We say that P does a noncontractible loop
around the cylinder if there exist times t1 ≤ s1 < s2 ≤ t2 such that P |[s1,s2] winds around the cylinder and
P (s1) = P (s2).

2.3 Random walks and electrical networks

In this subsection, we briefly recall the main concepts in the theory of electrical networks and we refer to
[LP16,Nac20] for a complete introduction. Let (G, c, v0, v1) be a doubly marked finite weighted planar graph
properly embedded in the infinite cylinder C2π in the sense of Definition 1.1 . The conductance of a vertex
x ∈ VG is denoted by π(x) and it is defined to be the sum of the conductances of all the edges incident to
x, i.e.,

π(x) :=
∑

e∈EG(x)

ce, ∀x ∈ VG.

Random walk. The random walk on (G, c) is the discrete time Markov chain X = {Xn}n∈N0
with state

space VG such that, for all n ∈ N0,

P
(
Xn+1 = y | Xn = x

)
=

{
cxy/π(x), y ∈ VG(x),

0, otherwise.

Given a vertex x ∈ VG, we write Px and Ex for the law and expectation of X started from x. Moreover, we
may write Xx in order to emphasize that the random walk X is started from the vertex x ∈ VG. With a
slight abuse of notation, we will also denote with X = {Xt}t≥0 the continuous time version of the random
walk, where the continuous path is generated by piecewise linear interpolation at constant speed. If the
conductance on every edge of the graph is equal to one, we call the random walk in this case simple random
walk.

We emphasize that, given a random walk X on (G, c), we can canonically lift it to the lifted weighted planar
graph (G†, c†), and we denote the resulting walk by X. If Xx is started from a point x ∈ VG, then we need
to specify the lift x ∈ σ−12π (x) of x from which the lifted walk Xx is started from. Similar notation will be
also adopted for the random walk on the dual graph.

Estimate on the total variation distance. We now state and prove an elementary lemma for general
weighted planar graphs which allows to compare the total variation distance of the exit positions from a set
for two random walks started from two distinct points.

Lemma 2.4. Let (G, c) be a finite weighted planar graph and let W ⊂ VG. For x ∈ VG, let Xx be the
random walk on (G, c) started from x and let τx be the first time that Xx hits W . Then, for x, y ∈ VG \W ,
it holds that

dTV
(
Xx
τx
, Xy
τy

)
≤ P

(
Xx|[0,τx] does not disconnect y from W

)
,

where dTV denotes the total variation distance.

Proof. The proof is a variant of [GMS22, Lemma 3.12] with the difference that one should consider a weighted
spanning tree instead of a uniform spanning tree of the finite weighted planar graph (G, c). For the reader’s
convenience, we gather here a proof. The lemma is a consequence of Wilson’s algorithm. Consider the
weighted spanning tree T of the finite weighted planar graph (G, c), where all vertices of W are wired to a
single point. We recall that the weighted spanning tree T is chosen randomly from among all the spanning
trees with probability proportional to the product of the conductances along the edges of the tree. For
x ∈ VG, let Lx be the unique path in T from x to W . For a path P in G, write LE(P ) for its chronological
loop erasure. By Wilson’s algorithm (see [LP16, Theorem 4.1]), we can generate the union Lx ∪Ly by using
the following procedure.
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(a) Run Xy until time τy and generate the loop erasure LE(Xy|[0,τy ]).

(b) Conditional on Xy|[0,τy ], run Xx until the first time τ̃x that it hits either LE(Xy|[0,τy ]) or W .

(c) Set Lx ∪ Ly = LE(Xy|[0,τy ]) ∪ LE(Xx|[0,τ̃x]).

Note that Ly = LE(Xy|[0,τy ]) in the above procedure. Interchanging the roles of x and y in the above
procedure shows that Lx and LE(Xx|[0,τx]) have the same distribution. When constructing Lx ∪ Ly as
described above, the points at which Lx and Ly hit W coincide if Xx hits LE(Xy|[0,τy ]) before reaching
W . In particular, this occurs when Xx|[0,τx] disconnects y from W . Thus, there is a coupling between
LE(Xx|[0,τx]) and LE(Xy|[0,τy ]), where the probability that these two loop erasures hit W at the same point
is at least Px(X|[0,τx] disconnects y from W ). Now, by observing that Xx

τx
corresponds to the point at which

LE(Xx|[0,τx]) first hit W , and similarly for y in place of x, we obtain the desired result.

Electrical network. There is an extremely useful correspondence between random walks and Kirchhoff’s
theory of electric networks. Let (G, c, v0, v1) be as above and suppose that every edge e ∈ EG is made of
conducting wires with conductance equals to ce. Connect a battery between v1 and v0 so that the voltage at
v1 is equal to one and the voltage at v0 is equal to zero. Then certain currents will flow along the edges of the
graph establishing the voltage at each vertex x ∈ VG \ {v0, v1}. An immediate consequence of physical laws
is that the voltage function is harmonic on VG except at v0 and v1. More formally, we have the following
definition.

Definition 2.5. The voltage function associated to the quadruplet (G, c, v0, v1) is the unique function h :
VG → [0, 1] such that h(v0) = 0, h(v1) = 1, and

h(x) =
1

π(x)

∑
y∈VG(x)

cxyh(y), ∀x ∈ VG \ {v0, v1}.

In view of the role that h will play in the construction of the Smith embedding, we will also call h the height
coordinate function.

Given an edge e ∈ EG, we say that e is harmonically oriented if h(e+) ≥ h(e−). In what follows, unless
otherwise specified, we always consider the harmonic orientation of the edges in EG. It is a remarkable fact
that the voltage function h admits a representation in terms of a random walk X on (G, c). More precisely,
if for all v ∈ VG, we define τv to be the first hitting time of v for X, then one can easily check that

h(x) = Px
(
τv1 < τv0

)
, ∀x ∈ VG,

Moreover, since the voltage function h is harmonic on VG \ {v0, v1}, if Xx is a random walk on (G, c) started
from x ∈ VG and killed upon reaching the set {v0, v1}, then the process h(Xx) is a martingale with respect
to the filtration generated by Xx.

Remark 2.6. We note that we can canonically lift the voltage function h to the lifted weighted graph
(G†, c†) by setting h† : VG† → [0, 1] as follows

h†(x) := h(σ2π(x)), ∀x ∈ VG†. (2.4)

Remark 2.7. Note that we can naturally extend the definition of the voltage function to a function on the
metric graph G associated to G, i.e., we can define the function h : G → [0, 1]. This extension can be done
by linearly interpolating the values at the endpoints of every edge e ∈ EG. More precisely, if x ∈ G is a point
lying on the harmonically oriented edge e ∈ EG, then we set

h(x) := (h(e+)− h(e−))dG(e−, x) + h(e−).
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The flow induced by the voltage function. We finish this subsection by introducing the flow across
oriented edges induced by the voltage function h. We denote this flow by ∇h : EG → R and we define it as
follows

∇h(e) := ce
(
h(e+)− h(e−)

)
, ∀e ∈ EG.

The flow ∇h satisfies the following well-known properties (see [Nac20, Section 2.2]).

(a) (Antisymmetry) For every oriented edge e ∈ EG, it holds that

∇h(−e) = −∇h(e),

where −e stands for the edge e endowed with opposite orientation.

(b) (Kirchhoff’s node law) For all x ∈ VG \ {v0, v1}, it holds that∑
e∈EG(x)

∇h(e) = 0, (2.5)

where here the orientation of each e ∈ EG(x) is fixed by letting e− = x.

(c) (Kirchhoff’s cycle law) For every directed cycle e1 · · · en, it holds that

n∑
i=1

1

cei
∇h(ei) = 0. (2.6)

We denote the strength of the flow ∇h induced by h by setting

η :=
∑

e∈EG↑(v0)

∇h(e), (2.7)

where EG↑(v0) denotes the set of harmonically oriented edges in EG with tails equal to v0. Furthermore,
thanks to the harmonicity of h, a simple computation yields that η =

∑
e∈EG↓(v1)∇h(e), where EG↓(v1)

denotes the set of harmonically oriented edges in EG with heads equal to v1.

2.4 Discrete harmonic conjugate

Let (G, c, v0, v1) be a doubly marked finite weighted planar graph properly embedded in the infinite cylinder
C2π according to Definition 1.1, and let (Ĝ, ĉ) be the associated weighted dual planar graph properly embedded
in C2π according to Definition 1.2. Moreover, let h : VG → [0, 1] be the voltage function associated with
(G, c, v0, v1) as defined in Definition 2.5. We want to define the discrete harmonic conjugate function of
h, i.e., the function w defined on the set of dual vertices VĜ that satisfies the discrete Cauchy–Riemann
equation. More formally, for every directed edge e ∈ EG and its corresponding oriented dual edge ê ∈ EĜ,
the function w should satisfy the following identity

∇w(ê) := ĉê
(
w(ê+)−w(ê−)

)
= h(e+)− h(e−), (2.8)

where we recall that ĉê = 1/ce.

To precisely define the function w specified above, it will be more convenient to work with the lifted weighted
graph (G†, c†) and its dual (Ĝ†, ĉ†). More precisely, we consider the lifted voltage function h† : VG† → [0, 1].
We fix an arbitrary vertex x̂0 ∈ VĜ† on the lifted dual graph, and for every x̂ ∈ VĜ† we consider a directed
path of lifted dual edges ê1 · · · ên connecting x̂0 to x̂.

Remark 2.8. We emphasise that the lifted dual graph Ĝ† is always connected and so we can find a path
connecting x̂0 to any x̂ ∈ VĜ†.
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We define the function w† : VĜ† → R by setting

w†(x̂) :=

n∑
j=1

∇h†(ej), ∀x̂ ∈ VĜ†. (2.9)

where ej ∈ EG† is the oriented primal edge associated to êj . We call the function w† defined in this way
the lifted discrete harmonic conjugate function associated to h† with base vertex x̂0. The following lemma
guarantees that w† is actually well-defined.

Lemma 2.9. For all x̂ ∈ VĜ†, the value w†(x̂) defined in (2.9) does not depend on the choice of the directed

path from x̂0 to x̂. Moreover, for any x̂1, x̂2 ∈ VĜ† such that σ2π(x̂1) = σ2π(x̂2), the following relation holds

w†(x̂1)−w†(x̂2)

η
=

Re(x̂1)− Re(x̂2)

2π
,

where we recall that η denotes the strength of the flow induced by h as defined in (2.7).

Proof. For the first part of the lemma, the proof is similar to that of [BS96, Lemma 3.2]. In particular, it is

sufficient to prove that for any oriented loop ê1 · · · ên in Ĝ†, it holds that

n∑
j=1

(
w†(ê+

j )−w†(ê−j )
)

= 0. (2.10)

The key observation in [BS96, Lemma 3.2] is that every oriented loop ê1 · · · ên in Ĝ† can be written as the
disjoint union of simple closed loops and of paths of length two consisting of a single dual edge traversed in
both directions. Here, by a simple closed path we mean that ê+

j 6= ê+
k for distinct j, k ∈ [n] when n > 2,

while when n = 2, we mean that ê1 6= −ê2. Therefore, since (2.10) obviously holds if the path consists
of a single dual edge traversed in both directions, we can assume without loss of generality that ê1 · · · ên
is a simple counter-clockwise oriented closed loop. Let K ⊂ R2 be the bounded connected component of
R2 \ ê1 · · · ên. Then, thanks to (2.8), it holds that

n∑
j=1

(
w†(ê+

j )−w†(ê−j )
)

=

n∑
j=1

∇h†(ej) =
∑

x∈VG†(K)

∑
e∈EG†(x)

∇h†(e), (2.11)

where here the orientation of each edge e ∈ EG†(x) is fixed by letting e− = x. The second equality in (2.11)
follows from the following argument. Fix x ∈ VG†(K) and consider y ∈ VG†(x). If y 6∈ K, then xy = ej for
some j ∈ [n], while if y ∈ K then ∇h†(xy) cancels out with ∇h†(yx) thanks to the antisymmetry of ∇h†.
The term on the right-hand side of (2.11) is equal to zero thanks to the boundedness of K and Kirchhoff’s
node law (2.5).

Concerning the second part of the lemma, we can proceed as follows. Let x̂1, x̂2 ∈ VĜ† be such that
σ2π(x̂1) = σ2π(x̂2), and let k ∈ Z be such that k = (Re(x̂2) − Re(x̂1))/(2π). Then we need to prove that
w†(x̂2) − w†(x̂1) = ηk. In particular, thanks to the first part of the lemma, it is sufficient to consider an

arbitrary directed path ê1 · · · ên in Ĝ† connecting x̂1 to x̂2 and show that
∑n
j=1(w†(ê+

j ) − w†(ê−j )) = ηk.
We assume first that k = 1. We can choose the lifted dual edges [ên] in such way that ê1 · · · ên is a simple
path oriented from left to right. Now, using an argument similar to the one used above, it is not difficult
to see that

∑n
j=1∇h†(ej) = η, and so the conclusion follows in this case. Finally, the general case can be

obtained easily: we can just “glue” together, by eventually changing the orientation if k is negative, k copies
of the path used in the case k = 1.

From the definition (2.9) of the function w†, it follows that for every oriented edge e ∈ EG† and for the

associated dual edge ê ∈ EĜ†, it holds that

∇w†(ê) := ĉ†ê(w†(ê+)−w†(ê−)) = h†(e+)− h†(e−),

i.e., w† satisfies the discrete Cauchy–Riemann equation. Moreover, an immediate application of Kirchhoff’s
cycle law (2.6) implies that the function w† is harmonic on VĜ†. Thanks to Lemma 2.9, we can define the
discrete harmonic conjugate function of h as follows.
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Definition 2.10. The discrete harmonic conjugate function of h with base vertex x̂0 ∈ VĜ is the unique
function w : VĜ → R/ηZ such that w(x̂0) = 0 and

w(x̂) = w†(x̂) mod(η), ∀x̂ ∈ VĜ,

where w† : VG† → R is the function defined in (2.9) with base vertex an arbitrary lift of x̂0. In view of the
role that w will play in the construction of the Smith embedding, we will also call w the width coordinate
function.

Remark 2.11. As for the case of the voltage function h, we can naturally extend the definition of w to a
function from the dual metric graph Ĝ, i.e., w : Ĝ → R/ηZ. To be precise, if x̂ ∈ Ĝ is a point on the edge

ê ∈ EĜ and w(ê+) ≥ w(ê−), then we set

w(x̂) := (w(ê+)−w(ê−))dĜ(ê−, x̂) + w(ê−).

2.5 Construction of the Smith embedding

Let (G, c, v0, v1) be a doubly marked finite weighted planar graph properly embedded in the infinite cylinder
C2π according to Definition 1.1, and let (Ĝ, ĉ) be the associated weighted dual planar graph properly embedded
in C2π according to Definition 1.2. The aim of this subsection is to precisely define the Smith embedding
of (G, c, v0, v1). As we have already explained in the introduction, the Smith embedding is built in terms
of a tiling of a finite cylinder with rectangles in which every edge e ∈ EG corresponds to a rectangle in
the tiling, every vertex x ∈ VG corresponds to the maximal horizontal segment tangent with all rectangles
corresponding to the edges incident to x, and every dual vertex x̂ ∈ VĜ corresponds to the maxiaml vertical
segment tangent with all rectangles corresponding to primal edges surrounding x̂. The existence of such
tiling was first proven in [BSST40] and then successively extended in [BS96].

The main objects. To precisely define the Smith embedding, it will be more convenient to work with the
lifted weighted graph (G†, c†) and its dual (Ĝ†, ĉ†). More precisely, we need to consider the lifted voltage
function h† : VG† → [0, 1] and its lifted discrete harmonic conjugate function w† : VĜ† → R. For every edge
e ∈ EG†, consider its harmonic orientation and let ê ∈ EĜ† be the corresponding oriented dual edge. We
define the intervals

Ie :=
[
w†(ê−),w†(ê+)

]
, Îê :=

[
h†(e−), h†(e+)

]
.

Then, we define the rectangle Re associated to the edge e ∈ EG† by letting

Re := Ie × Îê ⊂ R× [0, 1], ∀e ∈ EG†. (2.12)

Recalling the definition (2.9) of the lifted discrete harmonic conjugate function w†, it holds that

w†(ê+)−w†(ê−) = ce(h†(e+)− h†(e−)).

Therefore, the aspect ratio of the rectangle Re is equal to the conductance ce of the edge e ∈ EG†. In
particular, this implies that if an edge e ∈ EG† has unit conductance, then Re is a square. For a vertex
x ∈ VG†, we define the closed horizontal line segment Hx by setting

Hx :=
⋃

e∈EG†,↓(x)

Ie × {h†(x)} ⊂ R× [0, 1], ∀x ∈ VG†, (2.13)

where EG†,↓(x) denotes the set of harmonically oriented lifted edges with heads equal to x. Finally, for a

dual vertex x̂ ∈ VĜ†, we define the closed vertical line segment Vx̂ by letting

Vx̂ :=
⋃

ê∈EĜ†,↓(x̂)

{w†(x̂)} × Îê ⊂ R× [0, 1], ∀x̂ ∈ VĜ†, (2.14)

where EĜ†,↓(x̂) denotes the set of harmonically oriented lifted dual edges with heads equal to x̂. Thanks
to the harmonicity of the lifted height coordinate function, we observe that in the definition of Hx, one can
replace EG†,↓(x) with EG†,↑(x), and similarly for Vx̂.
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Construction of the tiling. We recall that η denotes the strength of the flow induced by h as defined in
(2.7). We consider the cylinder

Cη := R/ηZ× [0, 1],

where R/ηZ denotes the circle of length η. We let (R × [0, 1],ση) be the universal cover of Cη, where the
covering map ση : R× [0, 1]→ Cη is defined by

ση(t, x) :=
(
ei2πt/η, x

)
, ∀(t, x) ∈ R× [0, 1]. (2.15)

We are now ready to define the tiling map. For each e ∈ EG, x ∈ VG, and x̂ ∈ VĜ, we define the following
objects

Re := ση(Re), Hx := ση(Hx), Vx̂ := ση(Vx̂), (2.16)

where e ∈ EG†, x ∈ VG†, and x̂ ∈ VĜ† are lifts of e, x, and x̂, respectively. An immediate consequence of
Lemma 2.9 is that Re, Hx, and Vx̂ are well-defined, i.e., they do not depend on the particular choice of the
lifts e, x and x̂.

The following properties are well-known (see [BS96, Theorem 3.1]).

(a) The collection of rectangles {Re}e∈EG constitutes a tiling of R/ηZ× [0, 1], i.e., for each pair of distinct
edges e1, e2 ∈ EG, the interiors of the rectangles Re1 and Re2 are disjoint and ∪e∈EGRe = R/ηZ× [0, 1].

(b) For each two distinct edges e1, e2 ∈ EG, the interiors of the vertical sides of the rectangles Re1 and Re2

have a non-trivial intersection only if e1 and e2 both lie in the boundary of some common face of G.

(c) Two rectangles intersect along their horizontal (resp. vertical) boundaries if and only if the correspond-
ing primal (resp. dual) edges share an endpoint.

We note that if e ∈ EG is such that no current flows through it, i.e., h(e−) = h(e+), then the corresponding
rectangle Re is degenerate and consists only of a single point. We also remark that the existence of the
aforementioned tiling was proven by Benjamini and Schramm in [BS96]. Originally, their proof was stated
specifically for the case of edges with unit conductance, however, it can be readily extended to our setting.

Definition 2.12 (Tiling map). The tiling map associated to the quadruplet (G, c, v0, v1) is the map

S : EG ∪ VG ∪ VĜ → R/ηZ× [0, 1]

such that

S(e) := Re, ∀e ∈ EG; S(x) := Hx, ∀x ∈ VG; S(x̂) := Vx̂, ∀x̂ ∈ VĜ,

where Re, Hx, and Vx̂ are as defined in (2.16). The image of the tiling map S is called the Smith diagram
associated to (G, c, v0, v1).

We refer to Figure 1 for an illustration of the Smith diagram associated to a given quadruplet (G, c, v0, v1)
with unit conductances.

Remark 2.13. Since the height coordinate function h can be extended to the metric graph G, we can view
each rectangle Re of the tiling as being foliated into horizontal segments, one for each inner point of the
corresponding edge e ∈ EG. Similarly, since the width coordinate function w can be extended to the dual
metric graph Ĝ, we can also view each rectangle Re of the tiling as being foliated into vertical segments, one
for each inner point of the corresponding dual edge ê ∈ EĜ.

It will be also convenient to introduce the lifted tiling map associated to (G, c, v0, v1) which is the map

S† : EG† ∪ VG† ∪ VĜ† → R× [0, 1]

such that S†(x) := Hx for each x ∈ VG†, S†(e) := Re for each e ∈ EG†, and S†(x̂) := Vx̂ for each x̂ ∈ VĜ†.
We emphasize that, since the collection {Re}e∈EG forms a tiling of the cylinder R/ηZ× [0, 1], the collection
of rectangles {Re}e∈EG† forms a periodic tiling of R× [0, 1] of period η. We are now ready to precisely define
the Smith embedding.
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Definition 2.14 (Smith embedding). The Smith embedding associated to the quadruplet (G, c, v0, v1) is the
function Ṡ : VG → R/ηZ× [0, 1] such that

Ṡ(x) = mid(Hx), ∀x ∈ VG,

where mid(Hx) denotes the middle point of the horizontal line segment S(x). Moreover, we define the lifted
Smith embedding Ṡ† : VG† → R × [0, 1] as the map that assigns to each x ∈ VG† the middle point of the
horizontal line segment S†(x).

We emphasize once again that the choice to define the Smith embedding by picking the middle point of each
horizontal line segment is rather arbitrary. Indeed, the main result of this paper holds also if one chose an
arbitrary point inside each horizontal segment. Finally, for technical reasons, we also need to introduce the
following map.

Definition 2.15. We define the map Ṡ†,rand that assigns to each vertex x ∈ VG† the random variable
Ṡ†,rand(x) which is uniformly distributed on the horizontal line segment S†(x).

3 Some properties of the Smith embedding

In this section, we collect some results that follow directly from the construction of the Smith embedding.
We fix throughout this section a doubly marked finite weighted planar graph (G, c, v0, v1) properly embedded
in the infinite cylinder C2π according to Definition 1.1, and we also consider the associated weighted dual
planar graph (Ĝ, ĉ) properly embedded in C2π according to Definition 1.2. In what follows, we consider the
metric graph G associated to G, and we let h : G → [0, 1] be the extended height coordinate function as

specified in Remark 2.7. Furthermore, we also consider the dual metric graph Ĝ, and we let w : Ĝ→ R/ηZ
be the extended width coordinate function as specified in Remark 2.11.

3.1 Adding new vertices

In this subsection, we see how declaring a finite number of interior points on some edges in the graph to be
vertices affects the height coordinate function and the random walk on the graph. In particular, since, as we
will see in Lemma 3.3 below, this procedure of adding new vertices to the graph does not change the height
coordinate function on the set of original vertices, we will employ this convenient technique in the proof of
our main result (see, e.g., the setup for the proofs of Propositions 4.3 and 4.8 in Subsections 4.1 and 4.2,
respectively).

In order to make this precise, we start with the following definition.

Definition 3.1. Let W ⊂ G be a finite subset of the metric graph. We define the weighted planar graph
(G′, c′) associated to (G, c) and W as follows:

(a) The set of vertices VG′ is given by VG ∪W ;

(b) If the interior of an edge e ∈ EG contains n ∈ N points of W , then e is split into n+ 1 new edges [e′n+1]
according to the points in the interior of e. The edge e remains unchanged otherwise.

(c) If the interior of an edge e ∈ EG is split into [e′n+1] new edges, for some n ∈ N, then we set

c′e′i :=
ce

dG
(
e′,−i , e′,+i

) , ∀i ∈ [n+ 1].

The conductance of e remain unchanged otherwise.

The weighted dual graph (Ĝ′, ĉ′) can be naturally constructed from (G′, c′).

Remark 3.2. At the level of the Smith diagram, adding new vertices to the interior of some edges of
the graph according to the procedure described above corresponds to horizontally dissecting the rectangles
associated to such edges. More precisely, let us assume for simplicity that only one point is added to the
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interior of an edge e, and let e′1 and e′2 be the new edges in which e is split into. Suppose that e′,−1 = e−

and e′,+2 = e+. Let S ′ be the tiling map associated to new weighted graph. Then it is immediate to check
that S(e) = S ′(e′1) ∪ S ′(e′2). In particular the rectangles S ′(e′1) and S ′(e′2) have the same width of the
rectangle S(e), and the height of S ′(e′1) is proportional to dG(e′,−1 , e′,+1 ), while that of S ′(e′2) is proportional
to dG(e′,−2 , e′,+2 ). We refer to Figure 5 for a diagrammatic representation of this procedure.

S ′

CηC2π
v1

v0

e′2

e′1

S′(e′2)

S′(e1)

Figure 5: An edge e is split into two edges, e′1 and e′2, with conductances ce′1 and ce′2 , as specified in Defi-
nition 3.1, by adding a new blue vertex. On the right, the corresponding original rectangle S(e) is split into
two rectangles S ′(e′1) and S ′(e′2) such that S(e) = S ′(e′1) ∪ S ′(e′2). Similarly, a dual edge is split into two dual
edges with suitable conductances by adding a new green dual vertex. On the right, the corresponding original
rectangle is then split into the union of two rectangles.

Let h′ : VG′ → [0, 1] be the voltage function associated to the quadruplet (G′, c′, v0, v1). The following lemma
relates the function h with h′.

Lemma 3.3. For every x ∈ VG, it holds that h(x) = h′(x).

Proof. We denote by K := #{VG′ \ VG} the number of new vertices added to the graph G′. If K = 0, then
the result follows immediately. Let us now assume that K = 1 and suppose that the edge e ∈ EG is split
into two new edges e′1 and e′2 with conductances c′e′1

and c′e′2
as specified in Definition 3.1. Then, the desired

result follows immediately from the series law of electrical network (cf. [LP16, Section 2.3.I]). The general
case follows from a simple induction argument on K.

Lemma 3.4. For x ∈ VG, let X ′,x be the random walk on (G′, c′) started from x. Let τ0 := 0 and, for every
k ∈ N0, we define inductively τk+1 := inf{j > τk : X ′,xj ∈ VG}. Then {X ′,xτk }k∈N has the same distribution
as the random walk on (G, c) started from x.

Proof. As in the proof of Lemma 3.3, let K := #{VG′ \ VG}. If K = 0, then the result is obvious. Let us
now assume that K = 1 and let y ∈W be the vertex added to G′. We claim that the distribution of X ′,xτ1 is
equal to that of Xx

1 . If all the edges in EG(x) do not contain y, then the claim is obvious. Let us assume
that there exists an edge in EG(x) which contains y. Then, thanks to an easy computation, one can verify
that

Px(X ′τ1 = v) =
cxv
π(x)

, ∀v ∈ VG(x).

Therefore, thanks to the strong Markov property of X ′,x, we get that for all k ≥ 2, it holds that

Px(X ′τk = v | X ′τk−1
= w) =

{
cvw/π(w), v ∈ VG(w)

0, otherwise,
∀k ≥ 2,

which proves the result if K = 1. The general case follows from a simple induction argument on K.
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Remark 3.5. Given a finite set Ŵ ⊂ Ĝ, following a similar procedure to the one described above, one can
also construct the weighted dual graph (Ĝ′, ĉ′) associated to (Ĝ, c) and Ŵ . In particular, results similar to

the one stated above hold also for the respective dual counterparts. For example, if w′ : VĜ′ → R/ηZ is the

width coordinate function associated to the new weighted graph, then w′ restricted to VĜ coincides with the
original width coordinate function. Moreover, adding new dual vertices to the interior of some dual edges
corresponds to vertically dissecting the associated rectangles in the Smith diagram. We refer to Figure 5 for
a diagrammatic representation of this procedure.

3.2 Periodicity

We collect here some properties of the lifted Smith diagram that are due to its periodicity. We recall that
the map Ṡ†,rand is defined in Definition 2.15.

Lemma 3.6. Let x1, x2 ∈ VG† be such that σ2π(x1) = σ2π(x2). Then, it holds almost surely that∣∣∣∣∣Re(Ṡ†,rand(x2))− Re(Ṡ†,rand(x1))

η
− Re(x2)− Re(x1)

2π

∣∣∣∣∣ ≤ 1.

Proof. We observe that the proof of this result is an easy consequence of Lemma 2.9. However, it does not
follow immediately from Lemma 2.9 since the points Ṡ†,rand(x1) and Ṡ†,rand(x2) are points chosen uniformly
at random from the horizontal segments S†(x1) and S†(x2), respectively. We give here the details for
completeness.

Fix a realization of Ṡ†,rand(x1) and of Ṡ†,rand(x2). Let EG†,↑(x1) = [e1
n] be the set of lifted harmonically

oriented edges with tails equals to x1 ordered in such a way that ê1
1 · · · ê1

n forms a path in Ĝ† oriented from
left to right. Define EG†,↑(x2) = [e2

n] in a similar way. Then, by construction of the map Ṡ†,rand, it holds
that

Re(Ṡ†,rand(x1)) ∈
[
w†(ê1,−

1 ),w†(ê1,+
n )

]
, Re(Ṡ†,rand(x2)) ∈

[
w†(ê2,−

1 ),w†(ê2,+
n )

]
.

Moreover, by Lemma 2.9, we have that

w†(ê1,−
1 )−w†(ê2,−

1 ) =
η

2π
(Re(x1)− Re(x2)) , w†(ê1,+

n )−w†(ê2,+
n ) =

η

2π
(Re(x1)− Re(x2)) ,

and also ∣∣w†(ê1,+
n )−w†(ê1,−

1 )
∣∣ =

∣∣w†(ê2,+
n )−w†(ê2,−

1 )
∣∣ ≤ η,

where the first equality is again due to Lemma 2.9, and the last inequality is due to the fact that, by
construction of the Smith diagram, every horizontal line segment has width at most η. Therefore, putting
together all these facts, one can readily obtain the desired result.

In order to state and prove the next lemma of this subsection, we need to introduce some notation. Let
a ∈ (0, 1), and assume that all points in the set h−1(a) are vertices in VG. We define the set of harmonically

oriented edges EGa and the corresponding set of dual edges EĜa as follows

EGa :=
{
e ∈ EG : h(e−) = a < h(e+)

}
, EĜa :=

{
ê ∈ EĜ : ê is the dual of some e ∈ EGa

}
,

and we define the following sets of vertices

VGa :=
{
x ∈ VG : x = e− for some e ∈ EGa

}
, VĜa :=

{
x̂ ∈ VĜ : x̂ = ê− for some ê ∈ EĜa

}
,

i.e., VGa is nothing but h−1(a). Furthermore, we denote by EG†a, EĜ†a, VG†a, VĜ†a the lifts to the universal
cover of the corresponding objects.

Now, we let x̂a0 be the vertex in VĜ†a whose real coordinate is nearest to 0. We note that the set EGa is a
cutset and that the associated set of oriented dual edges EĜa admits an enumeration [ên] such that ê1 · · · ên
forms a counter-clockwise oriented noncontractible simple closed loop in the dual graph Ĝ. In particular,
every edge êi admits a lift êi such that ê1 · · · ên forms a simple path oriented from left to right joining x̂a0 to
the shifted vertex x̂a0 + (0, 2π) (see Lemma 2.2). We refer to Figure 6 for a diagrammatic representation.
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Definition 3.7. Letting [ên] be as specified above, we define the set of lifted dual vertices

P̂†a :=
{
x̂ ∈ VĜ†a : x̂ = ê−i for some i ∈ [n]

}
, (3.1)

and we also define the set of lifted vertices

P†a :=
{
x ∈ (h†)−1(a) : x = e−i for some i ∈ [n]

}
, (3.2)

where [en] is the set of lifted edges associated to [ên].

Remark 3.8. Consider the infinite strip Sa2π :=
[
Re(x̂a0),Re(x̂a0) + 2π

)
× R. We remark that in general the

set P̂†a is not fully contained in Sa2π. We also observe that, thanks to the fact that EGa is a cutset, it holds
that σ2π(P†a) = h−1(a).

We are now ready to state and prove the next lemma of this subsection. We refer to Figure 6 for a diagram
illustrating the various objects involved in the proof of Lemma 3.9.

êx2êx1

w†(x̂a0)

Ṡ†,rand(x)

w†(êx,−1 )

w†(êx,+2 )

S†x̂a0

aP†a

Re(x̂a0) + 2πRe(x̂a0)

x

Sa2π

P̂†a

w†(x̂a0) + η

Figure 6: A diagram illustrating the proof of Lemma 3.9. Left: A portion of the lifted graph G† embedded in
R2. The blue/green vertices are the vertices in the set P†a. The green vertex x is a fixed vertex in P†a. The red
dual vertices are the vertices in P̂†a. The blue edges belong to the set EG†a, and the red dual edges belong to
the set EĜ†a. The leftmost red dual vertex corresponds to the vertex x̂a0 . The two red dual edges with an arrow
are the edges êx

1 and êx
2 . Right: A portion of the tiling of R × [0, 1] constructed via the lifted tiling map S†.

The blue horizontal line corresponds to ∪
x∈P†aS

†(x). The vertical red segments correspond to S†(êx,−
1 ) and

S†(êx,+
2 ). The green point corresponds to a possible realization of Ṡ†,rand(x).

Lemma 3.9. Fix a ∈ (0, 1) and assume that all the points in h−1(a) are vertices in VG. Let x̂a0 ∈ VĜ†a be
as specified above, then it holds that

0 ≤ w†(x̂)−w†(x̂a0) ≤ η, ∀x̂ ∈ P̂†a,

and also, it holds almost surely that

0 ≤ Re(Ṡ†,rand(x))−w†(x̂a0) ≤ η, ∀x ∈ P†a.

Proof. We start by proving the first part of the lemma. We consider the set of dual edges [ên] such that
ê1 · · · ên forms a simple path oriented from left to right joining x̂a0 to the shifted vertex x̂a0 + (0, 2π), as
specified before the lemma statement. Thanks to Lemma 2.9, we know that

n∑
i=1

∇w†(êi) = η,

and each summand in the sum is non-negative. Now, let x̂ ∈ P̂†a, then there exists a subpath êx̂
1 · · · êx̂

k of
ê1 · · · ên which connects x̂a0 to x̂. Therefore, we have that

w†(x̂)−w†(x̂a0) =

k∑
i=1

∇w†(êx̂
i ),
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and the conclusion then follows thanks to the fact that

0 ≤
k∑
i=1

∇w†(êx̂
i ) ≤

n∑
i=1

∇w†(êi) = η.

We now prove the second part of the lemma. To this end, we fix x ∈ P†a and a possible realization of
Ṡ†,rand(x). We let EG†,↑(x) = [ex

k ] be the set of lifted harmonically oriented edges with tails equal to x
ordered in such a way that the corresponding lifted dual edges êx

1 · · · êx
k forms a path in Ĝ† oriented from

left to right (see Figure 6). By construction of the map Ṡ†,rand, it holds that

Re(Ṡ†,rand(x)) ∈
[
w†(êx,−

1 ),w†(êx,+
k )

]
.

Finally, since both êx,−
1 and êx,+

k belong to P̂†a, the conclusion follows thanks to the first part of the lemma.

3.3 Hitting distribution of a horizontal line

Roughly speaking, the main goal of this subsection is to characterize the hitting distribution of a horizontal
line on the Smith diagram for the Smith embedded random walk. Before precisely stating the result, we
need to introduce some notation.

Definition 3.10. We define length : VG → [0,η) as the function that assigns to each vertex x ∈ VG the
length of the horizontal segment S(x) associated to x by the Smith embedding, i.e., we let

length(x) :=
∑

e∈EG↓(x)

∇h(e), ∀x ∈ VG,

where EG↓(x) denotes the set of harmonically oriented edges in EG with heads equal to x.

We recall that the difference of the width coordinate function between the endpoints of a dual edge is equal
to the gradient of the height coordinate of the corresponding primal edge. Moreover, thanks to the fact that
the height coordinate function is harmonic, it is plain to see that

length(x) =
∑

e∈EG↑(x)

∇h(e), ∀x ∈ VG,

where EG↑(x) denotes the set of harmonically oriented edges in EG with tails equal to x. We can also
naturally extend the definition of the length function to the metric graph G. More precisely, given a point
x ∈ G \ VG, if x lies in the interior of the edge e ∈ EG, then we set length(x) := ∇h(e).

Definition 3.11. Given a value a ∈ (0, 1), we define on the set h−1(a) ⊂ G the measure µa by letting

µa(x) :=
length(x)

η
, ∀x ∈ h−1(a).

Since, by construction of the Smith diagram, it holds that
∑
x∈h−1(a) length(x) = η, the measure µa is a

probability measure on the set h−1(a).

Remark 3.12. We emphasize that, thanks to Remark 3.8, one can also view µa as a probability measure
on the set P†a, where we recall that P†a is the set defined in (3.2).

From now on, we assume throughout the whole subsection that all the points in the set ∪x∈VGh−1(h(x))
are vertices in VG. At the level of the Smith diagram, this means that for all x ∈ VG, it holds that the
set ∪y∈h−1(h(x))S(y) is equal to the noncontractible closed loop R/ηZ× {h(x)} ⊂ Cη. We observe that, for
any given finite weighted planar graph, we can always canonically construct from it another finite weighted
planar graph that satisfies this assumption. Indeed, suppose that there is a vertex x ∈ VG such that
h−1(h(x)) 6⊂ VG, then, using the procedure described in Subsection 3.1, we can declare all the points in the
finite set h−1(h(x)) \ VG to be vertices of the graph.

We fix a value a ∈ (0, 1) such that all the points in the set h−1(a) are vertices in VG, and we let Xµa be the
random walk on (G, c) started from a point in h−1(a) sampled according to the probability measure µa.

22



Definition 3.13. Let Xµa be as specified above. For N ∈ N, we say that a finite sequence of height
coordinates [aN ]0 ⊂ (0, 1) is admissible for the random walk Xµa if a0 = a and

Pµa

(
h(Xn+1) = an+1 | h(Xn) = an

)
> 0, ∀n ∈ [N − 1]0.

We can now state the main result of this subsection.

Lemma 3.14. Let Xµa be as specified above. For N ∈ N, let [aN ]0 ⊂ (0, 1) be an admissible sequence of
height coordinates for the random walk Xµa . Then, for all i ∈ [N ]0, it holds that

Pµa

(
Xi = xi | {h(Xn) = an}Nn=1

)
= µai(x), ∀xi ∈ h−1(ai).

Intuitively, the proof of the above lemma goes as follows. If i = 1 and we only had the conditioning on the
event h(X1) = a1, then the result would follow from a simple computation. However, since, in general, i 6= 1,
and since we are also conditioning on the events {h(Xn) = an}i−1n=1 and {h(Xn) = an}Nn=i+1, which represent
the height coordinates of the random walk for past and future times respectively, the proof of the result is
not immediate. However, the proof follows by a simple induction argument in which we show that we can
“forget” about the conditioning on past and future times. Roughly speaking, the reason why we can forget
about past times is due to the fact that the height component of the random walk is itself a Markov process,
while the reason why we can forget about future times is due to the harmonicity of the height coordinate
function. We now proceed with the proof of the lemma.

Proof of Lemma 3.14. The proof involves three main steps.

Step 1: We start by proving that Pµa

(
h(X1) = a1 | X0 = x0) = Pµa

(
h(X1) = a1), for all x0 ∈ h−1(a). Since

we are assuming that VG = ∪x∈VGh−1(h(x)), at its first step, the random walk can only reach two heights:
height a1 or height ã1 say. If a1 > a, since h is harmonic at x0, it holds that

h(x0) =

∑
e∈EG↓(x0)

ceh(e−) +
∑
e∈EG↑(x0)

ceh(e+)

π(x0)
= ã1

∑
e∈EG↓(x0)

ce

π(x0)
+ a1

∑
e∈EG↑(x0)

ce

π(x0)
, (3.3)

where, as usual, EG↓(x0) (resp. EG↑(x0)) denotes the set of harmonically oriented edges with heads (resp.
tails) equal to x0. Now, we observe that

Pµa

(
h(X1) = a1 | X0 = x0

)
=

∑
e∈EG↑(x0)

ce

π(x0)
, Pµa

(
h(X1) = ã1 | X0 = x0

)
=

∑
e∈EG↓(x0)

ce

π(x0)
.

In particular, plugging these expressions into (3.3) and rearranging, we obtain that

Pµa

(
h(X1) = a1 | X0 = x0

)
=
|ã1 − a0|
|ã1 − a1|

, ∀x0 ∈ h−1(a),

from which the desired result follows since the right-hand side of the above expression does not depend on the
particular choice of x0 ∈ h−1(a). A similar conclusion also holds if a1 < a. Now, proceeding by induction,
one can prove that for any i ∈ [N ]0 and for all x0 ∈ h−1(a), . . . , xi ∈ h−1(ai), it holds that

Pµa
({h(Xi+n) = ai+n}N−in=1 | {Xj = xj}ij=0) = Pµa

({h(Xi+n) = ai+n}N−in=1 | h(Xi) = ai).

Step 2: Thanks to the previous step and Bayes’ rule, we have that Pµa

(
X0 = x0 | h(X1) = a1

)
= µa(x0),

for all x0 ∈ h−1(a). In particular, using this fact, we will now prove that

Pµa

(
X1 = x1 | h(X1) = a1

)
= µa1(x1), ∀x1 ∈ h−1(a1).

To this end, fix x1 ∈ h−1(a1) and suppose that a1 > a. Then we can proceed as follows

Pµa

(
X1 = x1 | h(X1) = a1

)
=

∑
x0∈h−1(a)∩VG(x1)

Px0

(
X1 = x1 | h(X1) = a1

)
Pµa

(
X0 = x0 | h(X1) = a1

)
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=
∑

x0∈h−1(a)∩VG(x1)

cx0x1∑
v∈h−1(a1)∩VG(x0)

cx0v
µa(x0)

=
∑

x0∈h−1(a)∩VG(x1)

cx0x1∑
v∈h−1(a1)∩VG(x0)

cx0v

|a1 − a|
∑
v∈h−1(a1)∩VG(x0)

cx0v

η

=
1

η

∑
e∈EG↓(x)

∇h(e)

= µa1(x),

where EG↓(x) denotes the set of harmonically oriented edges with heads equal to x. In order to pass from
the second line to the third line of the above display, we used the definition of the probability measure µa,
and the fact that, for all e ∈ EG↓(x), it holds that h(e−) = a and h(e+) = a1. One can proceed similarly if
a1 < a. Now, proceeding again by induction, one can easily prove that, for all i ∈ [N ], it holds that

Pµa

(
Xi = xi | {h(Xn) = an}in=1

)
= µai(xi), ∀xi ∈ h−1(ai).

Step 3: For i ∈ [N ]0, we observe that a consequence of Step 1 is that the sequence of random variables
{Xj}ij=0 is conditionally independent from {h(Xi+n)}N−in=1 given h(Xi) = ai. Therefore, the conditional law

of {Xj}ij=0 given {h(Xn) = an}in=1 is the same as the conditional law given {h(Xn) = an}Nn=1. Hence, this
implies that

Pµa

(
Xi = xi |

{
h(Xn) = an

}N
n=1

)
= Pµa

(
Xi = xi |

{
h(Xn) = an

}i
n=1

)
, ∀xi ∈ h−1(ai),

and so the conclusion follows from Step 2.

3.4 Expected horizontal winding

Roughly speaking, the main goal of this subsection is to establish that the average winding that the Smith-
embedded random walk does before hitting a given horizontal line on the Smith diagram is zero. Before
precisely stating the result, we need to introduce some notation.

Definition 3.15. Given the random walk Xx on the lifted weighted graph (G†, c†) started from x ∈ VG†,
we let

N0 3 n 7→ Ẋx
n

be the discrete time process taking values in R× [0, 1] such that, for each n ∈ N0, the conditional law of Ẋx
n,

given Xx
n, is equal to the law of Ṡ†,rand(Xx

n), where we recall that Ṡ†,rand is defined in Definition 2.15. We
call the process Ẋx the lifted Smith-embedded random walk associated to Xx.

It follows from the definition of Ẋx that, at each time step n ∈ N0, the location of the point Ẋx
n is sampled

uniformly at random and independently of everything else from the horizontal line segment S†(Xx
n). With a

slight abuse of notation, we also denote by Ẋx the continuous time version {Ẋx
t }t≥0, where the continuous

path is generated by piecewise linear interpolation at constant speed.

We assume also in this subsection that all the points in the set ∪x∈VGh−1(h(x)) are vertices in VG. Further-
more, we fix a value a ∈ (0, 1) such that all the points in the set h−1(a) are vertices in VG, and we let Xµa

be the random walk on (G, c) started from a point in h−1(a) sampled according to the probability measure
µa defined in Definition 3.11. We also adopt the convention to denote by

N0 3 n 7→ Xµa
n

the lift of the random walk Xµa to the lifted weighted graph (G†, c†) started from a point in P†a sampled
according to the probability measure µa (see Remark 3.12). Moreover, we denote by Ẋµa the lifted Smith-
embedded random walk associated to Xµa as specified above.

In complete analogy with the definition of winding of a path in the infinite cylinder C2π, we have the following
definition of winding on the cylinder Cη.
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Definition 3.16. Let 0 ≤ t1 < t2, consider a path P : [t1, t2]→ Cη, and let P : [t1, t2]→ R× [0, 1] be its lift
to the covering space R× [0, 1]. Then, we define the winding of P as follows

windη(P ) =
Re(P(t2))− Re(P(t1))

η
. (3.4)

In what follows, with a slight abuse of notation, if P : [t1, t2]→ R× [0, 1] is a lift of a path P : [t1, t2]→ Cη,
then we may write windη(P) to denote windη(P ).

We are now ready to state the main result of this subsection.

Lemma 3.17. Let Xµa and Ẋµa be as specified above. For N ∈ N, let [aN ]0 ⊂ (0, 1) be an admissible
sequence of height coordinates for the random walk Xµa as specified in Definition 3.13. Then it holds that

Eµa

[
windη

(
Ẋ|[0,N ]

)
|
{
h(Xn) = an

}N
n=1

]
= 0.

Heuristically speaking, the proof of the above lemma goes as follows. First, we observe that, by definition
of winding, it holds that

windη(Ẋ|[0,N ]) =
N−1∑
j=0

windη(Ẋ|[j,j+1]).

In particular, this implies that we can reduce the problem to studying the expected winding at each time
step of the random walk. Suppose for a moment that N = 1 in the lemma statement. Then we only need
to prove that the random walk started uniformly at random from height a and conditioned to hit height
a1 at its first time step has zero expected winding. The reason why this is true is due to the fact that the
re-randomization procedure that takes place inside each small segment ensures that the conditional hitting
distribution of the segment at height a1 is also uniformly distributed. To extend the argument to the general
case N ∈ N, we just need to use Lemma 3.14.

Proof of Lemma 3.17. We start by finding an equivalent condition under which the relation stated in the
lemma holds true. To this end, we observe that, thanks to the Definition 3.16 of winding, it holds that

Eµa

[
windη

(
Ẋ|[0,N ]

)
|
{
h(Xn) = an

}N
n=1

]
=

1

η

N−1∑
j=0

Eµa

[
Re(Ẋj+1)− Re(Ẋj) |

{
h(Xn) = an

}N
n=1

]
,

and so the claim follows if we prove that

Eµa

[
Re(Ẋj+1) |

{
h(Xn) = an

}N
n=1

]
= Eµa

[
Re(Ẋj) |

{
h(Xn) = an

}N
n=1

]
, ∀j ∈ [N − 1]0.

An immediate application of Lemma 3.14 shows that the previous equality holds true if and only if

Eµa

[
Re(Ẋj+1) | h(Xj+1) = aj+1

]
= Eµa

[
Re(Ẋj) | h(Xj) = aj

]
, ∀j ∈ [N − 1]0. (3.5)

Now, for every k ∈ [N − 1]0, we let Xk be the random walk on the weighted graph (G, c) started from a
point in h−1(ak) sampled according to the probability measure µak . A consequence of Lemma 3.14 is that
the conditional law of Xµa given h(Xµa

k ) = ak is equal to the law of Xk. In particular, this implies that
(3.5) is equivalent to the fact that

E
[
Re(Ẋj+1

0 )
]

= E
[
Re(Ẋj

0)
]
, ∀j ∈ [N − 1]0, (3.6)

where, for k ∈ [N − 1]0, Xk denotes the lift of Xk started from a point in P†ak , and Ẋk is the lifted Smith-
embedded random walk associated to Xk. Let us also emphasize that here we are relying on the fact that
the definition of winding does not depend on the particular choice of the lift. In order to show that (3.6)
holds true, recalling that ση is defined in (2.15) and denotes the covering map of the cylinder Cη, the equality
(3.6) can be rewritten as follows

E
[
Re(ση(Ẋj+1

0 ))
]

= E
[
Re(ση(Ẋj

0))
]
, ∀j ∈ [N − 1]0. (3.7)

By construction, for every k ∈ [N − 1]0, the random variable Re(ση(Ẋk
0)) is uniformly distributed on the

interval [0,η), and so the result follows.
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4 Proof of the main result

The main goal of this section is to prove Theorem 1.4. To this end, we fix a sequence {(Gn, cn, vn0 , vn1 )}n∈N of

doubly marked finite weighted planar maps and we let {(Ĝn, ĉn)}n∈N be the sequence of associated weighted
dual planar graphs. We assume throughout this section that such sequences satisfy hypotheses (H1), (H3),
(H3).

Before moving to the proof of the main theorem, we prove a couple of simple results which are immediate
consequences of our assumptions and which will be useful later on. In particular, the next lemma is basically
an analogue of assumptions (H2) and (H3) in the setting of the universal cover.

Lemma 4.1. For each n ∈ N, view the embedded random walk on the lifted weighted graph (G†,n, c†,n),
stopped when it traverses an unbounded edge, as a continuous curve in R2 obtained by piecewise linear
interpolation at constant speed. For each R > 0 and for any z ∈ R × [−R,R], the law of the random walk
on (G†,n, c†,n) started from the vertex xnz ∈ VG†,n nearest to z weakly converges as n → ∞ to the law of
the Brownian motion in R2 started from z with respect to the local topology on curves viewed modulo time
parameterization specified in Subsection 2.1.2, uniformly over all z ∈ R × [−R,R]. Furthermore, the same
result holds for the random walk on the sequence of lifted weighted dual graphs {(Ĝ†,n, ĉ†,n)}n∈N .

Proof. Obviously, we can just prove the result for the random walk on the sequence of primal graphs as
the result for the random walk on the sequence of dual graphs can be proved in the same exact way. Fix
R > 0 and z ∈ R × [−R,R], and let Xn,z be the continuous time random walk on (G†,n, c†,n) started from
xnz ∈ VG†,n as specified in the lemma statement. We let τ0 := 0 and for k ∈ N0 we define inductively

τk+1 := inf
{
t ≥ τk : Re(Xt) 6∈ [Re(Xτk)− π,Re(Xτk) + π)

}
.

For each k ∈ N0, we observe that the universal covering map σ2π : R2 → C2π is a biholomorphism when
restricted to [Re(Xτk)−π,Re(Xτk)+π). Moreover, by assumption (H2), we know that the law of σ2π(Xn,z)
weakly converges as n → ∞ to the law of the Brownian motion in C2π with respect to the metric dCMP

loc

specified in Subsection 2.1.2. Therefore, since Brownian motion is conformally invariant and putting together
the previous facts, we obtain that the law of the random walk Xn,z weakly converges as n→∞ to the law of
the Brownian motion in R2 with respect to the metric dCMP on the time interval [τk, τk+1], for each k ∈ N0.
Hence, the desired result follows.

For each n ∈ N, we recall that FGn denotes the set of faces of the graph Gn. The next lemma states that,
thanks to the invariance principle assumption on the sequence of weighted graphs, the maximal diameter of
the faces in FGn which intersect a compact subset of C2π is of order on(1).

Lemma 4.2. Let R > 0, and, for any n ∈ N, consider the set FGn(R) of faces in FGn that intersect
R/2πZ× [−R,R]. Then, for any ε > 0 and for any n > n(R, ε) large enough, it holds that

diam(f) ≤ ε, ∀f ∈ FGn(R).

The same result holds also for the sequence of dual graphs, i.e., with FĜn in place of FGn.

Proof. Obviously, we can just prove the result for the sequence of primal graphs as the result for the sequence
of dual graphs can be proved in the same exact way. We proceed by contradiction by assuming that there
is ε > 0 such that, for any n ∈ N, there is a face fn ∈ FGn(R) for which diam(fn) > ε. We notice that each
set fn ∩ R/2πZ× [−2R, 2R] is compact and contains a path Pn with diam(Pn) > ε. By compactness of the
Hausdorff distance dH, we can assume, by possibly taking a subsequential limit, that limn→∞ dH(Pn, P ) = 0
for some compact and connected set P ⊂ R/2πZ × [−2R, 2R]. Now, choose a rectangle Q such that P
disconnects the left and right sides of Q, or the top and bottom sides of Q. For any n > n(R, ε,Q)
large enough, also the path Pn disconnects the rectangle Q in the same way as P . Therefore, for any
x ∈ R/2πZ × [−R,R], the random walk Xn,x on the weighted graph (Gn, cn) started from x cannot cross
the rectangle Q from left to right, or from top to bottom. However, the Brownian motion Bx on C2π started
from x has positive probability to do so. This is in contradiction with assumption (H2), and so the desired
result follows.
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We are now ready to start the proof of Theorem 1.4. We observe that this result admits a natural version
on the sequence of lifted weighted graphs. Indeed, in order to prove it, we will work in the setting of
the universal cover. To be more precise, we will first study in Subsection 4.1 the sequence of lifted height
coordinate functions, and then, in Subsection 4.2, we will study the sequence of lifted width coordinate
functions. Once this is done, we will put everything together and we will conclude the proof of Theorem 1.4
in Subsection 4.3.

4.1 Height coordinate function

For each n ∈ N, consider the lifted height coordinate function

h†n : VG†,n → [0, 1],

as defined in (2.4). The main goal of this subsection is to show that there exists an affine transformation
of the function h†n that is asymptotically close, uniformly on lifts of compact subsets of the infinite cylinder
C2π, to the height coordinate function x 7→ Im(x) in the a priori lifted embedded graph G†,n, as n → ∞.
More precisely, we have the following result.

Proposition 4.3. There exit two sequences {bhn}n∈N, {chn}n∈N ⊂ R such that for all R > 1, δ ∈ (0, 1), and
for any n > n(R, δ) large enough, it holds that∣∣chnh†n(x) + bhn − Im(x)

∣∣ ≤ δ, ∀x ∈ VG†,n(R× [−R,R]).

The proof of this proposition is given in Subsection 4.1.2. As we will see, the proof will follow easily thanks
to the harmonicity of the height coordinate function together with Lemma 4.4 below.

4.1.1 Setup of the proof

For each n ∈ N, consider the metric graph Gn associated to Gn, and let hn : Gn → [0, 1] be the extended
height coordinate function as specified in Remark 2.7. Given a value S ∈ R, we define the set

V nS :=
{
x ∈ Gn : Im(x) = S

}
,

and we let

anS := sup
{
a ∈ (0, 1) : h−1n (a) ∩ V nS 6= ∅

}
, anS := inf

{
a ∈ (0, 1) : h−1n (a) ∩ V nS 6= ∅

}
. (4.1)

We fix throughout R > 1 and δ ∈ (0, 1) as in the proposition statement, and we let

R′ :=
R

δ
.

We consider the set
Wn
R,δ :=

{
V nR′ ∪ V n−R′

}
∪
{
h−1n (anR′) ∪ h−1n (an−R′)

}
⊂ Gn.

For each n ∈ N, by possibly locally modifying the a priori embedding of the graph Gn in the infinite cylinder
C2π, we can assume without loss of generality that each edge in EGn crosses the circles at height R′ and −R′
at most finitely many times. In particular, this implies that we can assume that the set Wn

R,δ contains at
most finitely many points, and therefore, by Lemma 3.3, we can assume, without any loss of generality, that
VGn contains all the points in Wn

R,δ.

In what follows, in order to lighten up notation, we adopt the following notational convention

V̂S ≡ V̂ nS , a ≡ anR′ , a ≡ an−R′ .

Furthermore, we denote by V †S the lift to the universal cover of VS , and we write VG†,n(S) (resp. VGn(S))
as a shorthand for VG†,n(R× [−S, S]) (resp. VGn(R/2πZ× [−S, S])). We refer to Figure 7 for an illustration
of the sets involved in the proof of Proposition 4.3.
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V †
R′

V †−R′

(h†n)−1(a)

(h†n)−1(a)

R

−R

0 2π 4π

R2

R′

−R′

Figure 7: A diagram illustrating the sets involved in the proof of Proposition 4.3. The shaded dark-gray strip
between heights R and −R contains all the vertices in the set VG†,n(R). The shaded light-gray strip between
heights R′ and −R′ contains all the vertices in the set VG†,n(R′). The blue vertices at the top (resp. bottom)
are the vertices in the set V †R′ (resp. V †−R′). The green vertices at the top (resp. bottom) are the vertices in the
set (h†n)−1(a) (resp. (h†n)−1(a)). Note that, by definition of a, the set (h†n)−1(a) intersects V †R′ , and similarly,
by definition of a, the set (h†n)−1(a) intersects V †−R′ .

Random walk notation. For x ∈ VG†,n(R′), we consider the continuous time random walk {Xn,x
t }t≥0

on the lifted weighted graph (G†,n, c†,n) started from x ∈ VG†,n(R′). We recall that the continuous path of
this random walk is generated by piecewise linear interpolation at constant speed. We consider the following
stopping times

σx := inf
{
t ≥ 0 : Xn,x

t ∈ V †R′ ∪ V
†
−R′
}
, τx := inf

{
t ≥ 0 : Xn,x

t ∈ (h†n)−1(a) ∪ (h†n)−1(a)
}
, (4.2)

and we observe that, thanks to the definitions of a and a, it holds that τx ≥ σx, for all x ∈ VG†,n(R′).
Looking at Figure 7, the stopping time σx accounts for the first time at which the random walk hits one of
the blue vertices, while the stopping time τx accounts for the first time at which the random walk hits one
of the green vertices.

4.1.2 Proof of Proposition 4.3

We can now state a key lemma for the proof of Proposition 4.3. The proof of the below result is given in
Subsection 4.1.3.

Lemma 4.4. For any n > n(R, δ) large enough, there exists a real number b′n = b′n(R, δ) such that∣∣2R′Px

(
Xn
τx
∈ (h†n)−1(a)

)
− b′n − Im(x)

∣∣ ≤ δ, ∀x ∈ VG†,n(R).

Similarly, for any n > n(R, δ) large enough, there exists a real number b′′n = b′′n(R, δ) such that∣∣2R′Px

(
Xn
τx
∈ σ−12π (h−1n (a))

)
+ b′′n + Im(x)

∣∣ ≤ δ, ∀x ∈ VG†,n(R).

Given Lemma 4.4, the proof of Proposition 4.3 follows by using the harmonicity of the height coordinate
function.

Proof of Proposition 4.3. We divide the proof in two steps.

Step 1. In this first step we show that, for fixed R > 1 and δ ∈ (0, 1), for any n > n(R, δ) large enough,
we can find real numbers bR,δn and cR,δn such that the conclusion of the proposition holds. To this end, let
R′ := R/δ, fix x ∈ VG†,n(R) and let Xn,x be the random walk on (G†,n, c†,n) started from x. Thanks to the
harmonicity of the height coordinate function h†n and to the optional stopping theorem, we have that

h†n(x) = aPx

(
Xn
τx
∈ (h†n)−1(a)

)
+ aPx

(
Xn
τx
∈ (h†n)−1(a)

)
, ∀x ∈ VG†,n(R).
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Therefore, the problem has been reduced to proving that the probabilities appearing in the previous expres-
sions are approximately affine transformations of the height coordinate function in the a priori embedding.
By Lemma 4.4, for all n > n(R, δ) large enough, there exist real numbers b′n = b′n(R, δ) and b′′n = b′′n(R, δ)
for which, for all x ∈ VG†,n(R), it holds that∣∣2R′h†n(x)− a(b′n + Im(x)) + a(b′′n + Im(x)

∣∣
≤ a

∣∣2R′Px

(
Xn
τx
∈ (h†n)−1(a)

)
− b′n − Im(x)

∣∣+ a
∣∣2R′Px

(
Xn
τx
∈ (h†n)−1(a)

)
+ b′′n + Im(x)

∣∣
≤
∣∣2R′Px

(
Xn
τx
∈ (h†n)−1(a)

)
− b′n − Im(x)

∣∣+
∣∣2R′Px

(
Xn
τx
∈ (h†n)−1(a)

)
+ b′′n + Im(x)

∣∣
≤ δ.

Therefore, rearranging the terms in the above expression and letting

cR,δn :=
2R′

|a− a|
, bR,δn :=

ab′′n − ab′n
|a− a|

,

we find that, for any n > n(R, δ) large enough, it holds that∣∣cR,δn h†n(x) + bR,δn − Im(x)
∣∣ ≤ δ, ∀x ∈ VG†,n(R).

Step 2. In this second step, we show how we can define real sequences {bn}n∈N and {cn}n∈N independent
of R, δ such that the conclusion of the proposition holds. To this end, consider an increasing sequence
{Rk}k∈N ⊂ [1,∞) and a decreasing sequence {δk}k∈N ⊂ (0, 1) such that Rk → ∞ and δk → 0, as k → ∞.
Then, thanks to the previous step, we know that, for all k ∈ N, there is nk = nk(Rk, δk) ∈ N such that, for
all n > nk, there exist real numbers cRk,δk

n , bRk,δk
n ∈ R such that∣∣cRk,δk

n h†n(x) + bRk,δk
n − Im(x)

∣∣ ≤ δk, ∀x ∈ VG†,n(Rk).

Without any loss of generality, we can assume that the sequence {nk}k∈N is increasing. Then, for all
n ∈ [0, n1) ∩ N, we let chn := 1, bhn := 1, and for all k ∈ N and n ∈ [nk, nk+1) ∩ N, we set chn := cRk,δk

n ,
bhn := bRk,δk

n . Therefore, if we fix R > 1 and δ ∈ (0, 1), for all n > n(R, δ) large enough, it holds that∣∣chnh†n(x) + bhn − Im(x)
∣∣ ≤ δ, ∀x ∈ VG†,n(R),

which concludes the proof.

4.1.3 Proof of Lemma 4.4

The main goal of this subsection is prove the key Lemma 4.4. Roughly speaking, the first estimate in
Lemma 4.1.3 states that, for n > n(R, δ) large enough, the probability that the lifted random walk started
inside VG†,n(R) hits the set (h†n)−1(a) before hitting (h†n)−1(a) depends linearly on the height coordinate of
the starting point of the walk on the a priori embedding. In order to prove this result, we need to rule out
the possibility that the preimage of a horizontal line on the Smith embedding has large vertical fluctuations
(see Figure 7). To do so, we use the invariance principle assumption on the sequence of primal graphs, and
more precisely we will follow the following steps.

(a) We start by proving that the probability that the lifted random walk started inside VG†,n(R) hits the
set V †R′ before hitting V †−R′ depends linearly on the height coordinate of the starting point of the walk
on the a priori embedding. This follows easily thanks to the invariance principle assumption and it is
the content of Lemma 4.5 below.

(b) We then prove that the probability that the random walk started from V †−R′ has probability of order
1/R′ to hit (h†n)−1(a) before hitting (h†n)−1(a). Once again, this is an easy consequence of the invariance
principle assumption, and it is the content of Lemma 4.6 below.

(c) Finally, roughly speaking, in order to conclude, we need to improve the bound on the probability
appearing in the previous step from order 1/R′ to order on(1/R′). This is done by using Lemma 2.4
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together with the invariance principle assumption. Indeed, as it will be more clear in the proof of
Lemma 4.4, it is sufficient to estimate the probability that a random walk started inside VGn(R) does
not disconnect VR ∪ V−R from VR′ ∪ V−R′ before hitting the latter set. In Lemma 4.7 below, we will
see that this probability is of order R′/R, and this will be enough to conclude.

Before proceeding, we observe that, for all x ∈ VG†,n(R), it holds that

Px

(
Xn
τx
∈ σ−12π (h−1n (a))

)
= 1− Px

(
Xn
τx
∈ (h†n)−1(a)

)
,

hence, from now on, we can just focus on the first estimate in the statement of Lemma 4.4.

We can now state and prove the technical lemmas mentioned above. We start with the following lemma on
which we study the probability that the lifted random walk started inside VG†,n(R) hits the set V †R′ before
hitting V †−R′ .

Lemma 4.5. For any n > n(R, δ) large enough, it holds that∣∣2R′Px

(
Xn
σx
∈ V †R′

)
−R′ − Im(x)

∣∣ ≤ δ, ∀x ∈ VG†,n(R).

Proof. For n ∈ N, fix a vertex x ∈ VG†,n(R), consider a planar Brownian motion Bx started from x, and
define the stopping time

σB,x := inf
{
t ≥ 0 :

∣∣Im(Bx
t )
∣∣ = R′

}
.

Then, by assumption (H2), for any n > n(R, δ) large enough, we have that∣∣Px(Xn
σx
∈ σ−12π (VR′))− Px

(
Im(BσB,x) = R′

)∣∣ ≤ δ

2R′
, ∀x ∈ VG†,n(R).

Since Im(Bx) is just a linear Brownian motion started from Im(x), thanks to the gambler’s ruin formula, it
holds that

Px

(
Im(BσB,x) = R′

)
=
R′ + Im(x)

2R′
,

from which the conclusion follows.

We can now move to the second lemma which gives an estimate for the probability that the random walk
started from V †−R′ hits (h†n)−1(a) before hitting (h†n)−1(a).

Lemma 4.6. For any n > n(R, δ) large enough, it holds that

Px

(
Xn
τx
∈ (h†n)−1(a)

)
.

1

R′
, ∀x ∈ V †−R′ ,

where the implicit constant is independent of everything else.

Proof. We start by noticing that, for all x ∈ V †−R′ , it holds that

Px

(
Xn
τx
∈ (h†n)−1(a)

)
≤ Px

(
σ2π(Xn|[0,τx]) does not wind around the cylinder below height −R′

)
,

where we recall that σ2π is defined in (2.3) and denotes the covering map of the infinite cylinder C2π. The
above inequality is due to the fact that, if σ2π(Xn|[0,τx]) winds around the cylinder below height −R′,
then, by definition of a, it has to hit the set h−1n (a). We can now exploit assumption (H2) and find the
corresponding upper bound for the Brownian motion. More precisely, let Bx be a planar Brownian motion
started from x ∈ σ−12π (V−R′) and define the stopping time

τB,x := inf
{
t ≥ 0 : Im(Bx

t ) = −2R′ or Im(Bx
t ) = R′

}
.

Then, for any n > n(R, δ) large enough, we have that

Px

(
σ2π(Xn|[0,τx]) does not wind around the cylinder below height −R′

)
≤ 2Px

(
σ2π(B|[0,τB,x]) does not wind around the cylinder below height −R′

)
.

Therefore, to conclude, it is sufficient to find a uniform upper bound for the quantity on the right-hand side
of the above expression. This is done in Lemma A.1 from which the conclusion follows.
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In order to prove Lemma 4.4, we also need the following lemma which provides an estimate for the probability
that a random walk started inside VGn(R) disconnects VR ∪ V−R from VR′ ∪ V−R′ before hitting the latter
set.

Lemma 4.7. For any n > n(R, δ) large enough, it holds that

Px

(
σ2π(Xn|[0,σx]) does not disconnect VR ∪ V−R from VR′ ∪ V−R′

)
.

R

R′
, ∀x ∈ VG†,n(R),

where the implicit constant is independent of everything else.

Proof. For x ∈ VG†,n(R), let Bx be a planar Brownian motion started from x, and define the stopping time

σB,x := inf
{
t ≥ 0 : | Im(Bx

t )| = R′
}
.

By assumption (H2), we know that for any n > n(R, δ) large enough, it holds that

Px

(
σ2π(Xn|[0,σx]) does not disconnect VR ∪ V−R from VR′ ∪ V−R′

)
≤ 2Px

(
σ2π(B|[0,σB,x]) does not disconnect R/2πZ× {−R,R} from R/Z× {−R′, R′}

)
.

Therefore, it is sufficient to find a uniform upper bound for the quantity on the right-hand side of the above
expression. This is the content of Lemma A.2 from which the desired result follows.

We are now ready to give a proof of Lemma 4.4. As we have already remarked, this will be a consequence
of the previous three lemmas and of Lemma 2.4.

Proof of Lemma 4.4. We start by defining the function f†n : VG†,n(R′)→ R as follows

f†n(x) := Px

(
Xn
τx
∈ (h†n)−1(a)

)
− Px

(
Xn
σx
∈ V †R′

)
, ∀x ∈ VG†,n(R′),

so that, we can write

Px

(
Xn
τx
∈ (h†n)−1(a)

)
= Px

(
Xn
σx
∈ V †R′

)
+ f†n(x), ∀x ∈ VG†,n(R′). (4.3)

We now observe that, thanks to Lemma 4.5, for any n > n(R, δ) large enough, it holds that∣∣2R′Px

(
Xn
σx
∈ V †R′

)
−R′ − Im(x)

∣∣ ≤ δ, ∀x ∈ VG†,n(R). (4.4)

Therefore, it is sufficient to study the function f†n appearing in (4.3). To this end, we consider the functions
f
†
n : VG†,n(R′)→ [0, 1] and f†

n
: VG†,n(R′)→ [0, 1] defined as follows

f
†
n(x) := Px

(
Xn
σx
∈ V †−R′ , Xn

τx
∈ (h†n)−1(a)

)
, f†

n
(x) := Px

(
Xn
σx
∈ V †R′ , Xn

τx
∈ (h†n)−1(a)

)
.

In particular, as one can easily check, it holds that∣∣f†n(x)
∣∣ ≤ f

†
n(x) + f†

n
(x), ∀x ∈ VG†,n(R′),

and so, we can reduce the problem to the study of the functions f
†
n and f†

n
. We will only study the function

f
†
n as the function f†

n
can be treated similarly. Thanks to the strong Markov property of the random walk

Xn,x, we have that

f
†
n(x) = Ex

[
f
†
n(Xn

σx
)
]
, ∀x ∈ VG†,n(R′).

Therefore, for x, y ∈ VG†,n(R), it holds that∣∣f†n(x)− f
†
n(y)

∣∣ ≤ sup
{∣∣f†n(v)

∣∣ : v ∈ V †−R′
}

dTV
(
Xn,x
σx
,Xn,y

σy

)
, (4.5)

where dTV denotes the total variation distance. Hence, it is sufficient to find an upper bound for the two
terms on the right-hand side of (4.5). We treat the two factors separately.
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• In order to bound the first factor, we just need to bound uniformly on v ∈ V †−R′ the probability that a
random walk on (G†,n, c†,n) started from v hits (h†n)−1(a) before hitting (h†n)−1(a). This is exactly the
content of Lemma 4.6 from which we can deduce that, for all n > n(R, δ) large enough, it holds that

sup
{∣∣f†n(v)

∣∣ : v ∈ V †−R′
}
.

1

R′
,

where the implicit constant is universal.

• In order to bound the second factor, we can use Lemma 2.4. More precisely, it is sufficient to estimate
the probability that σ2π(Xn,x|[0,σx]) disconnects VR ∪ V−R from VR′ ∪ V−R′ . This is exactly the content

of Lemma 4.7 which guarantees that, for all n > n(R, δ) large enough and for all x ∈ VG†,n(R), it holds
that

Px

(
σ2π(Xn|[0,σx]) does not disconnect VR ∪ V−R from VR′ ∪ V−R′

)
.

R

R′
,

where the implicit constant is independent of everything else. Therefore, this fact together with Lemma 2.4
imply that

dTV
(
Xn,x
σx
,Xn,y

σy

)
.

R

R′
, ∀x,y ∈ VG†,n(R).

Therefore, putting together the previous two bullet points and going back to (4.5), we get that for every
n > n(R, δ) large enough, it holds that∣∣f†n(x)− f

†
n(y)

∣∣ . R

R′2
, ∀x,y ∈ VG†,n(R),

Furthermore, the same uniform bound can be also obtained for the function f†
n
, but we omit the details since

the argument is similar. Summing up, we obtained that, for all n > n(R, δ) large enough, it holds that∣∣f†n(x)− f†n(y)
∣∣ . R

R′2
, ∀x, y ∈ VG†,n(R).

Hence, to conclude, we can simply proceed as follows. For every n > n(R, δ) large enough, fix an arbitrary
vertex y ∈ VG†,n(R). Then, recalling that by definition R′ = R/δ, it holds that

2R′|f†n(x)− f†n(y)| . δ, ∀x ∈ VG†,n(R).

Therefore, thanks to (4.3) and estimate (4.4), we find that, for any n > n(R, δ) large enough, it holds that∣∣2R′Px

(
Xn
τx
∈ (h†n)−1(a)

)
− b′n − Im(x)

∣∣ ≤ δ, ∀x ∈ VG†,n(R),

where b′n := 2R′f†n(y) +R′.

4.2 Width coordinate function

For each n ∈ N, consider the lifted width coordinate function

w†n : VĜ†,n → R,

as defined in (2.9). The main goal of this subsection is to show that there exists an affine transformation of
the function w†n that is asymptotically close, uniformly on lifts of compact subsets of the infinite cylinder
C2π, to the width coordinate function x̂ 7→ Re(x̂) in the a priori lifted embedded graph G†,n, as n → ∞.
More precisely, we have the following result.

Proposition 4.8. There exits a sequence {bwn }n∈N ⊂ R such that for all R > 1, δ ∈ (0, 1), and for any
n > n(R, δ) large enough, it holds that∣∣∣∣2πηnw†n(x̂) + bwn − Re(x̂)

∣∣∣∣ ≤ δ, ∀x̂ ∈ VĜ†,n(R× [−R,R]), (4.6)

where we recall that ηn denotes the strength of the flow induced by hn as defined in (2.7).

The proof of this proposition is given in Subsection 4.2.2. As we will see, the proof is based on Lemma 4.10
below and the following two facts: (a) the harmonicity of the lifted width coordinate function w†n; (b) the
invariance principle assumption (H3) on the sequence of dual maps.
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4.2.1 Setup of the proof

For each n ∈ N, consider the metric graphs Gn and Ĝn associated to Gn and Ĝn, respectively. Let hn :
Gn → [0, 1] be the extended height coordinate function as specified in Remark 2.7, and wn : Ĝn → R be the
extended width coordinate function as specified in Remark 2.11. Given a value S ∈ R, we define the set

V̂ nS :=
{
x̂ ∈ Ĝn : Im(x̂) = S

}
.

Given a value a ∈ (0, 1), we recall that the sets EG†a, EĜ†a, VG†a, VĜ†a are all defined in Subsection 3.2. We
also recall that x̂n,a0 denotes the vertex in VĜ†,n whose real coordinate is nearest to 0, and we refer to (3.1)
and (3.2) for the definitions of the sets P̂†,na and P†,na , respectively.

We fix throughout R > 1 and δ ∈ (0, 1) as in the proposition statement, and we let

R′ :=
R

δ
.

For each n ∈ N, we consider anR′ and an−R′ as defined in (4.1). Moreover, thanks to Proposition 4.3, for any
n > n(R, δ) large enough, we can choose a value anR′ such that the set h−1n (anR′) is fully contained in the
infinite strip R× [−1, 1].

In what follows, in order to lighten up notation, we adopt the following notational convention

V̂S ≡ V̂ nS , a ≡ anR′ , a ≡ an−R′ , a ≡ anR′ .

Furthermore, we denote by V̂ †S the lift to the universal cover of V̂S , and we write VĜ†,n(S) (resp. VĜn(S))
as a shorthand for VĜ†,n(R× [−S, S]) (resp. VĜn(R/2πZ× [−S, S])).

We also adopt the convention to fix the additive constant of the lifted width coordinate function w†n by
setting it to zero on the point x̂n,a0 . We observe that changing the base vertex of the lifted width coordinate
function has only the effect of changing the value of bwn appearing in the statement of Proposition 4.8.

Similarly to what we discussed in the preceding subsection, by Lemma 3.3 and Remark 3.5, we can assume,
without loss of generality, that VGn contains all the points in the set

h†n(a) ∪ h−1n (a) ∪ h−1n (a) ⊂ Gn,

and that VĜn contains all the points in the set

V̂R′−1 ∪ V̂−R′+1 ⊂ Ĝn.

This is allowed since, as in the case of the height coordinate function, by possibly locally modifying the a
priori embedding of the dual graph Ĝn in C2π, we can assume that each edge in EĜn crosses the circles at
height R′ − 1 and −R′ + 1 at most finitely many times. We refer to Figure 8 for an illustration of the sets
involved in the proof of Proposition 4.8.

Remark 4.9. We observe that, by Proposition 4.3, for any ε ∈ (0, 1) and for any n > n(R, δ, ε) large
enough, it holds that

(h†n)−1(a) ⊂ R× [R′ − ε, R′ + ε], (h†n)−1(a) ⊂ R× [−R′ − ε,−R′ + ε].

Furthermore, by definitions of EĜ†,na , EĜ†,na and Lemma 4.2, we have that, for any ε ∈ (0, 1) and for any
n > n(R, δ, ε) large enough, it holds that

EĜ†,na ⊂ R× [R′ − ε, R′ + ε], EĜ†,na ⊂ R× [−R′ − ε,−R′ + ε].

These facts will be of key importance in the remaining part of this subsection and they will be used several
times.
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V̂ †
R′−1

V̂ †−R′+1

R

−R

R2

(h†n)−1(ā)

(h†n)−1(a)

(h†n)−1(a)

VĜ†,nā

VĜ†,na

VĜ†,na

0 2π 4π

R′ − 1

−R′ + 1

Figure 8: A diagram illustrating the sets involved in the proof of Proposition 4.8. The shaded dark-gray strip
between heights R and −R contains all the vertices in the set VĜ†,n(R). The shaded light-grey strip between
heights R′−1 and −R′+ 1 contains all the vertices in the set VĜ†,n(R′). The red dual vertices at the top (resp.
bottom) are the vertices in the set V̂ †R′−1 (resp. V̂ †−R′+1). Moving from top to bottom, the blue vertices are the
dual vertices in the sets VĜ†,na , VĜ†,na , VĜ†,na ; the blue dual edges are the edges in the sets EĜ†,na , EĜ†,na ,EĜ†,na ;
and finally the green vertices are the vertices in the sets (h†n)−1(a), (h†n)−1(a), (h†n)−1(a).

Random walk notation. For x̂ ∈ VĜ†,n(R′ − 1), we consider the continuous time random walk {X̂n,x̂
t }t≥0

on the lifted weighted dual graph (Ĝ†,n, ĉ†,n) started from x̂. We recall that the continuous path of this
random walk is simply generated by piecewise linear interpolation at constant speed. We consider the
following stopping times

σx̂ := inf
{
t ≥ 0 : X̂n,x̂

t ∈ V̂ †R′−1 ∪ V̂
†
−R′+1

}
, τx̂ := inf

{
t ≥ 0 : X̂n,x̂

t ∈ VĜ†,na ∪ VĜ†,na
}
. (4.7)

As we will observe more precisely below, for n > n(R, δ) large enough, thanks to Proposition 4.3, we have
that

VĜ†,na ⊂ R× [R′ − 1, R′ + 1], VĜ†,na ⊂ R× [−R′ − 1,−R′ + 1],

and so, it holds that τx̂ ≥ σx̂, for all x̂ ∈ VĜ†,n(R′ − 1). Looking at Figure 8, the stopping time σx̂ accounts
for the first time at which the random walk hits one of the red dual vertices, while the stopping time τx̂
accounts for the first time at which the random walk hits one of the blue dual vertices at the top or bottom
of the figure.

In what follows, we also need to consider random walks on the sequence of primal lifted weighted graphs. To
be precise, let a be as specified in the introduction of this section (we recall that here, a is a shorthand for
anR′) and consider the probability measure µa on the set h−1(a) as specified in Definition 3.11. We let Xn,µa

be the random walk on the weighted graph (Gn, cn) started from a point in h−1n (a) sampled according to µa.
We also consider the associated continuous time lifted random walk {Xn,µa

t }t≥0 on (G†,n, c†,n) started from
a point in P†,na sampled according to µa. We define the following stopping times

ϑ+ := inf
{
t ≥ 0 : Xn,µa

t ∈ (h†n)−1(a)
}
, ϑ− := inf

{
t ≥ 0 : Xn,µa

t ∈ (h†n)−1(a)
}
. (4.8)

Furthermore, we will also need to consider the lifted Smith-embedded random walk {Ẋn,µa

t }t≥0 associated
to Xn,µa defined in Subsection 3.4.

4.2.2 Proof of Proposition 4.8

We can now state a key lemma for the proof of Proposition 4.8. The proof of the below result is given in
Subsection 4.2.3.

Lemma 4.10. For any n > n(R, δ) large enough there is a finite constant b′n ∈ R such that∣∣∣∣∣Ex̂

[
Re(X̂n

τx̂
)

2π
−

w†n(X̂n
τx̂

) + b′n
ηn

]∣∣∣∣∣ . 1, ∀x̂ ∈ VĜ†,n(R′ − 1),
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where the implicit constant is universal, and ηn denotes the strength of the flow induced by hn as defined in
(2.7).

Given Lemma 4.10, the proof of Proposition 4.8 follows by using the harmonicity of the width coordinate
function and the invariance principle assumption (H3).

Proof of Proposition 4.8. For x̂ ∈ VĜ†,n(R), let X̂n,x̂ be the random walk on the lifted dual weighted graph
(Ĝ†,n, ĉ†,n) started from x̂. Moreover, let Bx̂ be a planar Brownian motion started from x̂, and define the
stopping time

τB,x̂ := inf
{
t ≥ 0 : | Im(Bx̂

t )| = R′
}
. (4.9)

We divide the proof into several steps.

Step 1. In this first step, we show that, for any n > n(R, δ) large enough, it holds that∣∣Ex̂

[
Re(X̂n

τx̂
)
]
− Re(x̂)

∣∣ ≤ δ, (4.10)

where we recall that the stopping time τx̂ is defined in (4.7). As we will see below, this is an easy consequence
of assumption (H3). We start by observing that, thanks to well-known properties of Brownian motion, it
holds that ∣∣Ex̂[Re(BτB,x̂

)]− Re(x̂)
∣∣ = 0, ∀x̂ ∈ VG†,n(R).

Indeed, this follows from the fact that |Re(BτB,x̂
)]− Re(x̂)| has exponentially decaying tails and from the

optional stopping theorem. As we observed in Remark 4.9, we have that, for any ε ∈ (0, 1) and for any
n > n(R, δ, ε) large enough, it holds that

EĜ†,na ⊂ R× [R′ − ε, R′ + ε], EĜ†,na ⊂ R× [−R′ − ε,−R′ + ε].

Therefore, from this fact and assumption (H3), we can deduce that, for any n > n(R, δ) large enough, it
holds that ∣∣Ex̂

[
Re(BτB,x̂

)
]
− Ex̂

[
Re(X̂n

τx̂
)
]∣∣ ≤ δ.

More precisely, this fact can be obtained from assumption (H3) by arguing in the same exact way as in the
proof of Lemma 4.12 below.

Step 2. The main goal of this step is to prove that, for any n > n(R, δ) large enough, it holds that

Ex̂

[
w†n
(
X̂n
τ̂x̂

)]
= w†n(x̂), ∀x̂ ∈ VG†,n(R). (4.11)

We start by recalling that the function w†n : VĜ†,n → R is harmonic, and so the process w†n(X̂n,x̂) is a discrete
martingale with respect to the filtration generated by X̂n,x̂. Therefore, if we prove that this martingale is
uniformly integrable, then the claim follows from the optional stopping theorem. To this end, it is sufficient
to prove that, for M ∈ N, the probability of the event |w†n(X̂n,x̂

τ̂x̂
)−w†n(x̂)| > MR′ decays exponentially fast

in M , uniformly in x̂ ∈ VĜ†,n(R) and for all n > n(R, δ) large enough. This fact can be obtained from
assumption (H3) by arguing in the same exact way as in the proof of Lemma 4.11 below. Hence, the desired
result follows.

Step 3. Consider the function f†n : VĜ†,n(R′ − 1)→ R defined as follows

f†n(x̂) := Ex̂

[
Re(X̂n

τx̂
)

2π
−

w†n(X̂n
τx̂

) + b′n
ηn

]
, ∀x̂ ∈ VĜ†,n(R′ − 1),

where b′n is the same constant appearing in the statement of Lemma 4.10. Now, recalling the definition (4.7)
of the stopping time σx̂ and that σx̂ ≤ τx̂, thanks to the strong Markov property of the random walk, for
all x̂, ŷ ∈ VĜ†,n(R), it holds that∣∣f†n(x̂)− f†n(ŷ)

∣∣ ≤ sup
{∣∣f†n(v̂)

∣∣ : v̂ ∈ VĜ†,n(R′ − 1)
}

dTV
(
X̂n,x̂
σx̂
, X̂n,ŷ

σŷ

)
, (4.12)

where dTV denotes the total variation distance. Hence, it is sufficent to find an upper bound for the two
terms on the right-hand side of (4.12). We treat the two factors separately.

35



• In order to bound the first factor, we just need to bound uniformly on VĜ†,n(R′ − 1) the quantity |f†n(v)|.
This is exactly the content of Lemma 4.10 from which we can deduce that, for all n > n(R, δ) large
enough, it holds that

sup
{∣∣f†n(v̂)

∣∣ : v̂ ∈ VĜ†,n(R′ − 1)
}
. 1,

where the implicit constant is independent of everything else.

• In order to bound the second factor, we can use Lemma 2.4. Indeed, as we have already remarked, thanks
to Proposition 4.3 and to Lemma 4.2, for any n ∈ N large enough, it holds that

VĜ†,na ⊂ R×
[
R′ − 1, R′ + 1

]
, VĜ†,na ⊂ R×

[
−R′ − 1,−R′ + 1

]
.

Therefore, it is sufficient to estimate the probability that σ2π(X̂n,x̂|[0,σx̂]) disconnects V̂R ∪ V̂−R from
V̂R′−1 ∪ V̂−R′+1. To this end, one can argue in the same exact way as in Lemma 4.7 in order to prove
that, for any n > n(R, δ) large enough and for all x̂ ∈ VĜ†,n(R), it holds that

Px̂(σ2π(X̂n|[0,σ̂x̂]) does not disconnect V̂R ∪ V̂−R from V̂R′−1 ∪ V̂−R′+1) .
R

R′
,

where the implicit constant is independent of everything else. Therefore, this fact together with Lemma 2.4
imply that

dTV
(
X̂n,x̂
σ̂x̂
, X̂n,ŷ

σ̂ŷ

)
.

R

R′
, ∀x̂, ŷ ∈ VĜ†,n(R).

Therefore, putting together the two bullet points above, recalling that R′ = R/δ, and going back to (4.12),
we find that, for any n > n(R, δ) large enough, it holds that∣∣f†n(x̂)− f†n(ŷ)

∣∣ . δ, ∀x̂, ŷ ∈ VĜ†,n(R), (4.13)

where the implicit constant is independent of everything else.

Step 4. To conclude, for every n > n(R, δ) large enough, fix an arbitrary vertex ŷ ∈ VĜ†,n(R). Then,
thanks to (4.10), (4.11), and (4.13), we have that for any n > n(R, δ) large enough, it holds that∣∣∣∣2πηnw†n(x̂) + bR,δn − Re(x̂)

∣∣∣∣ ≤ δ, ∀x̂ ∈ VĜ†,n(R),

where bR,δn := 2πf†n(ŷ). Finally, in order to conclude, we need to remove the dependence of bR,δn from R
and δ. This can be easily done by arguing in the same exact way as in the second step of the proof of
Proposition 4.3. Therefore, the proof is concluded.

4.2.3 Proof of Lemma 4.10

The main goal of this subsection is prove the key Lemma 4.10 is structured. The proof of this lemma is
relatively long and it is based on several technical lemmas.

We recall that, for n ∈ N, the map Ṡ†,randn , defined in Definition 2.15, assigns to each vertex x ∈ VG†,n the
random variable Ṡ†,randn (x), which is uniformly distributed on the horizontal segment S†n(x). The proof of
Lemma 4.10 can be basically divided into four main steps.

(a) We start by considering the continuous time lifted random walk Xn,µa . In Lemma 4.11, we prove that,
for M ∈ N, the conditional probability, given ϑ+ < ϑ−, of the event |Re(Xn,µa

ϑ+
)− Re(Xn,µa

0 )| > MR′

decays exponentially in M . Using this result, we then prove in Lemma 4.12 that the conditional
expectation of Re(Xn,µa

ϑ+
)− Re(Xn,µa

0 ), given ϑ+ < ϑ−, is of order one. Both the proofs of Lem-
mas 4.11 and 4.12 are based on the invariance principle assumption on the sequence of primal maps.

(b) We then consider the Smith-embedded random walk Ẋn,µa associated with Xn,µa . In Lemma 4.13,
we prove that the conditional expectation of Re(Ẋn,µa

ϑ+
), given ϑ+ < ϑ−, is of order ηn. This result is

basically a consequence of Lemma 3.17, which guarantees that the expected horizontal winding of the
Smith-embedded random walk is equal to zero.
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(c) In Lemma 4.15, using the relation between the maps Ṡ†,randn and w†n, together with the results proved
in the previous steps, we prove that there is a finite constant b′n ∈ R such that the values of the
width coordinate function in P†,na plus b′n is of order ηn. The key input to prove this result comes
from Lemma 4.14 in which we prove that the probability that the random walk Xn,µa travels a large
horizontal distance in a narrow horizontal tube decays exponentially fast. The proof of this fact follows
from the invariance principle assumption on the sequence of primal maps.

(d) Finally, in Lemma 4.16, we state the analogous dual result of Lemma 4.14. This fact and the periodicity
of the Smith diagram will allow us to deduce Lemma 4.10.

Let us emphasize that all the results explained above hold also with the role of ϑ+ and ϑ− interchanged. In
particular, the same result stated in point (c) holds with the set P†,na replaced by P†,na .

We can now proceed to state and prove the technical lemmas mentioned above. We start with the following
lemma which states that, forM ∈ N, the conditional probability of the event |Re(Xn,µa

ϑ+
)− Re(Xn,µa

0 )| > MR′,
given ϑ+ < ϑ−, decays exponentially in M . Heuristically speaking, this is due to the fact that, after each
time that the random walk Xn,µa travels horizontal distance R′, there is a positive chance of hitting the set
(h†n)−1(a).

Lemma 4.11. There exists a universal constant C > 0 such that, for any n > n(R, δ) large enough, it holds
that

Pµa

(
|Re(Xn

ϑ+
)− Re(Xn

0 )| > MR′ | ϑ+ < ϑ−
)
. exp(−CM), ∀M ∈ N.

where the implicit constant is independent of everything else. The same conclusion holds with the role of ϑ+
and ϑ− interchanged.

Proof. As observed in Remark 4.9, for any n > n(R, δ) large enough, we can assume that

(h†n)−1(a) ⊂ R× [R′, R′ + 1], (h†n)−1(a) ⊂ R× [−R′ − 1,−R′], (h†n)−1(a) ⊂ R× [−1, 1]. (4.14)

Now, letting ϑ := ϑ+ ∧ ϑ− and M ∈ N, we can write

Pµa

(
|Re(Xn

ϑ+
)− Re(Xn

0 )| > MR′ | ϑ+ < ϑ−
)
≤

Pµa

(
|Re(Xn

ϑ)− Re(Xn
0 )| > MR′

)
Pµa

(
ϑ+ < ϑ−

) .

We note that, thanks to assumption (H2) and (4.14), for any n > n(R, δ) large enough, the probability on
the denominator can be lower bounded by a constant independent of everything else. Therefore, we can
just focus on the probability appearing on the numerator. To this end, let ρ0 := 0, and for k ∈ N0 define
inductively

ρk+1 := inf
{
t ≥ ρk :

∣∣Re(Xn,µa

t )− Re(Xn,µa
ρk

)
∣∣ ≥ R′}.

Moreover, for k ∈ N0, consider the event

Ank :=
{
Xn,µa |[ρk,ρk+1] 6⊂ R×

[
Im(Xn,µa

ρk
)− 3R′, Im(Xn,µa

ρk
) + 3R′

]}
.

We observe that, thanks to the strong Markov property of the random walk, the events {Ank}k∈N0 are
independent and identically distributed. Moreover, thanks to assumption (H2), to estimates (4.14), and to
well-known properties of Brownian motion, for any n ∈ N large enough, the event An0 happens with uniformly
positive probability p independent of everything else. Therefore, we have that

Pµa

(
|Re(Xn

ϑ+
)− Re(Xn

0 )| > MR′
)
≤ Pµa

(
M⋂
i=0

Ani

)
= (1− p)M ,

from which the desired result follows. Finally, the same argument also applies with the role of ϑ+ and ϑ−
interchanged.

In the next lemma, we use Lemma 4.11 to prove that the conditional expectation of Re(Xn,µa

ϑ+
)− Re(Xn,µa

0 ),
given ϑ+ < ϑ−, is of order one.
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Lemma 4.12. For any n > n(R, δ) large enough, it holds that∣∣Eµa

[
Re(Xn

ϑ+
)− Re(Xn

0 ) | ϑ+ < ϑ−
]∣∣ . 1,

where the implicit constant is universal. The same result holds with the role of ϑ+ and ϑ− interchanged.

Proof. The proof of this result is based on assumption (H2). More precisely, let Bµa be a planar Brownian
motion started from a point in P†,na sampled according to the probability measure µa, and consider the
following stopping times

ϑB,+ := inf
{
t ≥ 0 : Im(Bµa

t ) = R′
}
, ϑB,− := inf

{
t ≥ 0 : Im(Bµa

t ) = −R′
}
.

Since Re(Bµa) and Im(Bµa) are independent, and since the stopping times ϑB,+ and ϑB,− only depend on
Im(Bµa), thanks to well-known properties of Brownian motion, we have that

Eµa

[
Re(BϑB,+

)− Re(B0) | ϑB,+ < ϑB,−
]

= 0. (4.15)

Furthermore, as observed in Remark 4.9, for any ε ∈ (0, 1) and for any n > n(R, δ, ε) large enough, it holds
that

(h†n)−1(a) ⊂ R× [R′, R′ + ε], (h†n)−1(a) ⊂ R× [−R′ − ε,−R′].

In particular, this fact and Lemma 4.2 imply that the set (h†n)−1(a) (resp. (h†n)−1(a)) converges in the
Hausdorff metric to the horizontal line R× {R′} (resp. R× {−R′}). Therefore, thanks to assumption (H2),
the following weak convergence of laws holds

lim
n→∞

Law
(
Re(Xn,µa

ϑ+
)− Re(Xn,µa

0 ) | ϑ+ < ϑ−
)

= Law
(
Re(Bµa

ϑB,+
)− Re(Bµa

0 ) | ϑB,+ < ϑB,−
)
.

Hence, thanks to Lemma 4.11 and Vitali’s convergence theorem, for any n > n(R, δ) large enough, it holds
that ∣∣Eµa

[
Re(Xn

ϑ+
)− Re(Xn

0 ) | ϑ+ < ϑ−
]
− Eµa

[
Re(BϑB,+

)− Re(B0) | ϑB,+ < ϑB,−
]∣∣ ≤ 1. (4.16)

Hence, putting together (4.15) and (4.16), we obtain the desired result. Finally, the same argument also
applies with the role of ϑ+ and ϑ− interchanged.

In the next lemma, we see how we can use Lemma 3.17 to prove that that the conditional expectation of
Re(Ẋn,µa

ϑ+
), given ϑ+ < ϑ−, is of order ηn.

Lemma 4.13. For any n ∈ N, it holds that∣∣Eµa

[
Re(Ẋn

ϑ+
) | ϑ+ < ϑ−

]∣∣ ≤ ηn,
and the same with the role of ϑ+ and ϑ− interchanged.

Proof. Since we are assuming that the base vertex x̂n,a0 of the lifted width coordinate function w†n belongs

to the set P̂†,na , then, thanks to Lemma 3.9, it holds almost surely that∣∣Re(Ṡ†,randn (x))
∣∣ ≤ ηn, ∀x ∈ P†,na .

In particular, since the embedded random walk Xn,µa is started from a point in the set P†,na , then it holds
almost surely that ∣∣Re(Ẋn,µa

0 )
∣∣ ≤ ηn. (4.17)

Now, we would like to apply Lemma 3.17 in order to conclude. However, we note that we cannot directly
apply this result since, a priori, it does not hold that ∪x∈VGnh−1n (hn(x)) ⊆ VGn. In order to overcome this
issue, we could consider the weighted graph associated to (Gn, cn) and ∪x∈VGnh−1n (hn(x)) as specified in
Definition 3.1. We could then apply Lemma 3.17 to the random walk on this new weighted graph and then
transfer the result to the original weighted graph by means of Lemma 3.4. In order to lighten up the proof,
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we will assume directly that ∪x∈VGnh−1n (hn(x)) = VGn. Since the stopping time ϑ+ is almost surely finite,
we can proceed as follows

Eµa

[
windηn

(Ẋn|[0,ϑ+]) | ϑ+ < ϑ−
]

=
1

Pµa
(ϑ+ < ϑ−)

Eµa

[∑
N∈N

windηn
(Ẋn|[0,ϑ+])1{ϑ+<ϑ−,ϑ+=N}

]

=
1

Pµa(ϑ+ < ϑ−)

∑
N∈N

Eµa

[
windηn(Ẋn|[0,ϑ+]) | ϑ− > N, ϑ+ = N

]
Pµa

(ϑ− > N, ϑ+ = N).

(4.18)

In order to pass from the first line to the second line of the above expression, we used the fact that

E
[∣∣windηn(Ẋn,µa |[0,ϑ+])

∣∣] <∞, (4.19)

and Fubini’s theorem. The reason why (4.19) holds is an immediate consequence of Lemmas 3.6 and 4.12.
In order to conclude, it is sufficient to prove that the expectation in each summand of the sum appearing
in (4.18) is equal to zero. To this end, fix N ∈ N and consider a sequence of admissible height coordinates
[aN ]0 ⊂ (0, 1) for the random walk Xµa , as specified in Definition 3.13, such that am > a for all m ∈ [N ]0
and aN = a. Thanks, to Lemma 3.17, we have that

Eµa

[
windηn

(Ẋn|[0,N ]) | {hn(Xm) = am}Nm=1

]
= 0,

uniformly over all such sequences of height coordinates. Hence, this is sufficient to conclude that

Eµa

[
windηn

(Ẋn|[0,ϑ+]) | ϑ− > N, ϑ+ = N
]

= 0. (4.20)

Therefore, the conclusion follows thanks to (4.17), and to the fact that (4.18) and (4.20) imply that
Eµa

[windηn
(Ẋn|[0,ϑ+]) | ϑ+ < ϑ−] = 0. Finally, we observe that the same argument also applies with the

role of ϑ+ and ϑ− interchanged.

In order to prove Lemma 4.10, we basically need to prove that the difference between the value of the width
coordinate in the set P̂†,na and in the set P̂†,na is of order ηn. This fact is the content of Lemma 4.15 below.
However, in order to prove this fact, we first need to prove that it is extremely unlikely for the random walk
Xn,µa to travel a large horizontal distance in a “narrow horizontal tube”. We refer to Figure 9 for a diagram
illustrating the various objects involved in the proof of Lemma 4.14.

Re(bxn,a
0 ) � 2⇡

R ⇥ {R0 + "}

Re(bxn,a
0 ) Re(bxn,a

0 ) + 2⇡ Re(bxn,a
0 ) + 4⇡

R ⇥ {R0 � "}

Xn,µa
✓+

X̃n,µa
✓+

(h†
n)�1(a)P†,n

a

Figure 9: The vertices (h†n)−1(a) are drawn for simplicity as a continuous red/green path contained in the
infinite strip R × [R′ − ε, R′ + ε]. In particular, the green part of this path contains the vertices in the set
P†,na . The blue vertex at the bottom of the figure is a vertex sampled from the set P†,na according to the
probability measure µa. The blue path represents a trajectory of the random walk Xn,µa , and the blue point at
the top-right coincides with the hitting point Xn,µa

ϑ+
. The blue point X̃n,µa

ϑ+
at the top-left is the vertex in P†,na

such that σ2π(X̃n,µa
ϑ+

) = σ2π(Xn,µa
ϑ+

). Roughly speaking, Lemma 4.14 says that the event depicted in the figure
is extremely unlikely to happen. A consequence of this fact is that the conditional expectation of Re(X̃n,µa

ϑ+
),

given ϑ+ < ϑ−, is of order one.

Lemma 4.14. Fix ε ∈ (0, 1), M ∈ N, and define the following event

An,+
M,ε :=

{
∃ s, t ∈ [0, ϑ+] :

∣∣Re(Xn,µa

t )− Re(Xn,µa
s )

∣∣ > M ;
∣∣Im(Xn,µa

u )
∣∣ ∈ [R′ − ε, R′ + ε], ∀u ∈ [s, t]

}
.
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There exists a universal constant C > 0 such that, for any n > n(R, δ, ε) large enough, it holds that

Pµa

(
An,+
M,ε | ϑ+ < ϑ−

)
. exp(−CM/ε), ∀M ∈ N,

where the implicit constant is independent of everything else. Furthermore, the same conclusion holds with
the role of ϑ+ and ϑ− interchanged.

Proof. Fix ε ∈ (0, 1). We start by recalling that, as observed in Remark 4.9, for any n > n(R, δ, ε) large
enough, it holds that

(h†n)−1(a) ⊂ R× [R′ − ε, R′ + ε]. (4.21)

It is easy to see that, without any loss of generality, we can assume that VGn contains all the points in the
set {

x ∈ Gn : Im(x) = R′ − ε
}
.

Therefore, we can define the stopping time ρ0 := inf
{
t ≥ 0 : Im(Xn,µa

t ) = R′− ε}, and for k ∈ N0 we define
inductively

ρ̃k+1 := inf
{
t ≥ ρk :

∣∣Re(Xn,µa

t )− Re(Xn,µa
ρk

)
∣∣ > M}, ρk+1 := inf

{
t ≥ ρ̃k+1 : Im(Xn,µa

t ) = R′ − ε
}
.

Moreover, for k ∈ N we consider the events

An,+
M,ε(ρk−1, ρ̃k) :=

{
Im(Xn,µa |[ρk−1,ρ̃k]) ⊂ [R′ − ε, R′ + ε]

}
, Fk :=

{
ρk > τ̂x̂

}
.

Let K be the smallest k ∈ N such that Fk occurs. Then, we have that

Pµa

(
An,+
M,ε | ϑ+ < ϑ−

)
≤ Pµa

(
K⋃
i=1

An,+
M,ε(ρi−1, ρ̃i) | ϑ+ < ϑ−

)

≤
∑
k∈N

k∑
i=1

Pµa

(
An,+
M,ε(ρi−1, ρ̃i) | ϑ+ < ϑ−

)
Pµa

(
K = k | ϑ+ < ϑ−

)
.

(4.22)

Thanks to the strong Markov property of the random walk, the events {An,+
M,ε(ρk−1, ρ̃k)}k∈N are conditionally

independent and identically distributed given ϑ+ < ϑ−. Now, thanks to assumption (H2) and well-known
properties of Brownian motion, it is possible to prove that there is a universal constant C > 0 such that for
any n ∈ N large enough it holds that

Pµa

(
An,+
M,ε(ρ0, ρ̃1) | ϑ+ < ϑ−

)
. exp

(
−CM/ε

)
, (4.23)

where the implicit constant is independent of everything else. More precisely, in order to obtain the above
upper bound, it is sufficient to study the probability that the random walk travels horizontal distance M
before exiting an infinite horizontal band of height of order ε. This can be done by proceeding similarly to
the proof of Lemma 4.11, and so we do not detail the argument here. Now, for k ∈ N, we consider the event

Bn,+M (ρk−1, ρ̃k) :=
{

Im(Xn,µa |[ρk−1,ρ̃k]) ⊂ [−R′ − 1, R′ + 1]
}
.

For the same reason explained above, we have that the events {Bn,+M (ρk−1, ρ̃k)}k∈N are conditionally in-
dependent and identically distributed given ϑ+ < ϑ−. Also, using again assumption (H2) and a standard
gambler’s ruin estimate for Brownian motion, one can prove that

Pµa

(
Bn,+M (ρ0, ρ̃1) | ϑ+ < ϑ−

)
. (M + 1)−1, (4.24)

where the implicit constant is independent of everything else. In particular, thanks to (4.21), for any k ∈ N,
it holds that

Pµa

(
K = k | ϑ+ < ϑ−

)
≤ Pµa

(
k−1⋂
i=1

Bn,+M (ρi−1, ρ̃i) | ϑ+ < ϑ−

)
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=

k−1∏
i=1

Pµa

(
Bn,+M (ρ0, ρ̃1) | ϑ+ < ϑ−

)
. (M + 1)−(k−1).

Therefore, putting together (4.22), (4.23) and (4.24), we obtain that there is a universal constant C > 0 such
that

Pµa

(
An,+
M,ε | ϑ+ < ϑ−

)
. exp

(
−CM/ε

)∑
k∈N

k(M + 1)−(k−1) . exp
(
−CM/ε

)
.

Finally, we observe that the result with the role of ϑ+ and ϑ− interchanged can be obtained in the same
way. Therefore, this concludes the proof.

We are now ready to prove that the difference between the value of the width coordinate in the set P̂†,na and
in the set P̂†,na is of order ηn. We refer to Figure 10 for a diagram illustrating the various objects involved
in the proof of Lemma 4.15.

ê2
ê1

w†
n(x̂n,a0 ) w†

n(x̂n,a0 ) + ηn

Ṡ†,rand
n (x2)

w†
n(x̂)

S†
n

ā

Re(x̂n,a0 ) + 2πRe(x̂n,a0 )

x̂

Sa2π

e2
e1

x1
x2 Ṡ†,rand

n (x1)

x̂n,a0

P†,n
a

P̂†,n
a

Figure 10: A diagram illustrating Step 2 of the proof of Lemma 4.15. Left: A portion of the lifted graph
G†,n embedded in R2. The blue/green vertices are the vertices in P†,na . The blue edges are the edges in the set
EG†,na . The red dual edges are the edges in the set EĜ†,na . The red dual vertices are the vertices in the set P̂†,na .
Consider the dual vertex x̂ in P̂†,na , then the two red dual edges with an arrow are the edges ê1, ê2 associated
to x̂. The blue edges with an arrow are the corresponding primal edges e1, e2. The two green points are the
endpoints of e1, e2 in (h†n)−1(a). Right: A portion of the tiling of R× [0, 1] constructed via the lifted tiling map
S†n. The blue horizontal line corresponds to ∪

x∈P†,na
S†n(x). The two green points are possible realizations of

Ṡ†,randn (x1) and Ṡ†,randn (x2). The vertical red segment with horizontal coordinate w†n(x̂) corresponds to S†n(x̂).

Lemma 4.15. For any n > n(R, δ) large enough, there is a finite constant b′n ∈ R such that∣∣w†n(x̂) + b′n
∣∣ . ηn, ∀x̂ ∈ P̂†,na ∪ P̂†,na ,

where the implicit constant is independent of everything else.

Proof. We start by letting ϑ := ϑ+ ∧ ϑ− and defining

b′n := Eµa

[
Re(Xn

0 )− Re(X̃n
ϑ)
]
.

We observe that b′n is not of constant order in general. Indeed, this is due to the fact that Re(Xn,µa

0 ) can be
far from being of order one since the starting point of the random walk Xn,µa is sampled from the set P†,na
over which we do not have any a priori control. We will only prove the result in the case x̂ ∈ P̂†,na since the
result for x̂ ∈ P†,na can be obtained similarly. In particular, we split the proof in two steps.

Step 1: In this first step, we claim that for any n > n(R, δ) large enough, it holds almost surely that∣∣Re(Ṡ†,randn (x)) + b′n
∣∣ . ηn, ∀x ∈ P†,na ,
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where the implicit constant does not depend on anything else. To this end, we consider the vertex X̃n,µa

ϑ+
∈ P†,na

such that σ2π(X̃n,µa

ϑ+
) = σ2π(Xn,µa

ϑ+
). Now, applying Lemma 3.6, we see that∣∣∣∣∣Re(Ṡ†,randn (X̃n,µa

ϑ+
))− Re(Ẋn,µa

ϑ+
)

ηn
−

Re(X̃n,µa

ϑ+
)− Re(Xn,µa

ϑ+
)

2π

∣∣∣∣∣ ≤ 1. (4.25)

Therefore, rearranging the various terms in the previous inequality and then taking the conditional expec-
tation given ϑ+ < ϑ−, we get that∣∣Eµa

[
Re(Ṡ†,randn (X̃n

ϑ+
)) | ϑ+ < ϑ−

]
+ b′n

∣∣ . ∣∣Eµa

[
Re(Ẋn

ϑ+
) | ϑ+ < ϑ−

]∣∣
+ ηn

∣∣Eµa

[
Re(Xn

ϑ+
)− Re(Xn

0 ) | ϑ+ < ϑ−
]∣∣

+ ηn
∣∣b′n + Eµa

[
Re(X̃n

ϑ+
)− Re(Xn

0 ) | ϑ+ < ϑ−
]∣∣. (4.26)

Thanks to Lemmas 4.13 and 4.12, we have that the following inequalities hold for any n > n(R, δ) large
enough ∣∣Eµa

[
Re(Ẋn

ϑ+
) | ϑ+ < ϑ−

]∣∣ ≤ ηn, ∣∣Eµa

[
Re(Xn

ϑ+
)− Re(Xn

0 ) | ϑ+ < ϑ−
]∣∣ . 1. (4.27)

Therefore, the claim follows if we prove that the term in the third line of (4.26) is of order one. More
precisely, thanks to the definition of b′n, it is sufficient to prove that, for any n > n(R, δ) large enough, it
holds that ∣∣Eµa

[
Re(X̃n

ϑ)
]
− Eµa

[
Re(X̃n

ϑ+
) | ϑ+ < ϑ−

]∣∣ . 1.

Since, for any n > n(R, δ) large enough, Pµa
(ϑ+ < ϑ−) is of constant order, this is equivalent to prove that∣∣Eµa

[
Re(X̃n

ϑ+
) | ϑ+ < ϑ−

]∣∣+
∣∣Eµa

[
Re(X̃n

ϑ−
) | ϑ− < ϑ+

]∣∣ . 1,

where the implicit constant must be independent of everything else. We note that this inequality follows
easily from Lemma 4.14 (see Figure 9). Hence, putting everything together and going back to (4.26), we
obtain that ∣∣Eµa

[
Re(Ṡ†,randn (X̃n

ϑ+
)) | ϑ+ < ϑ−

]
+ b′n

∣∣ . ηn,
where the implicit constant is independent of everything else. Therefore, the desired claim follows from the
previous inequality and from the fact that, thanks to Lemma 3.9, it holds almost surely that∣∣Re(Ṡ†,randn (x1))− Re(Ṡ†,randn (x2))

∣∣ ≤ 2ηn, ∀x1,x2 ∈ P†,na

Step 2: In this step, we will actually prove the result in the lemma statement. To this end, we fix x̂ ∈ P̂†,na
and we consider the dual edges ê1, ê2 ∈ EĜ†,na such that ê+

1 = x̂ = ê−2 . Furthermore, we let e1, e2 ∈ EG†,na be
the corresponding primal edges, and we let x1, x2 ∈ VG†,n be the endpoints of e1 and e2 in the set (h†n)−1(a)
(see Figure 10). At this point, we need to split the proof in two different cases:

• If x1 6= x2, then, by construction of the Smith diagram, it holds almost surely that

w†n(x̂) ∈
[
Re(Ṡ†,randn (x1)),Re(Ṡ†,randn (x2))

]
.

• If x1 = x2, then it holds that

w†n(x̂) ∈
[
min

{
Re(v) : v ∈ S†n(x1)},max{Re(v) : v ∈ S†n(x1)

}]
,

where we recall that S†n(x1) denotes the horizontal segment associated to x1 by the lifted tiling map.

In both cases, if x1, x2 ∈ P†,na , then the conclusion follows from the previous step. However, in general, it
could be that x1 ∈ P†,na − (2π, 0) or x2 ∈ P†,na + (2π, 0). In both these cases, we cannot directly appeal to
the previous step to conclude. Nevertheless, a simple application of Lemma 3.6 implies that the same result
of the first step holds also for the vertices in P†,na − (2π, 0) and in P†,na + (2π, 0). Therefore, this concludes
the proof.
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Before proceeding with the proof of Lemma 4.10, we need to state a lemma which is the dual counterpart of
Lemma 4.14.

Lemma 4.16. Fix ε ∈ (0, 1), x̂ ∈ VĜ†,n(R′ − 1), M ∈ N, and define the following event

Ân,x̂
M,ε :=

{
∃ s, t ∈ [0, τ̂x̂] :

∣∣Re(X̂n,x̂
t )− Re(X̂n,x̂

s )
∣∣ > M ;

∣∣Im(X̂n,x̂
u )

∣∣ ∈ [R′ − ε, R′ + ε], ∀u ∈ [s, t]
}
.

There exists a universal constant C > 0 such that, for any n > n(R, δ, ε) large enough, it holds that

Px̂

(
Ân,x̂
M,ε

)
. exp(−CM/ε), ∀M ∈ N,

where the implicit constant is independent of everything else.

Proof. The proof of this lemma can be done by employing a similar argument to that used in Lemma 4.14.

We are now ready to prove Lemma 4.10, which is now an immediate consequence of the results proved above.

Proof of Lemma 4.10. The proof basically consists of putting together some of the previous results. More
precisely, fix x̂ ∈ VĜ†,n(R′ − 1) and let X̃n,x̂

τ̂x̂
∈ P̂†,na ∪ P̂†,na be such that σ2π(X̃n,x̂

τ̂x̂
) = σ2π(X̂n,x̂

τ̂x̂
). Then, by

Lemma 2.9, we have that

Ex̂

[
Re(X̂n

τ̂x̂
)

2π
−

w†n(X̂n
τ̂x̂

) + b′n

ηn

]
= Ex̂

[
Re(X̃n

τ̂x̂
)

2π
−

w†n(X̃n
τ̂x̂

) + b′n

ηn

]
.

Therefore, the result follows thanks to Lemma 4.15 if we show that also
∣∣Ex̂[Re(X̃n

τ̂x̂
)]
∣∣ . 1. We note that

this fact is easily implied by Lemma 4.16, and so the proof is completed.

4.3 Proof of Theorem 1.4

We are now ready to give a proof of the main theorem of this article. As we have already remarked, the
proof of this theorem is a consequence of Propositions 4.3 and 4.8.

Proof of Theorem 1.4. Fix R > 1, δ ∈ (0, 1), and consider a point x ∈ VG†,n(R). We divide the proof into
three main steps.

Step 1. By definition of the Smith embedding Ṡ†n, we have that Im(Ṡ†n(x)) = h†n(x). Hence, from Proposi-
tion 4.3, we know that there exist two real sequences {bhn}n∈N and {chn}n∈N, independent of R and δ, such
that, for n > n(R, δ) large enough, it holds that

∣∣chn Im(Ṡ†n(x)) + bhn − Im(x)
∣∣ ≤ δ√

2
, ∀x ∈ VG†,n(R× [−R,R]).

Step 2. Let EG†,n,↓(x) = [ek] be the set of harmonically oriented edges in EG†,n with heads equal to x

ordered in such a way that ê1 · · · êk forms a counter-clockwise oriented path in the lifted dual graph Ĝ†,n.
Then, by construction of the Smith embedding Ṡ†n, we have that

Re(Ṡ†n(x)) ∈
[
w†(ê−1 ),w†(ê+

k )
]
. (4.28)

Therefore, letting {bwn }n∈N be the sequence in the statement of Proposition 4.8, we have that∣∣∣∣2πηn Re(Ṡ†n(x)) + bwn − Re(x)

∣∣∣∣
≤
∣∣∣∣2πηnwn(ê−1 ) + bwn − Re(ê−1 )

∣∣∣∣+
∣∣Re(ê−1 )− Re(x)

∣∣+
2π

ηn

∣∣Re(Ṡ†n(x))−w†n(ê1)
∣∣.
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The first term on the right-hand side of the above expression is bounded by δ/(5
√

2) thanks to Proposition 4.8.
The second term is also bounded by δ/(5

√
2) since Lemma 4.2 rules out the existence of macroscopic faces.

Concerning the third term, recalling (4.28), we have that

2π

ηn

∣∣Re(Ṡ†n(x))−w†n(ê−1 )
∣∣

≤
∣∣∣∣2πηnw†n(ê−1 ) + bwn − Re(ê−1 )

∣∣∣∣+

∣∣∣∣2πηnw†n(ê+
k ) + bwn − Re(ê+

k )

∣∣∣∣+
∣∣Re(ê+

k )− Re(ê−1 )
∣∣.

The first and second term on the right-hand side of the above expression are bounded by δ/(5
√

2), thanks
to Proposition 4.8. The third term is also bounded by δ/(5

√
2), for n > n(R, δ) thanks, once again, to

Lemma 4.2. We remark that all the previous bounds obviously hold only for n > n(R, δ) large enough.
Therefore, putting it all together, we obtain that, for all n > n(R, δ) large enough, it holds that∣∣∣∣2πηn Re(Ṡ†n(x)) + bwn − Re(x)

∣∣∣∣ ≤ δ√
2
, ∀x ∈ VG†,n(R× [−R,R]).

Step 3. For each n ∈ N, we define the affine transformation T †n : R× [0, 1]→ R2 by letting

Re(T †nx) :=
2π

ηn
Re(x) + bwn and Im(T †nx) := chn Im(x) + bhn, ∀x ∈ R× [0, 1],

Therefore, the previous two steps yield that, for any n > n(R, δ) large enough, it holds that

dR2

(
T †nṠ†n(x),x

)
≤ δ, ∀x ∈ VG†,n(R× [−R,R]),

where dR2 denotes the Euclidean distance in R2. This is obviously equivalent to the desired result, and so
the proof is completed.

5 Application to mated-CRT maps

The main goal of this section is to prove Theorem 1.5. Roughly speaking, the plan is as follows. We will
first introduce an a priori embedding of mated-CRT maps which is “close” to LQG. We then prove that this
a priori embedding satisfies the assumptions of Theorem 1.4. Finally, we show how this allows to conclude.

5.1 SLE/LQG description of mated-CRT maps

We now discuss an equivalent description of mated-CRT maps in terms of SLE/LQG, which comes from
the results of [DMS21]. These results imply that mated-CRT maps can be realized as cell configurations
constructed from space-filling SLEκ curves parameterized by quantum mass with respect to a certain inde-
pendent LQG surface. We will not need many properties of the SLE/LQG objects involved, so we will not
give detailed definitions, but we will give precise references instead.

Liouville quantum gravity surfaces. For γ ∈ (0, 2) and D ⊆ C, a doubly marked γ-LQG surface is
an equivalence class of quadruplets (D,h, z1, z2) where h is a random generalized function on D (which
we will always take to be an instance of some variant of the Gaussian free field), and z1, z2 ∈ D. Two
such quadruplets (D,h, z1, z2) and (D̃, h̃, z̃1, z̃2) are declared to be equivalent if there is a conformal map
f : D̃ → D such that

h̃ = h ◦ f +Q log |f ′| and f(z̃1) = z1, f(z̃2) = z2, where Q =
2

γ
+
γ

2
. (5.1)

For γ ∈ (0, 2), it is well-known that one can construct a random measure, called the γ-LQG area measure,
which is formally given by µh := eγhd2z, where d2z denotes the Lebesgue measure on D. Since h is a
random generalized function, this definition does not make rigorous sense and one should proceed using a
standard regularization and limiting procedure [DS11]. The γ-LQG area measure satisfies a certain change
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of coordinates formula. More precisely, given two equivalent doubly marked γ-LQG surface (D,h, z1, z2) and

(D̃, h̃, z̃1, z̃2), then it holds almost surely that µh(f(A)) = µh̃(A) for all Borel sets A ⊆ D̃, where f : D̃ → D
is a conformal map such that (5.1) holds.

In this article, we are interested in two different kind of doubly marked γ-LQG surfaces.

• The doubly marked quantum sphere (C, h, 0,∞), where h is a variant of the Gaussian free field precisely
defined in [DMS21, Definition 4.21]. For γ ∈ (0, 2), it is well-known that one can associate with the
random generalized function h a random measure µh on C, the γ-LQG measure, with µh(C) <∞ (again,
we will not need the precise definition here). Typically, one considers a unit-area quantum sphere, which
means that we fix µh(C) = 1.

• The 0-quantum cone (C, hc, 0,∞), where hc is a variant of the Gaussian free field precisely defined in
[DMS21, Definition 4.10]. Also in this case, for γ ∈ (0, 2), we can associate to hc the γ-LQG measure µhc

which has infinite total mass, but it is locally finite.

Schramm–Loewner evolution. We do not need to precisely define SLEκ, but rather it is sufficient to
know that whole-plane space-filling SLEκ, for κ > 4, is a random space-filling curve ϑ which travels from
∞ to ∞ in C. It is a variant of SLEκ [Sch00] which was introduced in [MS17, DMS21]. Space-filling SLEκ
for κ ≥ 8 is a two-sided version of ordinary SLEκ (which is already space-filling), whereas space-filling SLEκ
for κ ∈ (4, 8) can be obtained from ordinary SLEκ by iteratively filling in the “bubbles” which the path
disconnects from ∞.

Construction of the a priori embedding. An important feature of the mated-CRT map is that it comes
with an a priori embedding into C described by SLE-decorated LQG. To explain this embedding, consider a
doubly marked quantum sphere (C, h, 0,∞) and, for γ ∈ (0, 2), consider the associated γ-LQG measure µh.
Sample a space-filling SLEκ curve ϑ with κ = 16/γ2, independently from the random generalized function
h, and reparametrize ϑ so that

ϑ(0) = 0 and µh
(
ϑ([a, b]

)
= b− a, ∀a, b ∈ R with a < b.

For γ ∈ (0, 2) and n ∈ N, we define the n-structure graph Gn associated with the pair (h, ϑ) as follows. The
vertex set of Gn is given by

VGn :=
1

n
Z ∩ (0, 1].

Two distinct vertices x1, x2 ∈ VGn are connected by one edge (resp. two edges) if and only if the intersection
of the corresponding cells ϑ([x1 − 1/n, x1]) and ϑ([x2 − 1/n, x2]) has one connected component which is
not a singleton (resp. two connected components which are not singletons). We refer to Figure 11 for a
diagrammatic construction of the SLE/LQG embedding of the mated-CRT map.

Figure 11: Left: A space-filling SLEκ curve ϑ, for κ ≥ 8, divided into cells ϑ([x − 1/n, x]) for a collection
of x ∈ VGn. Each cell has µh-measure equal to 1/n. Middle: The same as in the left figure but with a
orange path showing the order in which cells are traversed by ϑ. Right: In each cell we drawn a red point
corresponding to a vertex in VGn. Two vertices are connected by a red edge if the corresponding cells intersect.
This illustrates how the SLE/LQG embedding of the n-mated CRT map with the sphere topology is built. A
similar figure has appeared in [GMS19].
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When κ ≥ 8, the intersection of cells ϑ([x1 − 1/n, x1]) ∩ ϑ([x2 − 1/n, x2]) is always either empty or the
union of one or two non-singleton connected components. However, when κ ∈ (4, 8) it is possible that
ϑ([x1− 1/n, x1])∩ ϑ([x2− 1/n, x2]) is a totally disconnected Cantor-like set, in which case x1 and x2 are not
joint by an edge in Gn (see Figure 12).

Figure 12: A typical space-filling SLEκ curve ϑ, for κ ∈ (4, 8), divided into cells. The picture is slightly
misleading since the set of “pinch point” where the left and right boundaries of each cell meet is actually
uncountable. The black dots indicate the points where ϑ starts and finishes filling each cell. Note that the gray
and green cells intersect at several points, but do not share a connected boundary arc so are not considered to
be adjacent. A similar figure has appeared in [GMS21].

The following result explains the connection between the pair (h, ϑ) and the mated-CRT map Gn, and it is
a consequence of [DMS21, Theorems 1.9 and 8.18].

Proposition 5.1. The family of structure graphs {Gn}n∈N agrees in law with the family of n-mated-CRT
maps with the sphere topology defined in Subsection 1.3.

The previous proposition gives us an a priori embedding of the mated-CRT map in C by sending each
x ∈ VGn to the point ϑ(x) ∈ C. Furthermore, the graph Gn comes naturally with two marked vertices.
Indeed, we can let vn0 ∈ VGn (resp. vn1 ∈ VGn) to be the vertex corresponding to the cell containing 0 (resp.
∞). We also emphasize that here all the edges in EGn are assumed to have unit conductance.

Construction of the a priori embedding of the dual graph. The a priori SLE/LQG embedding of
Gn also induces an a priori embedding into C of the associated planar dual graph Ĝn. Indeed, each vertex
of Ĝn is naturally identified with the set of points in C where three of the cells ϑ([x − 1/n, x]) meet6, for
x ∈ VGn. The set of edges of Ĝn can be identified with the boundary segments of the cells which connect
these vertices. To be precise, this is not an embedding when κ ∈ (4, 8) since the edges can intersect (but not
cross) each other (see Figure 12). To deal with this case, we can very slightly perturb the edges so that they
do not intersect except at their endpoints. We refer to the proof of Proposition 5.4 for more details on how
one can handle this situation.

5.2 Mated-CRT maps satisfy the assumptions

In this subsection, we show that the a priori embedding of mated-CRT maps with the sphere topology
satisfies the assumptions of Theorem 1.4. In particular, we will show here that assumptions (H2) and (H3)
are satisfied in this specific case. We recall that, for each n ∈ N and γ ∈ (0, 2), the mated-CRT map Gn
comes with two marked vertices vn0 and vn1 which correspond to the cell containing 0 and ∞, respectively

Proposition 5.2 (Invariance principle on the mated-CRT map, [GMS21, Theorem 3.4]). For each n ∈ N
and γ ∈ (0, 2), let Gn be the n-mated CRT map with the sphere topology embedded in C under the a priori
SLE/LQG embedding specified in Subsection 5.1. View the embedded random walk on Gn, stopped when it
hits vn1 , as a continuous curve in C obtained by piecewise linear interpolation at constant speed. For each
compact subset K ⊂ C and for any z ∈ K, the conditional law given the pair (h, ϑ) of the random walk on
Gn started from the vertex xnz ∈ VGn nearest to z weakly converges in probability as n → ∞ to the law of

6Note that there cannot be more than three cells meeting at a single point or we would have a face of degree greater than
three.
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the Brownian motion on C started from z with respect to the local topology on curves viewed modulo time
parameterization specified in Subsection 2.1.2, uniformly over all z ∈ K.

Remark 5.3. To be precise, in [GMS21, Theorem 3.4], the above theorem is stated for a mated-CRT map
built using a quantum sphere with only one marked point. However, the quantum sphere with two marked
points can be obtained from the quantum sphere with one marked point (C, h,∞) by first sampling a point
z ∈ C uniformly from the γ-LQG area measure µh, then applying a conformal map which sends z to 0 (see
[DMS21, Proposition A.13]). Therefore, since Brownian motion is conformally invariant, the statement in
[GMS21, Theorem 3.4] immediately implies Proposition 5.2 for the quantum sphere with two marked points.

The main purpose of this subsection is to prove that an analogous result holds also on the sequence of a
priori SLE/LQG embedding of the dual n-mated-CRT map with the sphere topology. More precisely, we
want to prove the following proposition.

Proposition 5.4 (Invariance principle on the dual mated-CRT map). For each n ∈ N and γ ∈ (0, 2), let

Ĝn be the dual planar graph associated to the n-mated-CRT map Gn with the sphere topology embedded in
C under the a priori embedding specified in Subsection 5.1. View the embedded random walk on Ĝn as a
continuous curve in C obtained by piecewise linear interpolation at constant speed. For each compact subset
K ⊂ C and for any z ∈ K, the conditional law given the pair (h, ϑ) of the random walk on Ĝn started from

the vertex x̂nz ∈ VĜn nearest to z weakly converges as n → ∞ to the law of the Brownian motion on C
started from z with respect to the local topology on curves viewed modulo time parameterization specified in
Subsection 2.1.2, uniformly over all z ∈ K.

5.2.1 Invariance principle on embedded lattices

In order to prove Proposition 5.4, we need to take a step back and state a general theorem from [GMS22]
which guarantees that the random walk on certain embedded lattices has Brownian motion as a scaling
limit. For the reader’s convenience, we recall here the main definitions needed and in what follows we adopt
notation similar to that of [GMS22].

Definition 5.5. An embedded latticeM is a graph embedded in C in such a way that each edge is a simple
curve with zero Lebesgue measure, the edges intersect only at their endpoints, and each compact subset of
C intersects at most finitely many edges ofM. As usual, we write VM for the set of vertices ofM, EM for
the set of edges of M, and FM for the set of faces of M.

Definition 5.6. For an embedded lattice M and x ∈ VM, we define the outradius of x by setting

Outrad(x) := diam

 ⋃
{H∈FM : x∈∂H}

H

 ,

i.e., the diameter of the union of the faces with x on their boundaries. Here ∂H denotes the boundary of
the face H ∈ FM.

For C > 0 and z ∈ C, we write C(M− z) for the embedded lattice obtained by first translating everything
by the amount −z and then by scaling everything by the factor C. We are interested in random embedded
lattices that satisfy the following assumptions.

(I1) (Translation invariance modulo scaling) There is a (possibly random andM-dependent) increas-
ing sequence of open sets Uj ⊂ C, each of which is either a square or a disk, whose union is all of
C such that the following is true. Conditional on M and Uj , let zj for j ∈ N be sampled uniformly
from the Lebesgue measure on Uj . Then the shifted lattice M− zj converge in law to M modulo
scaling as j →∞, i.e., there are random numbers Cj > 0 (possibly depending onM and zj) such that
Cj(M− zj)→M in law with respect to the metric specified in [GMS22, Equation (1.6)].7

(I2) (Ergodicity modulo scaling) Every real-valued measurable function F = F (M) which is invariant
under translation and scaling, i.e., F (C(M− z)) = F (M) for each z ∈ C and C > 0, is almost surely
equal to a deterministic constant.

7Several equivalent formulations of this condition are given in [GMS22, Definition 1.2].
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(I3) (Finite expectation) Let H0 ∈ FM be the face of M containing 0, then

E

[ ∑
x∈VM∩∂H0

Outrad(x)2 deg(x)

Area(H0)

]
<∞,

where, in this case, deg(x) denotes the number of edges incident to x.

Proposition 5.7 ([GMS22, Theorem 1.11]). Let M be an embedded lattice satisfying assumptions (I1),
(I2), and (I3). For ε > 0, view the embedded random walk on on εM as a continuous curve in C obtained
by piecewise linear interpolation at constant speed. For each compact subset K ⊂ C and for any z ∈ K,
the conditional law given M of the random walk on εM started from the vertex x̂εz ∈ V(εM) nearest to z
weakly converges in probability as ε → 0 to the law of a Brownian motion on C, with some deterministic,
non-degenerate covariance matrix Σ, started from z with respect to the local topology on curves viewed modulo
time parameterization specified in Subsection 2.1.2, uniformly over all z ∈ K.

To be precise, the above theorem follows from the proof [GMS22, Theorem 1.11] (which gives the same
statement but without the uniform rate of convergence on compact subsets) by using [GMS22, Theorem 3.10]
in place of [GMS22, Theorem 1.16].

5.2.2 Proof of Proposition 5.4

The purpose of this subsection is to transfer the general result of Proposition 5.7 to the particular setting of
Proposition 5.4. In order to do this, we need to proceed in two steps. First, we verify that the hypothesis of
Proposition 5.7 are satisfied for a sequence of embedded lattices built through the 0-quantum cone. Then, we
transfer the result to the sequence of n-mated CRT maps with the sphere topology by means of an absolute
continuity argument.

Let (C, hc, 0,∞) be a 0-quantum cone as specified in Subsection 5.1. We now define a graph associated with
the 0-quantum cone in a way which is exactly analogous to the SLE/LQG description of mated-CRT maps
with the sphere topology described in Section 5.1. For γ ∈ (0, 2), let ϑ be a whole-plane space-filling SLEκ,
with κ = 16/γ2, sampled independently from hc and then parameterized by the γ-LQG measure µhc in such
a way that ϑ(0) = 0. Let ξ be sampled uniformly from the unit interval [0, 1], independently from everything
else, and let

H :=
{
ϑ
(
[x− 1, x]

)
: x ∈ Z + ξ

}
.

The reason for considering times in Z + ξ instead just in Z is to avoid making the point 0 = ϑ(0) special.
This is needed in order to check the translation invariance modulo scaling hypothesis (I1). We view H as a
planar map whose vertex set is H itself. Two vertices H, H ′ ∈ H are joined by one edge (resp. two edges) if
and only if H and H ′ intersect along one (resp. two) non-trivial connected boundary arc. (resp. arcs). For
H, H ′ ∈ H, with H 6= H ′, we write H ∼ H ′ if they are joined by at least one edge. Given a set A ⊂ C, we
write

H(A) :=
{
H ∈ H : H ∩A 6= ∅

}
and moreover, for H ∈ H, we write deg(H) for the number of cells H ′ ∈ H (counted with edge multiplicity)
such that H ∼ H ′.

Proof of Proposition 5.4. For γ ∈ (0, 2), define the cell configuration H associated with a space-filling SLEκ
on a 0-quantum cone as specified above. Let M be the embedded defined as follows.

• The vertex set ofM consists of points x ∈ C such that there are three cells in H that meet at x and with
the property that the boundary of each of such cells has a connected subset that touches x;

• The edge set of M consists of the boundary segments of the cells which connect the vertices.

In other words,M is nothing but the planar dual of H. Moreover, by construction,M is an embedded lattice
in the sense of Definition 5.5, except that embedded edges are allowed to intersect but not cross, in the case
when γ ∈ (

√
2, 2). To deal with this case, we can consider a different embedding of M in which all the

vertices occupy the same position, but the edges are slightly perturbed so that they do not intersect except
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at their endpoints. More precisely, for each edge with touching points in its interior, we can slightly perturb
it in such a way that the modification only depends on the position of the edge itself and on the positions of
the adjacent faces. In particular, this perturbation can be carried out in a translation and scaling invariant
way. Therefore, since this procedure only depends on the local configuration of the lattice, if the starting cell
configuration is translation invariant modulo scaling, then also the perturbed lattice is translation invariant
modulo scaling.

We will now check that M satisfies assumptions (I1), (I2), and (I3). The translation invariance modulo
scaling assumption (I1) and the ergodicity modulo scaling assumption (I2) follows from the corresponding
properties for the associated cell configuration H as checked in [GMS21, Proposition 3.1]. Therefore, we can
just focus on proving the finite expectation assumption (I3). To this end, recalling that the cell H0 is the
face of M containing 0, we proceed as follows∑

x∈VM∩∂H0

Outrad(x)2 deg(x)

Area(H0)
≤ 12

∑
x∈VM∩∂H0

∑
{H∈H : x∈∂H}

diam(H)2

Area(H0)

≤ 48
∑

{H∈H :H∼H0}

diam(H)2

Area(H0)
+ 12

diam(H0)2

Area(H0)
deg(H0).

(5.2)

In the first line of (5.2), we used the fact that each vertex of M has degree at most 3 and the inequality
(a+ b+ c)2 ≤ 4(a2 + b2 + c2). In the second line, we use that each cell H ∈ H with H ∼ H0 intersects H0

along at most two disjoint connected boundary arcs (one on its left boundary and one on its right boundary),
so there are at most 4 vertices of M in H ∩H0. Now, we notice that the second quantity in the last line of
(5.2) has finite expectation thanks to [GMS21, Theorem 4.1]. Therefore, we can just focus our attention to
the sum appearing in the last line of (5.2). Basically, the fact that this sum has finite expectation follows
from the combination of several results in [GMS21] and [GMS22].

Let F = F (H) denote the sum appearing in the last line of (5.2). We will show that E[F ] < ∞ using an
ergodic theory result from [GMS22, Section 2.2]. Let {Sk}k∈Z be the bi-infinite sequence of origin-containing
squares of a uniform dyadic system independent from H, as defined in [GMS22, Section 2.1]. We will not
need the precise definition of these sequence here, but rather we only need to know Sk−1 ⊂ Sk for each
k ∈ Z and ∪∞k=1Sk = C. As shown in [GMS21, Proposition 3.1], the cell configuration H satisfies a suitable
translation invariance modulo scaling assumption, and so, we can apply [GMS22, Lemma 2.7] to H to find
that the following is true. If we let Fz for z ∈ C be defined in the same manner as F but with the translated
cell configuration H− z in place of H, then it holds almost surely that

E[F ] = lim
k→∞

1

Area(Sk)

∫
Sk

Fzdz.

To bound the right-hand side of the above expression, we can proceed as follows

lim
k→∞

1

Area(Sk)

∫
Sk

Fzdz = lim
k→∞

1

Area(Sk)

∫
Sk

∑
{H∈H :H∼Hz}

diam(H)2

Area(Hz)
dz

≤ lim sup
k→∞

1

Area(Sk)

∑
H∈H(Sk)

∑
{H′∈H :H′∼H}

diam(H ′)2.

(5.3)

Since the maximal size of the cells in H(Sk) is almost surely of strictly smaller order than the side length of
Sk as k → ∞ (see [GMS22, Lemma 2.9]), we find that almost surely for large enough k ∈ N, each H ′ ∈ H
with H ′ ∼ H for some H ∈ H(Sk) is contained in H(Sk(1)), where Sk(1) is the square with the same center
as Sk and three times the side length of Sk. Therefore, the last line in (5.3) is almost surely bounded above
by

2 lim sup
k→∞

1

Area(Sk)

∑
H∈H(Sk(1))

diam(H)2 deg(H),

which is finite by [GMS22, Lemmas 2.8 and 2.10].
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Therefore, summing up, we proved that the embedded lattice M satisfies assumptions (I1), (I2), (I3), ad
so, we can apply Proposition 5.7. Furthermore, we notice that, thanks to the rotational invariance of the
law of (hc, ϑ), the limiting covariance matrix Σ is given by a positive scalar multiple of the identity matrix.
Hence, in order to conclude the proof of Proposition 5.4, we need to transfer the result to the setting of
mated-CRT maps with the sphere topology. This can be done by means of absolute continuity arguments
as in [GMS21, Subsection 3.3]. For the sake of brevity, we will not repeat such arguments here and we refer
to [GMS21].

5.3 Convergence to LQG

In this subsection we see how the proof of Theorem 1.5 is almost an immediate consequence of the results
proved above. More specifically, for n ∈ N and γ ∈ (0, 2), let (Gn, vn0 , vn1 ) be the doubly marked n-mated-
CRT map with the sphere topology under the a priori SLE/LQG embedding as specified in Subsection 5.1.
We observe that there exists a conformal map from C to C2π sending∞ 7→ +∞ and 0 7→ −∞. This mapping
is unique up to horizontal translation and rotation. The horizontal translation can be fixed by specifying
that the volume of R/2πZ× [0,∞) under the γ-LQG measure µh induced by the embedding is precisely 1/2.
Furthermore, the rotation on R/2πZ can be chosen uniformly at random. Therefore, using this conformal
map, we can define an embedding of (Gn, vn0 , vn1 ) into C2π in such a way that vn0 and vn1 are mapped to −∞
and +∞, respectively. Using the same conformal map, we can also embedded the associated dual graph Ĝn
into C2π. This put us exactly in the setting of Theorem 1.4 from which we can deduce the following result.

Proposition 5.8. Fix γ ∈ (0, 2) and let {(Gn, vn0 , vn1 )}n∈N be the sequence of doubly marked n-mated CRT
map with the sphere topology embedded in the infinite cylinder C2π as specified above. For each n ∈ N, let
Ṡn : VGn → C2π be the Smith embedding associated to (Gn, vn0 , vn1 ) as specified in Definition 2.14. There exists
a sequence of random affine transformations {Tn}n∈N from Cηn to C2π of the form specified in the statement
of Theorem 1.4 such that, for all compact sets K ⊂ C2π, the following convergence holds in probability

lim
n→∞

sup
x∈VGn(K)

d2π

(
TnṠn(x), x

)
= 0,

where d2π denotes the Euclidean distance on the cylinder C2π.

Proof. By construction the sequence {(Gn, vn0 , vn1 )}n∈N and the associated sequence of dual graphs {Ĝn}n∈N
satisfy almost surely assumption (H1). Moreover, Proposition 5.2 guarantees the convergence in probability
of the random walk on the sequence of primal graphs to Brownian motion and so assumption (H2) is satisfied.
Furthermore, Proposition 5.4 guarantees the convergence in probability of the random walk on the sequence
of dual graphs to Brownian motion and so also assumption (H3) is satisfied. Therefore, the desired result
follows from Theorem 1.4.

Using the same procedure specified at the beginning of this subsection, we can also consider the parameter-
ization of the unit-area quantum sphere by the infinite cylinder C2π. Hence, with a slight abuse of notation,
we let (C2π, h,−∞,+∞) be the unit-area quantum sphere parametrized by C2π and we denote by µh the
associated γ-LQG measure. We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. The result on the measure convergence (a) follows from Proposition 5.8 and the
fact that ϑ is parameterized by µh-mass. The uniform convergence statement for curves (b) is also an
immediate consequence of Proposition 5.8. The claimed random walk convergence (c) follows from Proposi-
tions 5.2 and 5.8.

A Some standard estimates for planar Brownian motion

Throughout the whole appendix, B denotes a standard planar Brownian motion. For x ∈ R2, we use the
notation Bx to denote a planar Brownian motion started from x. We recall that σ2π : R2 → C2π is defined
in (2.3) and denotes the covering map of the infinite cylinder C2π. In particular, if Bx is a as above, then
σ2π(Bx) is a Brownian motion on C2π started from σ2π(x).
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Lemma A.1. Fix R′ > 1. For x ∈ R2, consider the following stopping times

τ := inf
{
t ≥ 0 : Im(Bx

t ) = −2R′ or Im(Bx
t ) = R′

}
.

Then it holds that

Px

(
σ2π(B|[0,τ]) does not wind around the cylinder below height −R′

)
.

1

R′
, ∀x ∈ R× {−R′},

where the implicit constant is independent of everything else.

Proof. Fix x ∈ R× {−R′}. Let σ0 := 0, and for k ∈ N0 we define inductively

τk := inf
{
t ≥ σk : Im(Bx

t ) = −R′ − 1}, σk+1 := inf
{
t ≥ τk : Im(Bx

t ) = −R′
}
.

Moreover, for k ∈ N0 consider the events

Ak :=
{
|Re(Bx

σk
)− Re(Bx

τk
)| ≥ 1

}
, Fk :=

{
τk > τ

}
.

Let K be the smallest k ∈ N0 such that Fk occurs. Then the probability that the event in the lemma
statement happens is less or equal to the probability that none of the events {Ak}k∈[K]0 happen. Thanks to
the strong Markov property of the Brownian motion, the events {Ak}k∈N0

are independent and identically
distributed. Moreover, thanks to well-known properties of Brownian motion, the event A0 happens with
uniformly positive probability p independent of R′ and x. Therefore, we obtain that

Px

(
K⋂
i=0

Ak

)
=
∑
k∈N0

Px

(
k⋂
i=0

Ak

)
Px(K = k) =

∑
k∈N0

(1− p)kPx(K = k) .
1

R′
,

for all x ∈ R × {R′}, where the implicit constant is independent of everything else, and the last inequality
follows from standard Brownian motion estimates. Hence, this concludes the proof.

Lemma A.2. Fix R > 1, R′ > R. For x ∈ R × [−R,R], let τ := inf{t ≥ 0 : | Im(Bx
t )| = R′}, and define

the events

W+ :=
{
σ2π(Bx|[0,τ]) does a loop around the cylinder between heights R and R′

}
,

W− :=
{
σ2π(Bx|[0,τ]) does a loop around the cylinder between heights −R′ and −R

}
.

Then it holds that

Px

(
W+ ∪W−

)
.

R

R′
, ∀x ∈ R× [−R,R],

where the implicit constant is independent of everything else.

Proof. Fix x ∈ R× [−R,R]. It is sufficient to prove that Px(W+) . R/R′, and the same with W− in place
of W+. We will proceed similarly to the proof of the previous lemma. Let σ0 := inf{t ≥ 0 : Im(Bx

t ) = R}
and, for k ∈ N0 we define inductively

τk := inf
{
t ≥ σk : Im(Bx

t ) = R+ 1
}
, σk+1 := inf

{
t ≥ τk : Im(Bx

t ) = R
}
.

Moreover, for k ∈ N0 consider the events

Ak :=
{
|Re(Bx

σk
)− Re(Bx

τk
)| = 1, Im(Bx

σk
) = Im(Bx

τk
)
}
, Fk :=

{
τk > τ

}
.

Let K be the smallest k ∈ N0 such that Fk occurs. Then the probability that the event W+ does not
happen is less or equal to the probability that none of the events {Ak}k∈[K]0 happen. Thanks to the strong
Markov property of the Brownian motion, the events {Ak}k∈N0

are independent and identically distributed.
Moreover, since the event A0 happens with uniformly positive probability p independent of R and x, we
have that

Px

(
W+

)
≤ Px

(
K⋂
i=0

Ai

)
=
∑
k∈N0

Px

(
k⋂
i=0

Ai

)
Px(K = k) =

∑
k∈N0

(1− p)kPx(K = k) .
R

R′
,

for all x ∈ R× [−R,R], where the implicit constant is independent of everything else, and the last inequality
follows from standard Brownian motion estimates. Proceeding in a similar way, one can also prove that
Px(W−) . R/R′. Therefore, the desired result follows from the fact that Px(W+ ∪ W−) ≤ Px(W+) +
Px(W−).
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Probabilités de Saint-Flour. [Saint-Flour Probability Summer School]. doi:10.1007/978-3-030-27968-4.

[Pol81] A. M. Polyakov. Quantum geometry of bosonic strings. Phys. Lett. B 103, no. 3, (1981), 207–210.
doi:10.1016/0370-2693(81)90743-7.

[RS87] B. Rodin and D. Sullivan. The convergence of circle packings to the Riemann mapping. J. Differential
Geom. 26, no. 2, (1987), 349–360. doi:10.4310/jdg/1214441375.

[RV11] R. Rhodes and V. Vargas. KPZ formula for log-infinitely divisible multifractal random measures.
ESAIM Probab. Stat. 15, (2011), 358–371. doi:10.1051/ps/2010007.

[RV14] R. Rhodes and V. Vargas. Gaussian multiplicative chaos and applications: a review. Probab. Surv. 11,
(2014), 315–392. doi:10.1214/13-PS218.

[Sch00] O. Schramm. Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math.
118, (2000), 221–288. doi:10.1007/BF02803524.

[She16] S. Sheffield. Conformal weldings of random surfaces: SLE and the quantum gravity zipper. Ann.
Probab. 44, no. 5, (2016), 3474–3545. doi:10.1214/15-AOP1055.

53

https://arxiv.org/abs/1910.06886
https://dx.doi.org/10.1214/15-AOP1042
https://dx.doi.org/10.1214/17-EJP116
https://arxiv.org/abs/1905.13207
https://dx.doi.org/10.1017/9781316672815
https://dx.doi.org/10.1017/9781316672815
https://dx.doi.org/10.1007/s00440-017-0780-2
https://dx.doi.org/10.1007/s00440-017-0780-2
https://dx.doi.org/10.1007/978-3-030-27968-4
https://dx.doi.org/10.1016/0370-2693(81)90743-7
https://dx.doi.org/10.4310/jdg/1214441375
https://dx.doi.org/10.1051/ps/2010007
https://dx.doi.org/10.1214/13-PS218
https://dx.doi.org/10.1007/BF02803524
https://dx.doi.org/10.1214/15-AOP1055

	Introduction
	Motivation
	Main result
	Application to the mated-CRT map
	Outline

	Background and setup
	Basic definitions
	Universal cover
	Random walks and electrical networks
	Discrete harmonic conjugate
	Construction of the Smith embedding

	Some properties of the Smith embedding
	Adding new vertices
	Periodicity
	Hitting distribution of a horizontal line
	Expected horizontal winding

	Proof of the main result
	Height coordinate function
	Width coordinate function
	Proof of Theorem 1.4

	Application to mated-CRT maps
	SLE/LQG description of mated-CRT maps
	Mated-CRT maps satisfy the assumptions
	Convergence to LQG

	Some standard estimates for planar Brownian motion

