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1 Introduction

Central banks pay particular attention to inflation expectations. For example, Bernanke

(2007) argues that well anchored inflation expectations are necessary for a central bank

to stabilize inflation. A reason for the concern is that inflation expectations express

private agents’ beliefs about the underlying factors driving observed inflation dynamics.

A problem is central bank policy makers lack direct knowledge of these latent factors.

Instead, they have to infer the causes of inflation dynamics from other sources.

Surveys of professional forecasts are valuable sources of information about the

path of future inflation. Among others, Faust and Wright (2013) and Ang, Bekaert, and

Wei (2007) recognize surveys of professional forecasts yield predictions of inflation that

often dominate model-based out of sample forecasts. The inflation forecasting litera-

ture also documents, as in Stock and Watson (2010) and Faust and Wright (2013), that

there is time-variation in the long-run mean of inflation around which “good” forecasts

should be centered. For example, Faust and Wright stress the value of survey expec-

tations in tracking low-frequency variation in inflation, also known as movements in

“trend inflation.” In contrast, measures of real activity (i.e., output and unemployment

rate gaps) have been found to give only weak signals for inflation forecasting over above

and beyond the information contained in survey forecasts.1

Notwithstanding the merits of surveys of professional forecasts to predict inflation,

these forecasts are known to be inefficient. Coibion and Gorodnichenko (2012, 2015)

argue persistence in survey forecast errors is consistent with imperfect information

stories such as the sticky information framework of Mankiw and Reis (2002) or the

noisy information (or rational inattention) models of Sims (2003) and Mackowiak and

Wiederholt (2009). Conveniently, sticky and noisy information can yield equivalent par-

tial adjustment equations that relate the current survey forecast to a weighted average

of the previous period’s survey forecast and a rational expectations forecast.2 Hence-

forth, we call the partial adjustment equation the “sticky information-law of motion

of inflation forecasts” and its partial adjustment coefficient, which is a measure of the

stickiness of inflation forecast updating, the “sticky information weight.”

This paper studies the joint dynamics of realized inflation and inflation predictions

1Stock and Watson (1999) find a diminished role for activity-based forecasts of inflation, at least, since
the mid 1980s. Their results are confirmed by Atkeson and Ohanian (2001), Stock and Watson (2009),
Hansen, Lunde, and Nason (2011), and Faust and Wright (2013).

2As a result, we do not distinguish between the underlying sticky or noisy information models.
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of a survey of professional forecasters. Our approach to the inefficiency and persistence

in surveys of professional forecasts of inflation is to link a term structure of average

inflation predictions from the Survey of Professional Forecasters (SPF) to sticky informa-

tion inflation forecasts to which we add measurement error. We innovate by letting the

sticky information weight drift. Drift in the sticky information weight captures changes

in the beliefs the sticky information forecaster has about the underlying dynamics of

inflation. Our goal is to use estimates of drift in the sticky information weight to reex-

amine evidence Coibion and Gorodnichenko (2015) present that the frequency of sticky

information inflation forecast updating approximates rational expectations in a reces-

sion. With estimates of drift in the sticky information, we explore the nature of the

state dependency of sticky information inflation forecasts.

The sticky information-law of motion of inflation forecasts needs a rational ex-

pectations inflation forecast that we compute using a version of the Stock and Watson

(2010) unobserved components (UC) model of inflation.3 Our Stock-Watson (SW-)UC

model of inflation includes the canonical non-linearities created by having innovations

to trend and gap inflation subject to stochastic volatility. We introduce first-order au-

toregressive, AR(1), dynamics to the inflation gap, which is realized inflation net of trend

inflation (up to a classical measurement error), in this model. We label the AR1 coeffi-

cient the “inflation gap persistence parameter”, which can be static or drift.4 We give the

inflation gap inflation gap persistence to understand whether it contributes to smaller

estimates of inflation gap stochastic volatility compared with estimates found by Grassi

and Proietti (2010), Stock and Watson (2010), Creal (2012), and Shephard (2013), among

others. Meltzer (2014) provides another reason to include inflation gap persistence

in our SW-UC model. He argues that the behavior of inflation over the business cycle

changed during the 1980s. We use estimates of inflation gap persistence parameter to

re-evaluate this argument of Meltzer.

We combine the SW-UC model, the sticky information-law of motion of inflation

forecasts, and the term structure of average SPF inflation predictions to build non-linear

state space models. Since we employ professional forecasts of inflation to study the un-

derlying dynamics of inflation, our modeling approach is similar to Kozicki and Tinsley

3Inflation’s dependence on real activity is not modeled. We leave this task to the average SPF participant.
4Stickiness describes the smoothness of forecast updating. This paper defines persistence as the time
needed to revert to trend (or steady state) in response to a shock. We take a different approach
to measuring the persistence of inflation when reporting evidence on the share of the variation in
inflation explained by persistent shocks to inflation in section 5 of the paper.
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(2012), Mertens (2016), Jain (2017), and Nason and Smith (2019). However, our state

space models have non-linearities that always involve trend and gap inflation stochas-

tic volatilities and in three of four specifications some combination of a drifting inflation

gap persistence parameter and/or a drifting sticky information weight. We estimate the

four non-linear state space models using the particle learning filter proposed by Car-

valho, Johannes, Lopes, and Polson (2010) and a Rao-Blackwellized particle smoother

developed Lindsten, Bunch, Särkkä, Schön, and Godsill (2016).5 The particle learning fil-

ter and Rao-Blackwellized particle smoother are state of the art sequential Monte Carlo

(SMC) methods that are new to empirical macroeconomics.

We also discuss the identification of the inflation gap persistence parameter and

sticky information weight. These parameters are identified in our state space models, in

part, by the cross-section of the rational expectations and sticky information inflation

forecasts. The forecasts are restricted by a common trend and a common cycle that aid

in identifying the inflation gap persistence and sticky information weight.

The state space models are estimated on GNP/GDP deflator inflation and the aver-

age SPF nowcast and 1-, 2-, 3-, and 4-quarter ahead inflation predictions. The sample

runs from 1969Q 1 to 2018Q 3. Our priors, state space models, and data provide very

strong evidence in favor of the state space model in which the inflation gap persistence

parameter and sticky information weight drift. Estimates of this state space model

show (i) the 4-quarter ahead SPF inflation prediction improves the efficiency of esti-

mates of trend inflation, (ii) inflation gap persistence shifts from procyclical business

cycle comovement before the Volcker disinflation to no comovement with substantial

persistence after 1984, (iii) the frequency of sticky information inflation forecast updat-

ing falls from less than two quarters on average pre-1990 to about three to five quarters

on average post-1990, except during the 2007–2009 recession, and (iv) the change in

the frequency of sticky inflation forecast updating lines up with a fall in the share of the

variation of realized inflation explained by persistent shocks to trend and gap inflation.

The structure of the paper follows. Section 2 builds a state space model in the

observables of realized inflation and h-step ahead average SPF inflation predictions. We

sketch the SMC methods used to estimate the state space models in section 3. Results

appear in sections 4 and 5. Section 6 offers our conclusions.

5Our state space models can be Rao-Blackwellized because a subset of states are linear and Gaussian,
given the non-linear states. A good introduction to Rao-Blackwellization of particle filters is Creal
(2012). Lopes and Tsay (2011) discuss the role of Rao-Blackwellization in particle learning filters.

3



2 Statistical and Econometric Models

This section builds our baseline state space model using statistical and economic mod-

els. The statistical model is our SW-UC model. The economic model is the Coibion and

Gorodnichenko (2015) version of the Mankiw and Reis (2002) sticky information law of

motion. The baseline state space model has a static inflation gap persistence parameter,

but the sticky information weight drifts. We label the baseline state space model M0.

2.1 A Stock and Watson UC Model of Inflation

Stock and Watson (2010), Grassi and Proietti (2010), Creal (2012), Shephard (2013), Cog-

ley and Sargent (2015), and Mertens (2016) estimate versions of the SW-UC model that

decompose realized inflation, πt, into trend inflation, τt, and gap inflation, εt. These

SW-UC models are non-linear because stochastic volatility affects innovations to τt and

εt. We collect these features into our SW-UC model that also includes measurement

error in πt and AR(1) dynamics in εt

πt = τt + εt + σζ,πζπ,t, ζπ,t ∼ N
(
0, 1

)
, (1.1)

τt+1 = τt + ςη,t+1ηt, ηt ∼ N
(
0, 1

)
, (1.2)

εt+1 = θεt + ςυ,t+1υt, υt ∼ N
(
0, 1

)
, (1.3)

lnς2
`,t+1 = lnς2

`,t + σ`ξ`,t+1, ξ`,t+1 ∼ N
(
0, 1

)
, ` = η, υ, (1.4)

where ζπ,t, ςη,t, and ςυ,t refer to measurement error in πt, stochastic volatility in the

innovation ηt of τt, and stochastic volatility in the innovation υt of εt. Equation (1.1)

decomposes πt into τt and εt plus ζπ,t. The random walk (1.2) describes the dynamics

of τt. Its conditional expectation has the properties of the Beveridge and Nelson (1981)

trend because, as Watson (1986) and Morley, Nelson, and Zivot (2003) note, τt is an

I(1) state of a UC model. Equation (1.3) creates persistence in εt with stationary AR(1)

dynamics by restricting the static inflation gap persistence parameter θ to
(
−1, 1

)
. Or

SW-UC model includes inflation gap persistence to explore its impact on estimates of ςυ,t
and behavior over the business cycle. Equation (1.4) is the random walk that generates

stochastic volatility as lnς2
η,t+1

(
lnς2

υ,t+1

)
in trend (gap) inflation. We assume ζπ,t, ηt

υt, ξη,t, and ξυ,t are uncorrelated at all leads and lags.

As a special case, consider a SW-UC model without persistence in the inflation

gap. In addition to θ = 0, shut down the stochastic volatilities, ση = ςη,t and συ
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= ςυ,t. The result is a fixed coefficient SW-UC model that has an IMA
(
1,1

)
reduced

form,
(
1 − L

)
πt =

(
1 − $L

)
et, where the MA1 coefficient $ ∈

(
−1,1

)
, L is the lag

operator, πt−1 = Lπt, and the one-step ahead forecast error et ≡ πt − E
{
πt+1

∣∣π t} =
εt+τt−τt−1|t−1.6 The IMA

(
1,1

)
implies a rational expectations inflation forecast updat-

ing equation, E
{
πt+1

∣∣π t}= (1−$)πt +$E
{
πt
∣∣π t−1

}
, whereπ t is the date t history of

inflation, π1, . . . , πt. In this case, $ corresponds to the Kalman gain of trend inflation,

τt|t = τt−1|t−1 + $et.
Stock and Watson (2007), Grassi and Prioietti (2010), and Shephard (2013) note that

stochastic volatility in the SW-UC model gives the MA1 coefficient a local time-varying

parameter interpretation, $t, in the reduced form IMA
(
1,1

)
. By iterating backwards,

the updating equation E
{
πt+1

∣∣πππ t, ςη,t, ςυ,t} = (
1 −$t

)
πt + $tE

{
πt
∣∣πππ t−1, ςη,t, ςυ,t

}
produces an exponentially weighted moving average updating recursion or smoother

E
{
πt+1

∣∣πππ t, ςη,t, ςυ,t} = ∞∑
j=0

µt,t−jπt−j, (2)

similar to a forecasting tool traced to Muth (1960), where µt,t = 1−$t at j = 0 and µt,t−j
=
(
1−$t

)∏j−1
`=0$t−` for j ≥ 1. The exponentially weighted moving average smoother

(2) generates a term structure of rational expectations inflation forecasts in which the

discount, µt,t−j , on past inflation, πt−j , adjusts to changes in πππ t, ςη,t, and ςυ,t. These

rational expectations inflation forecasts are an input into the sticky information-law of

motion that computes sticky information inflation forecasts.

2.2 The Sticky Information Prediction Mechanism of Inflation

Coibion and Gorodnichenko (2015) adapt the sticky information model of Mankiw and

Reis (2002) to a setup in which agents’ current forecast is their lagged sticky informa-

tion forecasts at static probability λ and with probability 1−λ their rational expectations

forecasts.7 Averaging across forecasters gives the h-step ahead sticky information in-

6Harvey (1991), Stock and Watson (2007), Grassi and Proietti (2010), and Shephard (2013) tie $ to the
autocovariance functions (ACFs) of the IMA

(
1,1

)
and fixed coefficient SW-UC model. At lags zero and

one, the ACFs set
(
1+$2

)
σ 2
e = σ 2

η + 2σ 2
ε and −$σ 2

e = −σ 2
ε . Substitute for σ 2

e to find the quadratic

equation $2 −
(
2+ σ 2

η

/
σ 2
ε

)
$ + 1 = 0. Its solution is $ =

[
1+ 0.5σ 2

η

/
σ 2
ε

]
− ση
σε

√
1+ 0.25σ 2

η

/
σ 2
ε ,

given $ ∈
(
−1,1

)
and ση, σε > 0.

7Sims (2003) develops a dynamic optimizing model with a primitive information processing technology
in which agents react to shifts in the true model of the economy by smoothing their forecasts.
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flation prediction at time t, Ftπt+h. Hence, Ftπt+h = λFt−1πt+h +
(
1−λ

)
Etπt+h, which is

a weighted average of the own lag, Ft−1πt+h, and a rational expectations inflation fore-

cast, Etπt+h, λ ∈
(
0, 1

)
, and h = 1, . . . , H. In this environment, the sticky information

weight governs the average frequency, 1
/(

1− λ
)
, at which Ftπt+h is updated.

We innovate on the static weight sticky information-law of motion by investing λ
with drift. Drift in the sticky information weight is driven by an exogenous and bounded

random walk, where the latter restriction ensures λt ∈
(
0, 1

)
for all dates t. We interpret

λt as summarizing the beliefs the average sticky information forecaster holds about the

underlying dynamics of inflation.

The sticky information-SPF block is built around the sticky information-law of mo-

tion with λt, its random walk, and a term structure of average SPF inflation predictions.

The term structure links the average SPF participant’s h-step ahead inflation predic-

tions, πSPFt,t+h, to Ftπt+h plus a classical measurement error, ζh,t. These elements form

the system of equations

πSPFt,t+h = Ftπt+h + σζ,hζh,t, ζh,t ∼ N
(
0, 1

)
, (3.1)

Ftπt+h = λtFt−1πt+h +
(
1− λt

)
Etπt+h, h = 1, . . . , H, (3.2)

λt+1 = λt + σκκt, κt ∼ TN
(
0, 1; λt+1 ∈

(
0,1

)∣∣∣λt, σ 2
κ

)
, (3.3)

where h belongs to the set of positive integers, h ∈ Z+, and κt is drawn from a truncated

standard normal distribution (TN) designed to guarantee λt+1 ∈
(
0, 1

)
.

Equations (3.1)–(3.3) define the sticky information prediction mechanism. Changes

in λt and other state variables produce movements Ftπt+h that create fluctuations in

the observed term structure of SPF inflation predictions, πSPFt,t+h. The SPF term structure

(3.1) includes measurement errors, ζh,t, to capture deviations between πSPFt,t+h and the

sticky information term structure of inflation, Ftπt+h, for h = 1, . . . , H. The sticky

information-law of motion (3.2) generates updates of Ftπt+h, for all h subject to drift

in λt that is described by the random walk (3.3).

Updates of Ftπt+h rely, in part, on Etπt+h. We assume the average SPF participant

computes Etπt+h using the SW-UC model of equations (1.1)–(1.4). Absent any of the

frictions captured by sticky information (λt = 0), the average SPF respondent knows

the state variables of the SW-UC, τt, εt, ςη,t, and ςυ,t. Nonetheless, we treat our SW-UC

model as characterizing reduced-form inflation dynamics. Our SW-UC model is silent

about the economic forces that may determine inflation, which, for example, might
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include an activity gap as in a Phillips curve, but it remains a good approximation of the

inflation process as documented by Faust and Wright (2013), Stock and Watson (2009),

and Grassi and Proietti (2010), among others.

The sticky information-law of motion (3.2) implies a exponentially weighted moving

average smoother. Iterate (3.2) backwards and substitute the result into (3.2) repeatedly

to produce the sticky information-exponentially weighted moving average smoother

Ftπt+h =
∞∑
j=0

Λt,t−jEt−jπt+h, (4)

where the time-varying discount Λt,t−j is 1−λt for j = 0 and Λt,t−j = Λt,t∏j−1
`=0 λt−`

otherwise. The sticky information-exponentially weighted moving average smoother (4)

nests the rational expectations inflation forecast, limλt−→0 Ftπt+h = Etπt+h, and the pure

sticky information inflation forecast, limλt−→1 Ftπt+h =
∑∞
j=1Λt,t−jEt−jπt+h = Ft−1πt+h.

The former limit equates Ftπt+h to Etπt+h, as λt falls to zero. As λt moves to its upper

bound, Ft−1πt+h becomes the sticky information inflation forecast because the weight

on Etπt+h decreases while increasing on its lags.

Between these polar cases, shocks to λt alter the discount applied to the history of

Etπt+h in the sticky information-exponentially weighted moving average smoother (4).

This information aids in identifying the responses of Ftπt+h to changes in λt and vari-

ation in Etπt+h. A similar relationship exists between Etπt+h and the time-varying dis-

count generated by ςη,t and ςυ,t in the exponentially weighted moving average smoother

(2). This connects changes in ςη,t and ςυ,t to movements in Ftπt+h through Etπt+h and

the sticky information-exponentially weighted moving average smoother (4). The up-

shot is the exponentially weighted moving average smoothers (2) and (4) place non-linear

restrictions on Ftπt+h with respect to ςη,t, ςυ,t, and λt. The term structure equation (3.1)

shows πSPFt,t+h responds to these non-linearities in the hidden factors that are responsible

for changes in inflation dynamics.

2.3 The Benchmark State Space Model

This section builds our baseline state space model, M0, that combines our SW-UC model

of inflation, the sticky information-law of motion of inflation forecasts, and the term

structure of average SPF inflation predictions. Our SW-UC model is employed to con-

struct a term structure of rational expectations inflation forecasts. This term structure
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has a two factor representation driven by τt and εt. Next, we conjecture and verify

state equations for sticky information trend and gap inflation, Ftτt and Ftεt, that are

consistent with the sticky information-law of motion of inflation forecasts. An impli-

cation of the conjecture is Ftτt and Ftεt are the factors of the term structure of sticky

information inflation forecasts. In the term structure equation (3.1) of πSPFt,t+h, the sticky

information states Ftτt and Ftεt eliminate Ftπt+h. The upshot is the term structure of

rational expectations inflation forecast places cross-equation restrictions on the rational

expectations and sticky information state equations and the term structure of average

SPF inflation predictions. The cross-equation restrictions show M0 is built on internally

consistent rational expectations, sticky information, and average SPF inflation forecasts.

Moreover, we show the laws of motion of Ftτt and Ftεt depend crucially on the linearity

of Etπt+h with respect to τt and εt and the linearity of Ftπt+h with respect to Ftτt and

Ftεt. As a result, M0 has seven state variables that we group into Xt =
[
τt εt

]′
, FtXt =[

Ftτt Ftεt
]′

, and Vt =
[
ςη,t ςυ,t λt

]′
.

As already discussed, constructing M0 is a multi-step process. Start by rewriting

the observation equation (1.1) of our SW-UC model

πt = δXXt + σζ,πζπ,t, (5.1)

where δX =
[
1 1

]
. Stack the random walk (1.2) of τt+1 on top of equation (1.3), which

is the AR(1) of εt+1, to create the state equations of our SW-UC model

Xt+1 = ΘΘΘXt + ΥΥΥt+1Wt, (5.2)

where ΘΘΘ =
 1 0

0 θ

, ΥΥΥt+1 =
 ςη,t+1 0

0 ςυ,t+1

, Wt =
 ηt
υt

, and the stochastic volatil-

ities, ξη,t and ξυ,t, are random walks described by equation (1.4).

The term structure of rational expectations inflation forecasts is built using the

observation equation (5.1) and state equations (5.2). Iterate the state equations (5.2)

h-steps ahead, pass Et
{
·
}

through, and substitute to find EtXt+h = ΘΘΘhXt, where Et
{
·
}

conditions onπππ t, ςη,t, and ςυ,t. Push the observation equation (5.1)h-steps ahead, apply

Et
{
·
}
, and substitute for EtXt+h, to produce the rational expectations term structure of

inflation forecasts Etπt+h = δXΘΘΘhXt.
Next, the sticky information-law of motion (3.2) suggests the law of motion of

sticky information-states FtXt+1 = λtFt−1Xt+1 +
(
1−λt

)
EtXt+1. The sticky information-
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exponentially weighted moving average smoother (4) is consistent with the law of mo-

tion of FtXt+1. Iterate the latter law of motion backwards and substitute ΘΘΘh+jXt−j for

Et−jXt+h to obtain the exponentially weighted moving average smoother of the sticky

information-states, FtXt+h = ΘΘΘh∑∞j=0Λt,t−jΘΘΘj Xt−j . When h = 0, the exponentially

weighted moving average smoother of the sticky information-states is

FtXt =
∞∑
j=0

Λt,t−jΘΘΘj Xt−j, (6)

Pull Xt out of the infinite sum of the sticky information-state equation exponentially

weighted moving average smoother (6) to find FtXt =
(
1 − λt

)
Xt +

∑∞
j=1Λt,t−jΘΘΘj Xt−j .

Changing the indexes j = i+1 and ` = s+1 converts the infinite sum of the previous

expression to λtΘΘΘ∑∞i=0Λt−1,t−i−1ΘΘΘiXt−i−1. Since this infinite sum equals Ft−1Xt−1, sub-

stitute λtΘΘΘFt−1Xt−1 in the previous expression for FtXt to see that its law of motion is

FtXt =
(
1 − λt

)
Xt + λtΘΘΘFt−1Xt−1. Finally, lead the law of motion of FtXt forward one

period and substitute for Xt+1 using the SW-UC model’s state equations (5.2) to find

Ft+1Xt+1 = λt+1ΘΘΘFtXt + (
1− λt+1

)ΘΘΘXt + (
1− λt+1

)ΥΥΥt+1Wt, (7)

which is the system of sticky information-state equations. The sticky information state

equations (7) display the cross-equation restrictions imposed by the term structure of

rational expectations inflation forecast through the transition and impulse matrices, ΘΘΘ
and ΥΥΥt+1, of the state equations (5.2) of or SW-UC model.

The state equations of M0 are formed by stacking the state equations (5.2) of Xt+1

on top of the sticky information state equations (7)

St+1 = AAAt+1St + BBBt+1Wt, (8.1)

where St =
 Xt

FtXt

, AAAt+1 =
 ΘΘΘ 02×2(

1− λt+1

)ΘΘΘ λt+1ΘΘΘ
, BBBt+1 =

 ΥΥΥt+1(
1− λt+1

)ΥΥΥt+1

, and

ξη,t+1, ξυ,t+1, and λt+1 evolve as the random walks (1.4) and (3.3). Drift in the sticky in-

formation weight and the stochastic volatilities create non-linearities in the state equa-

tions (8.1). However, St+1 has linear dynamics conditional on a realization of Vt+1.

We construct the observation equations of M0 using the observation equation (5.1)

of our SW-UC model, SPF measurement equation (3.1), and rational expectations and
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sticky information term structures of inflation forecasts. The former term structure

replaces Et−jπt+h with δXΘΘΘhXt−j in the sticky inflation forecast-exponentially weighted

moving average smoother (4), which yields Ftπt+h = δXΘΘΘh∑∞j=0Λt,t−jΘΘΘj Xt−j . Up to

δXΘΘΘh, Ftπt+h equals the exponentially weighted moving average smoother (6) of the

sticky information-states. The result is the term structure of sticky information infla-

tion forecasts, Ftπt+h = δXΘΘΘhFtXt. We use it to eliminate Ftπt+h from the SPF term

structure equation (3.1) to create πSPFt,t+h = δXΘΘΘhFtXt + σζ,hζh,t, which shows the term

structure of average SPF inflation prediction is driven by the sticky information-states

and measurement errors. Put these SPF term structure equations beneath the observa-

tion equation (5.1) of our SW-UC model to produce the observation equations of M0

Yt = CCCSt + DDDUt, (8.2)

where Yt =


πt
πSPFt,t+1

...

πSPFt,t+H

, CCC =


δX 01×2

01×2 δXΘΘΘ
...

...

01×2 δXΘΘΘH

, DDD =


σζ,π 0 . . . 0

0 σζ,1 . . . 0

0 0
. . . 0

0 0 . . . σζ,H

, Ut

=
[
ζπ,t ζ1,t . . . ζH,t

]′
, and ΩΩΩU = DDDDDD′. The observation equations (8.2) show the

data, Yt, are linear in St. Also, note the transition matrix ΘΘΘ of the rational expectations

states Xt imposes cross-equation restrictions on the observation equations (8.2) and

state equations (8.1).

2.4 Identification of the State Space Models

Identification of our baseline state space model, M0, depends on term structures of

rational expectations and sticky information inflation forecasts. The linear states, τt,
εt, Ftτt, and Ftεt, are identified on (i) a two-factor term structure of rational expectations

inflation forecasts produced by our SW-UC model, Etπt+h = δXΘΘΘhXt, for h = 1, . . . , H
and (ii) across the same forecast horizons, the term structure of average SPF inflation

predictions, πSPFt,t+h = δXΘΘΘhFtXt + σζ,hζh,t, that also has a two-factor representation.

These factors, Ftτt and Ftεt, are driven by a MA(∞) of τt or εt, where the MA coefficients

are functions of θ and the history of λt.8 Hence, information in the cross-section of

8Own shocks and stochastic volatilities are propagated into movements in τt and εt as described by the
first two rows of the state equations (8.1). The last two rows of these state equations map τt and εt
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average SPF inflation predictions aids in identifying the level and slope of the term

structures of rational expectations and sticky information inflation forecasts.

We use τt, Ftτt, εt, Ftεt, and restrictions embedded in equations (8.1)–(8.2) of M0

to identify λt and θ. Intuition for the identification is developed by fixing the sticky

information weight, λt = λ. This assumption recovers the error correction mechanism,

Ftτt − τt = λ
(
Ft−1τt−1 − τt−1

)
− ληt, and common feature regression, Ftεt − εt =

λθ
(
Ft−1εt−1 − εt−1

)
− λυt, from the associated state space model.9 The error correc-

tion mechanism identifies λ as its slope coefficient, which rests on the common trend

restriction that cointegration places on Ftτt and τt. Once λ is known, θ is identified in

the common feature regression because Ftεt and εt share a common cycle.10 Further

analysis of this issue, which leans on results in Harvey (1991) and especially Komunjer

and Ng (2011), is left to the online appendix.

3 Econometric Methods

This section summarizes the SMC filtering and smoothing algorithms used to estimate

our state space models. The interested reader should see the online appendix for a

complete exegesis of our SMC methods.

We estimate a state space model’s filtered states and static parameters with SMC

methods proposed by Carvalho, Johannes, Lopes, and Polson (2010) and refined by

Lopes and Tsay (2011).11 This class of SMC methods is known as particle learning.

Particle learning jointly filters the states, St and Vt, and static parameters, Ψ0, of M0

into the associated sticky information-states, Ftτt and Ftεt . This mapping depends on time-variation
in the sticky information weight, λt .

9Grant and Thomas (1999) argue weak forms of forecast efficiency demand that survey errors are
stationary and independent of whether surveys provide optimal and efficient predictions of inflation.
An equivalent restriction is surveys of inflation forecasts and realized inflation cointegrate. Kozicki
and Tinsely (2012), Mertens (2016), and Nason and Smith (2019) apply this restriction to generate
estimates of trend inflation from samples of realized inflation and surveys of inflation forecasts.

10Jain (2017) uses forecast revisions to identify predictability of individual SPF inflation forecasts.
Applying Jain’s approach to our state space model sets θ =

(
Ftπt+h+2−Ftπt+h

)/(
Ftπt+h+1−Ftπt+h

)
,

which assumes away measurement error. Given θ, the level and slope of the term structure of sticky
information inflation forecasts are identified by Ftπt+h and two adjacent forecasts. Krane (2011)
uses a similar approach, but identifies permanent and transitory components in revisions to the
term structure of Blue Chip forecasts.

11A state space model can be estimated by wrapping a Markov chain Monte Carlo (MCMC) sampler
around a particle filter. Andrieu, Doucet, and Holenstein (2010) give particle MCMC (PMCMC) the-
oretical foundations. Schorfheide, Song, and Yaron (2018) put a PMCMC into practice. A PMCMC
algorithm can engender large computational costs because it runs a simulation inside a simulation.
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at every date t = 1, . . . , T , where Ψ0 =
[
σ 2
η σ 2

υ σ
2
ζ,π σ

2
ζ,1 σ

2
ζ,2 σ

2
ζ,4 σ

2
ζ,5 σ 2

κ θ
]′

. 12 The

result is a sequence of estimates of St, Vt, and Ψ0 that condition on the same information

at each date t, which is consistent with the real-time character of the SPF data.

Particle learning relies on sufficient statistics to construct the posterior of a state

space model. Sufficient statistics are tied to prior beliefs about the state space model

and its dynamic structure. We place priors on Ψ0 that are conjugate. Conjugate priors

yield analytic solutions that serve as laws of motion to update sufficient statistics ofΨ0, which are coefficients of its priors. Filtered estimates of Ψ0 are drawn from particle

streams of the sufficient statistics. The result is an online process that learns about Ψ0

by moving through the sample date by date from its start to its end.

Carvalho, et al advise, if feasible, to Rao-Blackwellize a state space model. Rao-

Blackwellization exploits the conditional linear and Gaussian dynamics of St, given Vt

and Ψ0. Hence, we refer to St and Vt as the “linear” and “non-linear” states. For a Rao-

Blackwellized state space model, the Kalman filter analytically marginalizes out St and

tracks its sufficient statistics. This improves the efficiency of the particle learning filter

by lowering its sampling error. The non-linear states are estimated by simulating the

random walks (1.4) and (3.3).

We estimate the smoothed states of our Rao-Blackwellized state space models us-

ing an algorithm created by Lindsten, Bunch, Särkkä, Schön, and Godsill (2016). Their

smoothing algorithm accounts for Rao-Blackwellization of a state space model by first

forward filtering (i.e., using a particle learning filter) of all the states, backward smooth-

ing of the non-linear states, and forward smoothing of the linear states. We revise the

Rao-Blackwellized particle smoother to marginalize out the sample uncertainty induced

by estimating the static parameters with the particle learning filter.

3.1 Particle Filters and Particle Learning

When a state space model is non-linear and/or non-Gaussian, direct sampling from the

posterior distribution of the states is often impossible. A particle filters proposes a

density to sample streams of particles that represent the states to solve the problem.

Carvalho, et al extend this approach to a particle learning filter that jointly samples St,

Vt, and Ψ0 while marginalizing Ψ0 out of the posterior of St and Vt.

12Parameter vectors associated with M1, M2, and M3 will be denoted Ψ1, Ψ2, and Ψ3, respectively.
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The Bootstrap Particle Filter

We discuss the problem of sampling with a particle filter in the context of estimating

the states of M0. Its state and observation equations (8.1) and (8.2) and random walks

(1.4) and (3.3) are cast as the non-linear state space model

Yt

∣∣∣St, Vt ∼ p
(
Yt

∣∣∣St, Vt; Ψ0

)
,

St+1, Vt+1

∣∣∣St, Vt ∼ p
(
St+1, Vt+1

∣∣∣St, Vt; Ψ0

)
,

for t = 1, 2, 3, . . . , given Ψ0 is known. A particle filter approximates the posterior density,

p
(
St+1, Vt+1

∣∣Yt+1; Ψ0

)
, with a discrete and finite set of values of St+1 and Vt+1, where

each particle is weighted by w(i)t+1 ∈
(
0, 1

)
, i = 1, . . . , M , and Yt =

[
Y1 . . . Yt

]′
.

A simple, albeit brute force particle filter bootstraps the posterior of the states.13

A bootstrap particle filter first propagates and then resamples the states. Conditional

on drawing M particles from the prior p
(
St, Vt

∣∣Yt; Ψ0

)
, propagate the states one-step

ahead using the transition density p
(
St+1, Vt+1

∣∣∣St, Vt; Ψ0

)
. Next, given

{
S
(i)
t+1, V

(i)
t+1

}M
i=1

,

compute the likelihood, p
(
Yt+1

∣∣∣S(i)t+1, V
(i)
t+1; Ψ0

)
, and the importance sampling weight

w(i)t+1∝p
(
Yt+1

∣∣∣S(i)t+1, V
(i)
t+1; Ψ0

)
M times. Draws from the posteriorp

(
St+1,Vt+1

∣∣Yt+1;Ψ0

)
involve resampling

{
S
(i)
t+1,V

(i)
t+1

}M
i=1

using
{
w(i)t+1

}M
i=1

.

Rao-Blackwellization of St

A bootstrap particle filter, although a consistent estimator of the posterior of the states

of a state space model, is not necessarily the most statistically efficient SMC method.

Chen and Liu (2000) propose a mixture of Kalman filters that Rao-Blackwellizes a state

space model to produce more efficient estimates of the states.

Our particle learning filter has a Rao-Blackwellization step that rests on the con-

ditional linear and Gaussian structure of our state space models. Rao-Blackwellization

of the posterior of the linear states, St, decomposes the joint transition density of the

states, p
(
St,Vt

∣∣∣St−1,Vt−1;Ψ0

)
, into p

(
St

∣∣∣St−1,Vt;Ψ0

)
p
(
Vt

∣∣∣Vt−1;Ψ0

)
. The state equa-

tions (8.1) imply the Rao-Blackwellized transition density p
(
St

∣∣∣St−1,Vt;Ψ0

)
is multivari-

ate normal with mean and variance linear in St−1. Hence, draws from the posterior of St

13Gordon, Salmond and Smith (1993) propose the bootstrap particle filter by combining sequential
importance sampling with resampling with replacement.
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are multivariate normal and characterized by two sufficient statistics, given the date t
particle histories of the non-linear states,

{
Vt,(i)

}M
i=1.14 Kalman filter recursions yield suf-

ficient statistics that are the conditional posterior mean of St, St|t = E
{
St

∣∣∣Yt, Vt,(i); Ψ0

}
= E

{
St

∣∣∣Yt, St−1|t−1, ΣΣΣt−1|t−1; Ψ0

}
and mean square error, ΣΣΣt|t = Var

(
St
∣∣Yt,Vt,(i);Ψ0

)
=

Var
(
St

∣∣∣Yt,St−1|t−1,ΣΣΣt−1|t−1;Ψ0

)
. Since St is marginalized out analytically by the Kalman

filter, Rao-Blackwellization lowers sampling error in the particle learning filter. The like-

lihood, p
(
Yt

∣∣∣St,Vt;Ψ0

)
, of the observation equations (8.2) is also multivariate normal

with mean linear in St. The posterior of Vt is not characterized analytically, but simulat-

ing the random walks (1.4) and (3.3) generates draws from the proposal p
(
Vt

∣∣∣Vt−1; Ψ0

)
.

Resampling, Propagation, and Proposal Densities

SMC methods need a proposal to create a particle stream of the states that is not “too far”

from the true posterior. A bootstrap particle filter draws from p
(
St+1, Vt+1

∣∣Yt+1; Ψ0

)
after propagating and resampling the states. An alternative is the auxiliary particle filter

(APF) of Pitt and Shephard (1999, 2001). The APF is a resampling-propagation algorithm

that can yield greater statistical efficiency compared with a bootstrap particle, given M .

Carvalho, et al build a particle learning filter using ideas adapted from the APF.

Before resampling, a generic APF employs the Kalman filter predictive step to calculate

the predictive likelihood, `(i)t = p
(
Yt+1

∣∣∣S(i)t , V(i)t ; Ψ0

)
, that is proportional to the im-

portance weight w(i)t|t+1 =
(
w(i)t

/∑M
i=1w

(i)
t

)
`(i)t , where w(i)t is defined below. The linear

and non-linear states are resampled using the normalized importance weights, W (i)
t|t+1

= w(i)t|t+1

/∑M
i=1w

(i)
t|t+1. The Kalman filter is run a second time to produce the one-step

ahead predictive likelihood p
(
Yt+1

∣∣∣S(i)t , V(i)t ; Ψ0

)
conditional on the resampled states

and propagates these states into
{
S
(i)
t+1, V

(i)
t+1

}M
i=1

. The weight w(i)t+1 is the ratio of the

second-stage likelihood to resampled particles of `(i)t .

As already noted, state transition densities are exact under Rao-Blackwellization

yielding more efficient estimates of the states. The Rao-Blackwellized transition den-

sity propagating the linear states, p
(
St+1

∣∣∣St, Vt, Yt+1; Ψ0

)
, and drawing the non-linear

states from the transition density p
(
Vt+1

∣∣∣Vt, Yt+1; Ψ0

)
are also conditional on Yt+1 in

the APF. Conditioning on Yt+1 propagates particles that carry greater weight in the like-

14Conditioning the sufficient statistics of St on Vt,(i) refers to a hypothetical history of the ith particle
that ignores the effects of resampling. In practice, the actual sequence of the ith particle requires
tracking S

(i)
t|t and ΣΣΣ(i)t|t in the particle swarm.
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lihood. This can yield more efficient estimates of the states.15

Parameter Inference with Particle Learning

Our particle learning filter is grounded in algorithm 7 of Lopes and Tsay (2011). Their

algorithm embeds Rao-Blackwellization and APF steps in a particle learning filter.16

Particle learning solves the problem that including proposals for Ψ0 in the particle

swarm of St and Vt requires propaging the static parameters. Without propagation,

successive resampling of the particles of Ψ0 would collapse the stream onto only a few

particles. The result is a poor approximation of the posterior of Ψ0. Particle learning

avoids particle degeneracy by tracking a swarm of posterior distributions for Ψ0, given{
S
(i)
t|t, ΣΣΣ(i)t|t, V(i)t+1

}M
i=1

. Similar to Rao-Blackwellization of St, the posterior distribution ofΨ0 is drawn from a vector of sufficient statistics that we label Γ (i)t , for i = 1, . . . , M .

We place conjugate priors on the static parameters. The scale volatility parameters

have inverse-gamma (IG) priors, σ 2
` ∼ IG

(
α`
2 ,

β`
2

)
, where α and β are scale and shape

parameters and `=η, υ, ζπ , ζ1, . . . , ζ5, and κ. Our prior onθ is TN
(
θ, σ 2

θ; θ ∈
(
− 1, 1

))
,

where θ andσ 2
θ are its prior mean and variance. Since the priors of the static parameters

are conjugate, the posterior distributions are analytic. This suggests laws of motion for

parameters of the posterior distributions. For example, the posterior distribution of σ 2
η

is σ 2(i)
η ∼ IG

(
αt
2 ,

β(i)η,t
2

)
, where the laws of motion of the scale and shape parameters are

αt = αt−1 + t−1 and β(i)η,t =
∑t
`=1

[
σ 2(i)
η,` − σ

2(i)
η,`−1

]2
. Hence, the particle β(i)η,t becomes the

sufficient statistic and its law of motion the transition equation to update the posterior

of σ 2
η , σ 2(i)

η

∣∣∣V(i)0,t, V
(i)
t−1 ∼ IG

(
αt
2 ,

β(i)η,t
2

)
.17

The particle learning filter employs the laws of motion of the sufficient statistics

of Ψ0 as proposals to update from Γ (i)t−1 to Γ (i)t , i = 1, . . . , M . We denote the proposals

15Resampling before propagation of the states mitigates particle degeneracy by conditioningw(i)t|t+1 on

Yt+1 and w(i)t . Particle degeneracy occurs when a few particles carry most of the weight at future
filtering steps. The result is unevenly distributed weights implying inadequate coverage of regions
of high likelihood, which the APF aims to fix. However, Johansen and Doucet (2008) and Herbst and

Schorfheide (2016) note the efficacy of the APF rests on p
(
Yt+1

∣∣∣S(i)t+1, V
(i)
t+1; Ψ0

)
having thinner tails

compared with p
(
Yt+1

∣∣∣S(i)t , V(i)t ; Ψ0

)
.

16Early examples of particle learning are Liu and West (2001), Djuric and Miguez (2002), Fernhead
(2002), and Storvik (2002). Särkkä (2013) has a useful summary of particle learning.

17The shape parameter is the numerator of the standard deviation of a random variable distributed IG.
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as the system of transition equations Γ (i)t = ˜f
(Γ (i)t−1, V

(i)
t , V

(i)
t−1, S

(i)
t , Yt

)
. The system of

transition equations is appended to the process that draws V
(i)
0,t in the particle learn-

ing filter. The conditional posterior of the sufficient statistics obtained at date t−1,Γ (i)t−1, becomes the prior for updating to Γ (i)t . Subsequent to propagating the sufficient

statistics, drawM particles of the static parameters from Ψ (i)0 ∼ p
(Ψ0

∣∣∣Γ (i)t )
. In essence,

this equates p
(Ψ0

∣∣∣Yt, V(i)t ) to p
(Ψ0

∣∣∣Γ (i)t )
, which shows particle learning marginalizes

the static parameters out of the posterior of the states. Hence, the particle learning

filter yields posteriors of the filtered and smoothed states that fully reflect parameter

uncertainty. Full sample estimates of Ψ0 are obtained at date T and denoted Ψ̂0.

3.2 Estimating the Marginal Data Density

The likelihood of our baseline state space model is computed in the particle learning fil-

ter. The marginal data density (MDD),p
(
Yt

∣∣∣Yt−1
)
, is estimated using advice in appendix

A.2 of Pitt, dos Santos Silva, Giordani, and Kohn (2012). They compute the MDD of a

state space model using the cloud of first- and second-stage weights,
{
w(i)t−1|t, w

(i)
t

}M
i=1

.

The weights yield an estimate of the MDD of a state space model

p
(
Yt

∣∣∣Yt−1
)
=
 1
M

M∑
i=1

w(i)t

 M∑
i=1

w(i)t−1|t. (9)

We employ equation (9) to assess our baseline state space model against three alterna-

tive state space models that are described below.

3.3 A Rao-Blackwellized Particle Smoother

Rao-Blackwellization is not costless. Conditional linear states create problems for parti-

cle smoothing algorithms that merge forward filtering with backward simulation of par-

ticles drawn from p
(
St, Vt

∣∣YT , Ψ0

)
as, for example, in Godsill, Doucet, and West (2004).

This class of particle smoothers is known as forward-filtering with backward-simulation

(FFBS).18 A FFBS algorithm is a recursive decomposition of the posterior of the smoothed

states that rely on Markovian state dynamics. However, this decomposition is unsuited

for a conditionally linear and Gaussian state space model. The problem is marginalizing

18Godsill, Doucet, and West (2004) is a classic example of a particle smoother built on FFBS methods.
Carvalho, et al and Lopes and Tsay (2011) apply FFBS methods to particle learning filters.
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out St gives a likelihood conditional on Vt0 instead of conditioning only on Vt. Lindsten,

Bunch, Särkkä, Schön, and Godsill (2016) propose a Rao-Blackwellized particle smoother

to solve the problem. Their particle smoother extends the FFBS procedures of Godsill,

Doucet, and West (2004) to a Rao-Blackwellized state space model by forward filtering

of the linear and non-linear states, backward smoothing of the non-linear states, and

forward smoothing of the linear states conditional on the smoothed non-linear states.

Hence, Lindsten, et al call their algorithm a forward-backward-forward smoother.

We assign the initial forward filtering step of the Lindsten, et al particle smoother

to our Rao-Blackwellized particle learning filter. This produces the joint posterior of

St and Vt, p
(
St,Vt

∣∣Yt, Ψ0

)
, for a given realization of the parameter vector Ψ0. After

summarizing the approach of Lindsten, et al for generating smoothed draws of the

states for a given parameter vector, we describe how we integrate out uncertainty over

the parameter vector.

The backward smoothing step rests on the decomposition of the target density of

the non-linear states, p
(
VT
∣∣∣YT , Ψ0

)
, into p

(
Vt
∣∣∣Vt+1, YT , Ψ0

)
p
(
Vt+1:T

∣∣∣YT , Ψ0

)
. How-

ever, Lindsten, et al initialize their Rao-Blackwellized particle smoother at date T by

sampling from the filtered non-linear states,
{
V
(i)
T

}M
i=1

, to obtain smoothed non-linear

states,
{
Ṽ
(i)
T

}M
i=1

. The factorization of p
(
VT
∣∣∣YT , Ψ0

)
is useful in smoothing backwards

because p
(
Vt
∣∣∣Vt+1, YT , Ψ0

)
has information about the probabilities needed to draw{

Ṽ
(i)
t

}M
i=1

from
{
V
(i)
t

}M
i=1

. Since p
(
Vt
∣∣∣Vt+1,YT ,Ψ0

)
is expensive to compute, Lindsten et

al propose a simulator to backward filter the non-linear states.19 The simulator relies

on the decomposition p
(
Vt
∣∣∣Vt+1, YT , Ψ0

)
∝ p

(
Yt+1:T , Vt+1:T

∣∣∣Vt, Yt, Ψ0

)
p
(
Vt
∣∣∣Yt, Ψ0

)
,

where p
(
Yt+1:T ,Vt+1:T

∣∣∣Vt,Yt,Ψ0

)
=
∫
p
(
Yt+1:T ,Vt+1:T

∣∣∣St,Vt,Ψ0

)
p
(
St

∣∣∣Yt,Vt,Ψ0

)
dSt is

the predictive density that when normalized gives the probabilities of drawing a path for

ṼT . Nonetheless, drawing Ṽt+1:T from p
(
Vt+1:T

∣∣∣YT , Ψ0

)
is an approximation of the true

density of the smoothed non-linear states. The Rao-Blackwellized particle smoother is

repeated for dates t = T−1, . . . , 1.

The third step of the Rao-Blackwellized particle smoother runs the Kalman filter

forward to generate smoothed estimates of St and ΣΣΣt by drawing from p
(
St

∣∣∣Ṽt,Yt, Ψ0

)
.

These are the sufficient statistics of S̃t employed in simulations to approximate the

19The Kalman filter creates an exact predictive density (up to a normalizing constant). However, com-
puting the density involves running the Kalman filter across M particle streams while iterating it
forward from the start of the sample to date T . These calculations are computationally costly, which
motivate Lindsten, et al to approximate the predictive density with simulated sufficient statistics.
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predictive density p
(
Yt+1:T , Vt+1:T

∣∣∣Vt, Yt, Ψ0

)
. Although p

(
Vt
∣∣∣Ṽt+1, YT , Ψ0

)
does not

condition on S̃t, its estimates are needed to compute the probability of sampling Ṽt:T .

Finally, given the ability to draw smoothed trajectoriesVT and ST fromp
(
VT ,ST |YT ,Ψ0

)
we integrate out uncertainty over the parameter vector using

p
(
VT ,ST |YT

)
=
∫
Ψ0

p
(
VT ,ST |YT ,Ψ0

)
p(Ψ0|YY )dΨ0

via simulations using draws of Ψ0 obtained from the particle learning filter. Further

details are described in the online appendix.

4 The Model Space, Priors, Data, and Estimates

This section presents our priors on the baseline and the alternative state space models,

the sample data, and estimates of the state space models. The posterior distributions

of the filtered and smoothed states and static parameters are used to evaluate the state

space models. We also report estimates of these posterior distributions for the state

space model favored by the data.

4.1 The Model Space

We evaluate our baseline state space model, M0, against three alternative state space

models. Table 1 displays the restrictions on the inflation gap persistence parameter and

sticky information weight that govern the transition dynamics of St in the state space

models.20 The first alternative state space model, M1, fixes the inflation gap persistence

parameter and sticky information weight, θt = θ and λt = λ. Letting both parameters

drift defines the second alternative state space model, M2. Drift in the inflation gap

persistence parameter evolves as the bounded random walk θt+1 = θt + σφφt+1, where

φt+1 ∼ TN
(
0, 1; θt+1 ∈

(
−1, 1

)∣∣∣θt, σ 2
φ

)
.21 The third alternative state space model, M3,

holds λ fixed while the inflation gap persistence parameter drifts, θt.
Restrictions on the inflation gap persistence parameter and sticky information

weight alter the non-linear states of a state space model. The baseline state space

model has three non-linear states in Vt ≡ V0,t =
[
ςη,t ςυ,t λt

]′
. For M1, only the stochas-

20We thank the editor and referees for suggesting the model space be expanded as shown in table 1.
21The online appendix solves for the state and observation equations of M2.
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Table 1: List of Baseline and Alternative state space models

λ

θ Time-varying Constant

Constant M0 M1

Time-varying M2 M3

tic volatilities are non-linear states, V1,t =
[
ςη,t ςυ,t

]′
. The non-linear state vectors are

V2,t =
[
ςη,t ςυ,t θt λt

]′
and V3,t =

[
ςη,t ςυ,t θt

]′
for M2 and M3, respectively.

4.2 Priors and Initial Conditions

This section describes our priors on the static parameters of M0, M1, M2, and M3. Re-

strictions on the state space models imply the static parameter vectors Ψ0, Ψ1, Ψ2, andΨ3 differ, but the state space models share many static parameters in common. For ex-

ample, replace σ 2
κ with λ in M1 to produce Ψ1 =

[
σ 2
η σ 2

υ σ
2
ζ,π σ

2
ζ,1 σ

2
ζ,2 σ

2
ζ,4 σ

2
ζ,5 λ θ

]′
that otherwise is identical to Ψ0 =

[
σ 2
η σ 2

υ σ
2
ζ,π σ

2
ζ,1 σ

2
ζ,2 σ

2
ζ,4 σ

2
ζ,5 σ 2

κ θ
]′

. Drifting

inflation gap persistence parameter and sticky information weight in M2 yield Ψ2 =[
σ 2
η σ 2

υ σ
2
ζ,π σ

2
ζ,1 σ

2
ζ,2 σ

2
ζ,4 σ

2
ζ,5 σ 2

κ σ
2
φ

]′
that equals Ψ0 up to substituting σ 2

φ for θ.

Finally, swap drift in the sticky information weight for drift in the inflation gap persis-

tence parameter in M3 to set Ψ3 =
[
σ 2
η σ 2

υ σ
2
ζ,π σ

2
ζ,1 σ

2
ζ,2 σ

2
ζ,4 σ

2
ζ,5 λ σ

2
φ

]′
.

We posit priors for the static volatility parameters and initial conditions of θt, λt, St,
and Vk,t, k = 0, 1, 2, and 3. The scale volatility parameters on the stochastic volatilities,

random walks of θt and λt, and measurement errors are given inverse gamma (IG) priors.

Table 2 reports the scale and shape parameters, α` and β`, of the IG priors along with

the implied the prior means, and 5% and 95% quantiles.

Several features of our priors are worth discussing. First, we center the priors of

σ 2
η and σ 2

υ around the fixed coefficient values used by Stock and Watson (2007). Next,

the prior mean of 0.01 assigned to σ 2
κ is smaller reflecting the bounded support of λt.

Nonetheless, this prior admits substantial variation in λt between the bounds of zero

and one when estimating M0 and M2. For similar reasons, the prior for the volatility

of shocks to inflation gap persistence, σ 2
φ, in M2 and M3, has been centered around a

value of 0.01. Second, our priors on σ 2
η and σ 2

υ deliver quantiles that exhibit greater
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Table 2: Priors on the Scale Volatility Parameters

Quantiles

Scale Volatility on Innovation to α` β` Mean 5% 95%

Trend Inflation SV, lnςη,t+1: σ 2
η 3.0 0.04 0.04 [0.005, 0.114]

Gap Inflation SV, lnςυ,t+1: σ 2
υ 3.0 0.04 0.04 [0.005, 0.114]

TVP-AR1 Coefficient, θt+1: σ 2
φ 3.0 0.01 0.01 [0.001, 0.028]

Sticky Information Weight, λt+1: σ 2
κ 3.0 0.01 0.01 [0.001, 0.028]

Measurement Error on πt: σ 2
ζ,π 20.0 2.88 0.16 [0.092, 0.265]

Measurement Error on πSPFt,t+h: σ 2
ζ,h 20.0 2.88 0.16 [0.092, 0.265]

Note: Priors on the static volatility parameters are σ2
` ∼ IG

(
α`
2
,
β`
2

)
, where ` = η, υ, κ, ζπ ,

and ζh for h= 1, . . . , 5. Forα` > 2, the mean of the IG distribution is β`
/(
α`−2

)
. See the online

appendix for more about restricting σ2
φ and σ2

κ to guarantee θt ∈
(
−1, 1

)
and λt ∈

(
0, 1

)
.

variation compared with σ 2
φ and σ 2

κ . Third, the quantiles of σ 2
ζ,π , σ 2

ζ,1, . . . , σ 2
ζ,5 depict

our belief that the measurement errors of πt and πSPFt,t+h are volatile.

Table 3 lists our priors for the static inflation gap persistence parameter, θ, and

sticky information weight, λ. The priors obey θ ∈
(
−1, 1

)
and λ ∈

(
0, 1

)
. For M0, and

M1, we endow θ with a truncated standard normal prior. This prior has 5% and 95%

quantiles at −0.87 and 0.87. For M1, and M3, the beta prior for λ has shape parameters

of unity and is thus equivalent to the uniform distribution on the unit interval. In

essence, we have non-informative priors over θ and λ.

Table 3: Priors on the Static Inflation Gap Persistence Parameters and
Sticky Information Weight

Quantiles

Distribution Mean STD 5% 95%

Gap Inflation AR(1): θ TN
(
−1,1

)
0.0 1.0 [−0.87, 0.87]

Sticky Information Weight: λ Beta
(
1,1

)
0.5 – [0.05, 0.95]

Note: The priors TN
(
−1,1

)
and Beta

(
1,1

)
represent a truncated normal prior on the open

interval
(
−1, 1

)
and the beta distribution with shape parameters of unity.
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Priors on the initial conditions of the linear and non-linear states appear in Table 4.

The left side of the table lists priors on the initial conditions of the linear states, τ0, ε0,

F0τ0, and F0ε0. Initial conditions on the stochastic volatilities, lnς2
η,0 and lnς2

υ,0, drifting

sticky information weight, λ0, and drifting inflation gap parameter, θ0, are found on the

right side of the Table 4. We draw τ0 and F0τ0 from normal priors. The prior means are

two percent, which is about the mean of GNP deflator inflation on a 1958Q 1 to 1967Q 4

training sample. A variance of 1002 yields an approximately flat prior over the relevant

range of values for τ0 and F0τ0 in post-war U.S. data. The joint prior of ε0 and F0ε0 is

drawn from the ergodic bivariate normal distribution N
(
02×1,

∖Σ∖Σ∖Σ0
)
; see the notes to table

4. The ergodic mean of gap inflation is zero by definition. Prior variances are produced

by the distribution using the initial particle draws of V0,0, V1,0, V2,0, or V3,0.

The last two columns of Table 4 display our priors on initial conditions of the non-

linear states. We endow priors of lnς2
υ,0 and lnς2

η,0 with normal distributions. Prior

means are calibrated to pre-1968 inflation data similar to Stock and Watson (2007).22

Large variances reflect prior uncertainty about lnς2
υ,0 and lnς2

η,0. Table 4 also shows the

priors of θ0 and λ0 are drawn from TN distributions with means of zero and 0.5, unit

variances, and are truncated to
(
−1, 1

)
and

(
0, 1

)
, respectively. These priors are un-

informative about initial conditions on the drifting inflation gap persistence parameter

and sticky information weight, given the relevant bounds.

4.3 The Data

The data are real-time realized inflation, πt, and h-step ahead average SPF inflation

prediction, πSPFt,t+h, where h = 1, 2, 3, 4, 5. We obtain the data from the Real-Time Data

Set for Macroeconomists (RTDSM) that is made available by the Federal Reserve Bank

(FRB) of Philadelphia. The sample run from 1968Q 4 to 2018Q 3 for πt and πSPFt,t+h.23

We measure realized inflation using second-release GNP/GDP deflator inflation pro-

vided by the RTDSM.24 The RTDSM compiles the second-release data of the GNP/GDP

22One-third of the training sample variance of the first difference of GNP deflator inflation is attributed
to trend volatility and the remaining two thirds to gap volatility.

23The SPF measured the price level of output with the implicit GNP deflator before 1992Q 1. From
1992Q 1 to 1996Q 4, the implicit GDP deflator played this role. It was replaced by the chain weighted
GDP deflator beginning in 1997Q 1.

24These data are found at https://www.philadelphiafed.org/-/media/research-and-data/
real-time-center/real-time-data/data-files/files/xlsx/p_first_second_third.xlsx.
Second-release data for 1995Q 3 are unavailable because of a federal government shutdown. We fill
in the missing observations with the corresponding third-release data collected by the RTDSM.
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Table 4: Priors on Initial Conditions of the Linear and Non-linear States

Initial State Prior Distribution Initial State Prior Distribution

τ0 ∼ N
(
2.0, 100.02

)
lnς2

η,0 ∼ lnN
(
ln 0.2− 5.0, 10.0

)
F0τ0 ∼ N

(
2.0, 100.02

)
lnς2

υ,0 ∼ lnN
(
ln 0.4− 5.0, 10.0

)
ε0 ∼ N

(
0.0, σ 2

ε0

)
θ0 ∼ TN

(
0.0, 1.0, −1.0, 1.0

)
F0ε0 ∼ N

(
0.0, σ 2

F0ε0

)
λ0 ∼ TN

(
0.5, 1.0, 0.0, 1.0

)
Note: The priors on ε0 and F0ε0 are drawn jointly from N

(
02×1,

∖Σ∖Σ∖Σ(i)0

)
, where σ2

ε0 and σ2
F0ε0 are

the diagonal elements of

∖Σ∖Σ∖Σ(i)0 =
∞∑
j=0

 θ(i) 0(
1− λ(i)0

)
θ(i) λ(i)0 θ(i)

j  ς2, (i)
υ,0 λ(i)0 ς

2, (i)
υ,0

λ(i)0 ς
2, (i)
υ,0 λ2,(i)

0 ς2,(i)
υ,0

 θ(i) (
1− λ(i)0

)
θ(i)

0 λ(i)0 θ(i)

j ,
and λ(i)0 , and ς2, (i)

υ,0 are the ith particle draws from priors on the associated initial conditions.

If θ(i) = 0, the formula used to compute
∖Σ∖Σ∖Σ(i)0 collapses to the middle term above.

deflator in growth rates. We convert the annualized growth rate, Gt = 100
(
Pt
/
Pt−1

)4−1
,

into continuously compounded growth rates using πt = ln
(
1+Gt

/
100

)
.

The SPF solicits forecasts for the GDP/GNP deflator in levels. We convert these

price levels into expected growth rates by differencing the logs of the term structure

of level forecasts.25 Average SPF inflation predictions include a nowcast of the level of

the GNP or GDP deflator and forecasts of these price levels at 1-, 2-, 3-, and 4-quarters

ahead. We denote average SPF nowcast and 1-, 2-, 3-, and 4-quarter ahead forecasts

πSPFt,t+1, πSPFt,t+2, πSPFt,t+3, πSPFt,t+4, and πSPFt,t+5, respectively.

The RTDSM collects the quarter t SPF inflation predictions without full knowledge

ofπt. Vintages ofπt reflect data releases that were publicly available around the middle

of quarter t and most often the publicly available information contains observations

through quarter t−1. We comply with this timing protocol by assuming πSPFt,t+1, . . . , and

πSPFt,t+5 are formed conditional on information available at the end of quarter t−1.

25Given the levels forecast of the GNP/GDP deflator for two adjacent quarters, FtPt+h and FtPt+h−1,
the sticky information inflation forecast is Ftπt+h = 400 ln

(
FtPt+h

/
FtPt+h−1

)
. As is common in the

literature that evaluates SPF forecasts, this procedure ignores Jensen-inequality effects on inflation
forecasts arising from the non-linear transformation from level forecasts into log differences; for
example, see Aruoba (2019).

22



Figure 1: Realized Inflation and SPF Inflation Predictions, 1968Q4 to 2018Q3

(a) Realized Inflation and SPF Inflation Nowcast
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(b) Realized Inflation and 1-Quarter Ahead SPF Prediction
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(c) Realized Inflation and 3-Quarter Ahead SPF Prediction
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(d) Realized Inflation and 4-Quarter Ahead SPF Prediction
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Note: The plots contain vertical gray bands that denote NBER dated recessions.
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Figure 1 displays πt and the average SPF predictions. Plots of πt and πSPFt,t+1, appear

in figure 1(a). Figure 1(b) includes πt, but πSPFt,t+2, replaces πSPFt,t+1. We present πt and

πSPFt,t+4 in figure 1(c) while figure 1(d) matches πt with πSPFt,t+5.26 The panels depict πt
with a dot-dash (red) line and average SPF inflation predictions with a solid (blue) line.

Vertical gray shaded bars denote NBER recession dates.

Several features of the data are worth discussing. First, figure 1 shows πt is more

volatile than the average SPF inflation predictions. Second, the average SPF inflation pre-

dictions are smoother and more centered on πt as h increases. For example, figure 1(a)

shows the average SPF inflation nowcast, πSPFt,t+1, moving with πt, during the inflation

spikes of the 1973–1975 recession and the double dip recessions of the early 1980s.

However, the spikes in the average SPF inflation predictions around these recessions

are inversely related to h as depicted in figure 1(b), 1(c), and 1(d). Figure 1(d) also

shows πt fluctuating around πSPFt,t+5 subsequent to the Volcker disinflation.27

4.4 Posterior Estimates of the Static Parameters and Model Fit

Table 5 lists moments of the posterior distributions of the elements of Ψ̂0, Ψ̂1, Ψ̂2, and Ψ̂3.

The posterior moments are medians and 90 percent uncertainty bands (i.e., five and 95

percent quantiles) that are displayed in brackets. Log MDDs are reported at the bottom

of table 5. Each state space model has been estimated with M = 100,000 particles.

Estimates of the static parameters differ in several ways. Table 5 indicates M2 is

responsible for the smallest posterior median of σ 2
η and the largest posterior median

of σ 2
υ . This suggests τt and ςη,t are smoother and εt and ςυ,t are more volatile in the

state space model that has drift in the inflation gap persistence parameter and sticky

information weight compared with M0, M1, or M3. Compared with the other static

parameters, estimates of σ 2
η and σ 2

υ also display more variation across the four state

space models. Estimates of the other static parameters are broadly similar, except under

M1. This state space model, which fixes θ = θt and λ= λt, produces the largest posterior

median estimate of σ 2
ζ,π and smallest posterior median estimates of σ 2

ζ,1, . . . , σ 2
ζ,5. The

reason is a greater share of the variation in πt is loaded onto ζπ,t while the average SPF

inflation predictions are more responsive to St and V0,t.

26Observations are missing in πSPFt,t+5 during 1969, 1970, and 1974. We modify the Kalman filter in the
particle learning filter and Rao-Blackwellized particle smoother to accommodate these observations.

27Meltzer (2014, p. 1209) marks 1986 as the end of the Volcker disinflation.
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Table 5: Parameter Estimates and Log MDDs of the state space models

Models

Parameter M0 M1 M2 M3

σ2
η 0.037 0.051 0.020 0.018[

0.026,0.048
] [

0.036,0.150
] [

0.015,0.028
] [

0.013,0.027
]

σ2
υ 0.006 0.232 0.045 0.036[

0.005,0.009
] [

0.026,0.329
] [

0.021,0.074
] [

0.026,0.052
]

θ 0.758 0.707 – –[
0.663,0.854

] [
0.635,0.780

]
σ2
φ – – 0.001 0.003[

0.001,0.001
] [

0.002,0.004
]

λ – 0.307 – 0.324[
0.175,0.373

] [
0.268,0.383

]
σ2
κ 0.005 – 0.008 –[

0.004,0.007
] [

0.005,0.010
]

σ2
ζ,π 0.517 0.778 0.612 0.486[

0.429,0.621
] [

0.644,0.939
] [

0.519,0.723
] [

0.403,0.592
]

σ2
ζ,1 0.113 0.008 0.101 0.136[

0.096,0.135
] [

0.007,0.010
] [

0.085,0.122
] [

0.116,0.161
]

σ2
ζ,2 0.042 0.008 0.042 0.042[

0.035,0.051
] [

0.007,0.010
] [

0.036,0.051
] [

0.035,0.051
]

σ2
ζ,3 0.044 0.008 0.044 0.043[

0.037,0.052
] [

0.007,0.010
] [

0.037,0.053
] [

0.036,0.051
]

σ2
ζ,4 0.047 0.008 0.044 0.050[

0.040,0.055
] [

0.007,0.010
] [

0.037,0.054
] [

0.041,0.060
]

σ2
ζ,5 0.063 0.008 0.066 0.059[

0.054,0.075
] [

0.007,0.010
] [

0.054,0.079
] [

0.049,0.074
]

ln MDD
(
Mi

∣∣∣Y1:T
)
−528.964 −535.401 −520.613 −527.144(

0.421
) (

0.486
) (

0.349
) (

0.394
)

Note: The table contains posterior moments and log MDDs for the state space models M0, M1,
M2, and M3. Estimates of the static scale volatility parameters produced using M = 100,000
particles. The main entry for every static parameter reports its posterior median estimated
on the full sample that begins in 1968Q 3 and ends at T = 2018Q 3. Five and 95 percent
quantiles appear in the brackets below the posterior medians. Log MDDs for Mi, i = 0, 1,

2, and 3 are denoted ln MDD
(
Mi

∣∣∣YT) and computed using equation (9). The reported values
are the average estimates obtained from 250 repetitions of the particle learning filter, and the
associated numerical standard errors appear in parentheses below each estimate.
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Figure 2: Particle Learning Filter Estimates of Static Parameters, 1968Q4 to 2018Q3
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(c) PLE Path of Shock Variance Parameter of Gap AR(1) coefficient t
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Note: Posterior quantiles of several static parameters of the state space model M2. In each panel, the solid line depicts
the posterior median while the dark and light shaded areas correspond to 68% and 90% uncertainty bands, respectively.
Dotted vertical lines denote NBER recession peaks and troughs. Estimates of the particle learning filter paths of the static
parameters are denoted PLE.
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The log MDDs of M0, M1, M2, and M3 are estimated using equation (9). The log

MDDs are labeled ln MDD
(
Mi

∣∣∣YT) for i = 0, 1, 2, and 3 at the bottom of table 5. We

average over 250 repetitions of the particle learning filter to calculate the log MDDs. Un-

certainty over the log MDDs resulting from the SMC approximation is measured using

the numerical standard errors of the log MDD estimates computed on the 250 repeti-

tions.28 Table 5 shows that the difference between the log MDD associated with M0

and the other three alternatives is always greater than 6.5, which, in the language of

Kass and Raftery (1995), consitutes very strong evidence in favor of M2. Moreover, the

numerical standard errors of the log MDD estimates are thwarted by these differences

in the log MDD. Hence, for the rest of the paper, we focus on estimates produced using

M2.29

Figure 2 plots particle learning filter estimates of the scale volatility parameters

σ 2
η , σ 2

υ , σ 2
φ, and σ 2

κ of M2. Paths of these estimates appear in figure 2(a), 2(b), 2(c)

and 2(d) along with 68% and 90% uncertainty bands in dark and light shades. The plots

show estimates of σ 2
η , σ 2

φ, and σ 2
κ that cease to change much, if at all, after 1983. The

exception is σ 2
υ . In figure 2(b), the static scale volatility of lnς2

υ,t in M2 drifts up during

the sample and especially after 1983. Between 1983 and the end of the sample, σ 2
υ

almost doubles in size from about 0.025 in 1983Q 1 to 0.045 at 2018Q 3 while its 90%

uncertainty bands are widest running from 0.02 to 0.15 after the 2007–2009 recession.

4.5 Trend and Gap Inflation

We present filtered estimates of rational expectations and sticky information trend and

gap inflation produced by M2 in figure 3. This figure plots πt, the average SPF inflation

nowcast, πSPFt,t+1, 4-quarter ahead average SPF inflation prediction, πSPFt,t+5, filtered rational

expectations and sticky information trend inflation, τt|t and Ft|tτt, and filtered rational

expectations and sticky information gap inflation, εt|t and Ft|tεt, on the 1968Q 4 to

2018Q 3 sample. These plots depict πSPFt,t+1 and πSPFt,t+5 with solid (red) lines, Ft|tτt and

28The use of numerical standard errors for gauging the uncertainty of simulation-based estimates is
grounded in the work of Geweke (1989), see also Fuentes-Albero and Melosi (2013), and Herbst and
Schorfheide (2014) for applications in the context of log MDD estimates.

29Estimates of M0, M1, and M3 are in the online appendix. The online appendix also has estimates
of the state space models that omit measurement error, ζπ,t , from the observation equation (1.1) of
πt . These state space models produce mostly similar estimates compared with M0, M1, M2, and M3.
The online appendix reports log MDDs showing the data favor state space models that include ζπ,t
in the observation equation (1.1).
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Ftεt|t with dot-dashed (black) lines, and τt and εt|t with dotted (red) lines.

Figures 3(a) and 3(b) give evidence of the role πSPFt,t+5 has in estimating Ft|tτt. Before

the Volcker disinflation, πSPFt,t+1 often deviates substantially from Ft|tτt. This relationship

is reversed mostly from the end of the Volcker disinflation to 2018Q 3. The spread

between πSPFt,t+5 and Ft|tτt is smaller during the 1973–1975 recession, the double-dip

recessions of the early 1980s, and the Volcker disinflation. From 1990 to the end of

the sample, πSPFt,t+5 fluctuates around Ft|tτt. This suggests Ft|tτt depends on the relative

smoothness of the 4-quarter ahead average SPF inflation prediction.

Compared with τt|t and Ft|tτt, πt is relatively volatile in figure 3(c). During the first

oil price shock, πt is a third or more greater than τt|t and Ft|tτt. However, Ft|tτt, πt
explain much of the increases in πt in the late 1970s and early 1980s. Subsequently, πt
is often less than τt|t and Ft|tτt during the rest of the sample.

Figure 3(d) depict εt|t and Ft|tεt as rising from about −2% in 1968Q 4 to almost 4%

in 1970. The 1973–1975 recession sees the largest spikes in εt|t and Ft|tεt reaching 9%

or more before falling to about −2.5 percent by 1976. Between the Volcker disinflation

and the end of the 1980s, εt|t and Ft|tεt are negative with a trough below −3.0% in 1986.

Applying our SMC methods to M2 also produce estimates of τt|t and Ft|tτt in fig-

ure 3(c) and of εt|t and Ft|tεt in figure 3(d) that are nearly identical on the 1968Q 4–

2018Q 3 sample. The reason is that the rational expectations and sticky information

states are driven by the same set of shocks up to the innovations to λt, as the state

equations (8.1) show. When λt is small, the transition and impulse dynamics of the ra-

tional expectations and sticky information states are similar. Otherwise, Ft|tτt
(
Ft|tεt

)
are close to τt|t

(
εt|t

)
because the sticky information states adjust slowly to almost the

identical set of sets driving the rational expectations states.

In summary, our estimates of the linear states are a counterpoint to studies that

find trend or gap inflation dominate movements in realized inflation. Stock and Watson

(2007, 2010) present estimates of trend inflation that track realized inflation while Cog-

ley and Sbordone (2008) report estimates of trend inflation that are smooth and point

to the dominance of gap inflation in explaining realized inflation. Figures 3(c) and 3(d)

show that conditioning estimates of M2 on average SPF inflation predictions produces

estimates of trend and gap inflation that fall somewhere between these polar cases. For

example, most of the inflation spike around the 1973–1975 recession is attributed to

εt|t and Ft|tεt by M2. However, by the late 1970s and 1980 recession, τt|t and Ft|tτt
account for a larger share of the surge in realized inflation.
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Figure 3: Realized Inflation, SPF Inflation Predictions,
and Estimates of Trend and Gap Inflation, 1968Q4 to 2018Q3
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Note: The top row of charts contains light gray shaded areas that represent 68 percent uncertain bands around estimates
of filtered sticky information trend inflation, Ft|tτt . The vertical dotted bands denote NBER dated recessions in the four
charts.
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Our estimates of trend and gap inflation can also be used to infer the beliefs the

average SPF respondent has about the future path of realized inflation. For example, εt|t
and Ft|tεt are negative for most of the 1980s. These estimates suggest the average SPF

participant anticipated the Volcker disinflation would only produce a transitory drop

in realized inflation, which is consistent with Goodfriend and King (2005) and Meltzer

(2014, p. 1131). They argue households, firms, and investors expected the Volcker

disinflation would only produce a transitory decline in inflation after 1984. Similarly,

τt|t and Ft|tτt are often greater than πt after 2007 indicating the average member of the

SPF expected realized inflation to rise back to trend in the short- to medium-run.30

4.6 Trend and Gap Inflation Volatilities

The state space model M2 yields estimates of filtered and smoothed stochastic volatili-

ties that appear in figure 4. Figures 4(a) and 4(c) has dotted lines that are filtered trend

and gap inflation stochastic volatilities, ςη,t|t (purple) and ςυ,t|t (teal). Smoothed stochas-

tic volatilities, ςη,t|T and ςυ,t|T , are the dot-dashed lines (purple and teal) in figures 4(b)

and 4(d). The thinner solid (black) lines in figure 4 are 90% uncertainty bands.

Figure 4 shows ςη,t|t and ςη,t|T are often smaller than ςυ,t|t and ςυ,t|T during the

sample. The largest peaks in ςη,t|t occur in 1978 and 1980 as displayed in figure 4(a)

while ςυ,t|t is dominated by spikes in 1975–1976 and 1978 in figure 4(c). Another re-

vealing feature of figures 4(a) and 4(c) is that ςη,t|t and ςυ,t|t often rise during or after a

NBER recessions. However, figures 4(b) and 4(d) display a single peak in ςη,t|T and ςυ,t|T
that occurs in the 1973–1975 recession. Subsequently, ςη,t|T and ςυ,t|T decline steadily

to the end of the sample.

Our estimates of trend and gap inflation stochastic volatilities differ from Grassi

and Proietti (2010), Stock and Watson (2010), Creal (2012), Shephard (2013), and Cog-

ley. These authors report trend stochastic volatility dominates inflation gap stochastic

volatility from the 1970s well into the late 1990s. In contrast, figure 4 indicates that the

jumps in inflation volatility during the 1970s, 1980s, and 1990 was transitory rather

than reflecting volatility in trend inflation. This suggests that our approach to estimate

the inflation gap persistence parameter θ has a substantial impact on estimates of the

trend volatilities affecting the innovations to trend and gap inflation.

30The Beveridge and Nelson (1981) decomposition is the source of these predictions; see Nelson (2008).
There is a Beveridge-Nelson trend in M2 because τt is the random walk (1.2).
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Figure 4: Estimates of the Stochastic Volatility of Trend and Gap Inflation,
1968Q4 to 2018Q3
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Note: The solid thin (black) lines around estimates of filtered and smoothed trend and gap inflation stochastic volatility are
lower and upper bounds on 90% uncertainty bands. The four plots contain vertical dotted bands that denote NBER dated
recessions.
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4.7 Drifting Inflation Gap Persistence and Sticky Information Updating

The data favor M2 over the other state space models. This section presents evidence

to explain the preference the data has for M2 by comparing estimates of θt and λt
to estimates of the static inflation gap persistence parameter and sticky information

weight gleaned from M3.

Figures 5(a) and 5(b) begins the discussion with two different kinds of estimates

of the inflation gap persistence parameter and sticky information weight. These figures

contain dot-dash (black) lines that are filtered estimates of the drifting inflation gap

persistence parameter and sticky information weight, θt|t and λt|t, of M2. Applying

our particle learning filter to M1 produces paths of θ and λ that are the solid (red)

lines in figures 5(a) and 5(b). The paths of θ and λ are surrounded by 90% uncertainty

bands denoted by thin dot-dash (red) lines while the light gray shading represent 90%

uncertainty bands of θt|t and λt|t.
The estimates of M1 indicate the path of θ shifts from procyclical to acyclical

comovement with the NBER dated recessions by the early 1980s. Figure 5(a) depicts the

path of θ peaking at more than 0.8 during the 1969–1970 and 1973–1975 recessions

while dropping almost to zero in 1972 and early 1973. From 1976 to the end of the

sample, this path often wobbles, but is never less than 0.6 or greater than 0.8. The 90%

uncertainty bands for the path of θ are narrow for most of the sample.

Figure 5(a) also shows that by 1980 θt|t experiences a similar change in its comove-

ment with the business cycle. During the 1969–1970 and 1973–1975 recessions, θt|t
peaks. In the expansions that follow these recessions, there are troughs in θt|t that are

near zero in 1972 and 1977. There is a third peak in θt|t that almost reaches one (its

upper bound) in 1979. Subsequently, θt|t falls to near 0.7 at the start of the 1981–1982

recession and fluctuates between 0.65 and 0.85 for the rest of the sample. Hence, θt|t is

procyclical pre-1980 and acyclical post-1980. This is not true for sampling uncertainty

surrounding θt|t. Its 90% uncertainty bands are widest after the 1973–1975 recession

and during the 1981–1982 recession.

The shift in the behavior of inflation gap persistence over the business cycle is

consistent with Meltzer (2014, p. 1006 and p. 1207). He contends that Fed monetary

policy produced procyclical inflation during the 1970s, but this changed with the Vol-

cker disinflation. Our estimates of the inflation gap persistence parameter in M1 and

M1 suggest the average member of the SPF agrees with Meltzer.
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Figure 5: Estimates of Drifting and Static Inflation Gap Persistence
Parameter and Sticky Information Weight, 1968Q4 to 2018Q3
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estimates are surrounded by thin dot-dash (red) lines that cover 90% uncertainty bands. The vertical dotted bands denote
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Figure 5(b) plots the sticky information weight produced by estimating M2 and M1.

Unlike figure 5(a), λt|t deviates from the path of λ after 1988. During the first half of

the sample, λ and λt|t are close and always less than a half. The path of λ continues

to show frequent sticky information inflation forecast from the 1980s to the end of the

sample. Strikingly, λt|t begins to increase after 1988. By 1995, the frequency of sticky

information inflation forecast updating is about three quarters on average. This holds

for the rest of the sample with one exception. Between 2009 and 2014, λt|t follows a

V-shaped path. The frequency of sticky information inflation forecast updating approxi-

mates rational expectations in 2009, but bounces back to the pre-recession frequency of

sticky information inflation forecast updating by 2014. Note the drop in the frequency

of sticky information inflation forecast updating occurs about the same time estimates

of rational expectations and sticky information trend inflation shown in figure 3(c) and

of filtered and smoothed stochastic volatilities plotted in figure 4 also are falling.

Figure 5(b) also displays 90% uncertainty bands of λt|t that are almost always wider

than the 90% uncertainty bands of the path of λ. The sampling uncertainty around λt|t
maps into an average frequency of sticky information inflation forecast updating that

runs from one to 10 quarters on average after 1990. The exception is the 2007–2009

recession when the 90% uncertainty bands of λt|t narrow to between near zero and 0.4.

We include figure 6 to understand better estimates of the sticky information weight

extracted fromM2. Figure 6(a) repeats figure 6(b), but replaces the particle learning filter

estimates of λ with smoothed estimates of the drifting sticky information weight, λt|T
from M2. The dot-dashed (red) line represents λt|T and the thin solid (red) lines are its

90% uncertainty bands. Figures 6(b) plots accumulated changes of the smoothed drifting

sticky information weight, λt|T − λ1|T with dark and light gray areas representing 68%

and 90% uncertainty bands. Figures 6(c) and 6(d) report similar filtered and smoothed

estimates of the drifting sticky information weight, but these are produced using our

baseline state space model, M0, in which θt = θ.

Figures 6(a) and 6(c) show estimates of λt|t and λt|T taken from M0 and M2 differ

before the Volcker disinflation. Movements in λt|t and λt|T are procyclical in the 1970s

as shown in figure 6(a) while this is less evidence in figure 6(b). We see this as evidence

the sticky information weight becomes a sink for business cycle fluctuations conditional

on θt = θ in M0. After the 1981–1982 recession, estimates of the sticky information

weight are qualitatively and quantitatively similar across figures 6(a) and 6(c). However,

these estimates differ than produced by M1 and seen in figure 5(b).

34



Figure 6: Filtered and Smoothed Estimates
of the Drifting Sticky Information Weight, 1968Q4 to 2018Q3
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Figures 6(a) and 6(c) display 90% uncertainty bands of λt|t and λt|T that are wide

except for several NBER dated recessions. The width of the uncertainty bands is espe-

cially striking because during the latter half of the 1990s the Fed engaged in a policy

of “opportunistic disinflation”, according to Meyer (1996) and Orphanides and Wilcox

(2002), the early 2000s witnessed the “considerable” and “extended” policy episodes

of the Greenspan and Bernanke Feds, and post-2007 the Bernanke and Yellen Feds em-

ployed a host of unconventional policies.31 Rather than having greater certainty, our

estimates indicate there was substantial sampling uncertainty around the frequency of

sticky information inflation forecast updating during the last 30 years.

The same cannot be said about λt|T − λ1|T that are plotted in figures 6(b) and 6(d).

These figures show 68% and 90% uncertainty bands of λt|T − λt|T that are tight compared

with the uncertainty bands of λt|T in figures 6(a) and 6(b). For example, only from the

1973-1975 recession to about 1998 do these uncertainty bands cover zero except during

the 2007–2009 recession in figures 6(b).

We contend the uncertainty bands of λt|T − λt|T in figures 6(b) and 6(d) are ad-

ditional evidence our estimates of λt represent the beliefs the average SPF respondent

has about the underlying dynamics of inflation. Figures 6(b) and 6(d) tell a familiar

about movements in the frequency of sticky inflation forecast updating. The smoothed

estimates of the accumulated changes in the frequency of sticky information inflation

forecast updating are near zero from 1973 to 1988, begin to increase in the early 1990s

reaching a plateau by 1995. This plateau is roughly maintained until λt|T − λ1|T takes

a V-shaped plunge during the 2007–2009 recession that is followed by a snap back to

pre-recession levels by 2014. Since this narrative is grounded in more precise estimates,

λt|T − λt|T is additional evidence that the inflation forecasts of the average member of

the SPF became stickier at about the same time persistent shocks to inflation become

noticeably smaller after the Volcker disinflation.

5 Trend Inflation Uncertainty and Forecast Stickiness

This section assesses the impact of uncertainty and sticky information on estimates of

our state space models. The role of uncertainty is judged on the efficiency of trend

inflation estimates conditional on various subsets of the data. We evaluate sticky infor-

31This line of research is beyond the scope of the paper. Interest rates are needed to evaluate the
impact of monetary policy on inflation dynamics as studied, for example, by Leeper and Zha (2003).
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mation by measuring the response of realized inflation to the state of the economy. A

small forecasting exercise also appears that comparing average SPF inflation forecasts

to forecast produced using our state space models.

5.1 SPF Inflation Predictions and Trend Inflation Uncertainty

Figure 7 displays conditional volatilities of rational expectations trend inflation, τt, and

sticky information trend inflation, Ftτt. The plots quantify uncertainty over time in

τt and Ftτt conditional on the history of Yt, or histories of subsets of its elements,

smoothed estimates of the non-linear states, and full sample estimates of the static

parameters, Ψ̂ . We measure the volatility of τt with Var
(
τt
∣∣Yt, Ṽt|T , Ψ̂), where the entire

information set is from the first observation to quarter t and the smoothed non-linear

states begin at quarter t and end at T = 2018Q 3. Similar computations are used to

produce the conditional volatility of Ftτt. Thus, the paths of the non-linear states and

parameter estimates are held fixed across subsets of the sample data that are fed into

the Kalman filter to produce estimates of the conditional volatilities of τt and Ftτt.
Figure 7(a) plots the conditional volatilities of τt. The conditional volatilities of

Ftτt are found in figure 7(b). In these figures, the solid (black), dashed (gray), dotted

(blue), and dot-dashed (red) lines are the volatility of trend inflation conditional on the

full information set, Var
(
x
∣∣Yt, Ṽt|T , Ψ̂), only on realized inflation, Var

(
x
∣∣π t, Ṽt|T , Ψ̂),

only on the 4-quarter ahead average SPF inflation prediction, Var
(
x
∣∣πSPF, t, Ṽt|T , Ψ̂),

and on realized inflation and the 4-quarter ahead average SPF inflation prediction,

Var
(
x
∣∣π t, πSPF, t, Ṽt|T , Ψ̂), respectively, where x = τt or Ftτt.

Figures 7(a) and 7(b) show πSPFt,t+5 contributes the bulk of the information pertinent

for estimating τt and Ftτt efficiently. The dot-dashed (blue) lines, Var
(
x
∣∣πSPF, tt+5 , Ṽt|T , Ψ̂),

and the dashed (red) lines, Var
(
x
∣∣π t, πSPF, tt+5 , Ṽt|T , Ψ̂), are close to the solid black lines

that are estimates conditioned on the entire information set, Var
(
x
∣∣Yt, Ṽt|T , Ψ̂). Con-

ditioning only on πSPFt,t+5 produces more volatility in τt and Ftτt during the double-dip

recessions of the early 1980s that is manifested as a hump in the dot-dashed (blue) lines

of figures 7(a) and 7(b). In contrast, these figures show a large gap between the dotted

(gray) lines, Var
(
x
∣∣π t, Ṽt|T , Ψ̂), and the solid (black) lines, Var

(
x
∣∣Yt, Ṽt|T , Ψ̂). The dis-

tance indicates that prior to the Volcker disinflation there is insufficient information in

πt alone to estimate τt and Ftπt efficiently. We conclude πSPFt,t+5 has useful information

for lowering uncertainty surrounding estimates of τt and Ftτt.
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Figure 7: Uncertainty Measure of Trend Inflation
Conditional on Different Information Sets, 1968Q4 to 2018Q3
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Note: The two plots contain vertical dotted bands that denote NBER dated recessions.
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5.2 Forecasting Inflation with Our state space models

This section reports on a small forecasting exercise. We compare the h-quarter ahead

inflation forecasts produced by M0, M1, M2, and M3 to the average SPF inflation predic-

tions of the same horizon on the 1968Q 4–2018Q 3 sample. The forecast comparisons

appear in table 6. The table includes ratios of root mean square errors (RMSEs) of the

h-quarter ahead inflation forecasts produced by our state space models to RMSEs of

πSPFt,t+h, for h = 1, . . . , 5. Differences in the squared losses of the forecasts appear in

brackets. The parentheses contain Newey-West standard errors for the Diebold and

Mariano test.32

Table 6: Inflation Forecast Comparisons of the SPF
and State Space Models, 1968Q4 to 2018Q3

Models

horizon M0 M1 M2 M3

1 1.13 1.03 1.09 1.10
[ 0.319] [ 0.080] [ 0.211] [ 0.255]
( 0.102) ( 0.052) ( 0.066) ( 0.071)

2 1.01 1.00 1.00 1.02
[ 0.035] [ 0.002] [ 0.011] [ 0.065]
( 0.056) ( 0.050) ( 0.041) ( 0.043)

3 0.98 0.99 0.98 1.00
[-0.107] [-0.065] [-0.090] [-0.025]
( 0.068) ( 0.070) ( 0.054) ( 0.057)

4 0.96 0.99 0.98 0.99
[-0.226] [-0.076] [-0.130] [-0.051]
( 0.084) ( 0.067) ( 0.064) ( 0.061)

5 0.98 0.99 0.98 0.99
[-0.214] [-0.129] [-0.161] [-0.151]
( 0.138) ( 0.114) ( 0.110) ( 0.112)

Note: Relative root mean square error (RMSE) predictions generated by our state space models
evaluated against the average SPF inflation predictions, πSPFt,t+h, for h = 1, . . . , 5. Values below
1.00 indicate a lower RMSE for the state space model forecasts. Below the relative RMSEs
are square brackets that contain the difference in squared losses of both forecasts, with the
associated standard errors in parentheses. The standard errors are computed using a Diebold-
Mariano test with Newey-West standard errors using h+1 lags.

32The online appendix has details about the forecasting exercise.
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The forecasting exercise leads us to two conclusions. At low-order forecast hori-

zons, table 6 shows the average SPF inflation predictions dominate the relative RMSEs

and produce smaller squared losses. At h ≥ 3, this changes. Our state space mod-

els yield better forecasts in every comparison save one and always have lower squared

losses, according to table 6. We interpret these results as indicating the SPF is useful for

predicting a nowcast of inflation and inflation one-quarter ahead while our state space

models yield competitive inflation forecasts, especially at longer forecast horizons.

5.3 Forecast Stickiness and Persistent Shocks to Inflation

Up to this point, we have documented significant time-variation in forecast stickiness,

as measured by the frequency of sticky information forecast updating, λt. However, we

find a noticeable drop in forecast stickiness around the 2007–2009 recession. Coibion

and Gorodnichenko (2015) report broadly similar evidence of time variation in λt and

point to recessions and the decline in macroeconomic volatility since the mid 1980s,

also known as the Great Moderation, as proximate causes of forecast stickiness.33 This

section complements their analysis by juxtaposing our estimates of λt with character-

istics of the inflation process implied by our state space models.

We focus on two metrics characterizing the inflation process that should matter for

forecasters. One metric is the expected squared error of the forecast (MSE). The second

is the share of forecast error variance attributable to non-persistent shocks. We argue

this forecast error variance is a suitable proxy for inflation persistence. Estimates of

stickiness, the MSE, and the variance share of non-persistent shocks are jointly drawn

from the posterior distribution of M2. However, the priors of M2 view stickiness as

unrelated to the underlying dynamics of the inflation. Recall that for parsimony and

not to impose a specific form of state dependence on inflation forecast stickiness, we

assume λt is driven by an exogenous shock. Nevertheless, there is a striking resem-

blance between time-variation in estimates of inflation stickiness and the importance

of persistent shocks in accounting for the MSE of inflation.

Coibion and Gorodnichenko (2015) use the MSE of the sticky information fore-

caster’s h-step ahead prediction at a given date t as the dependent variable in their

33Coibion and Gorodnichenko (2015) gauge time variation in the forecast stickiness with rolling window
regressions projecting πt+h − Ftπt+h onto Ftπt+h − Ft−1πt+h with slope coefficient β. The sticky
information law of motion 3.2 implies the regression slope coefficient β = λ

/(
1− λ

)
.
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regression analysis to evaluate forecast stickiness.34 As is standard, this MSE can be

decomposed into the sum of squared bias and forecast error variance

MSEt,h ≡ Et
{(
πt+h − Ftπt+h

)2
}
=
(
Etπt+h − Ftπt+h

)2
+ Vart

(
πt+h

)
, (10)

where
(
Etπt+h − Ftπt+h

)2
and Vart

(
πt+h

)
are squared bias and forecast error variance.

The decomposition of equation (10) is the source of the plots in figures 8(a) and

8(b). These figures depict variation in the MSE defined in (10) for h = 1 and h =
5. The contributions to the MSEs from squared bias and forecast error variance are

also portrayed. We produce these figures using smoothed estimates of M2 condi-

tioned on full sample information to compute rational expectations and sticky infor-

mation forecasts as well the MSEs. This conditioning implies our estimates of MSE

are Et
{(
πt+h − Ftπt+h

)2∣∣YT} rather than E
{(
πt+h − Ftπt+h

)2∣∣YT}. Hence, the condi-

tional moments Et
{
·
}

and Vart
(
·
)

are evaluated from the perspective of a forecaster

who knows the current level of inflation, its decomposition into trend, gap and noise,

the stochastic volatilities, and static parameters of M2. This approach is intended to

capture the potentially richer information set of the average SPF respondent, relative to

the econometrician, that drives forecast updating.35

Figures 8(a) and 8(b) display sizable variation in the MSEs during the. In line with

Stock and Watson (2007) and Clark, McCracken, and Mertens (2019), uncertainty around

inflation forecasts is greatest during the 1970s. For h = 1 and h = 5, the MSE peaks

around the 1973–1975 recession and remain elevated for the remainder of the 1970s.

With the onset of the Volcker disinflation, forecast uncertainty, as measured by the

MSE, declines steadily over the remainder of the sample with one exception. The steady

decline in the MSE is interrupted by brief spikes tied to a short-lived increase in bias

and a minimal rise around the onset of the 2007–2009 recession for h = 1.

Considering the relative contributions of bias and forecast error variance, the MSE

is dominated by forecast error variance with squared bias playing only a minor role.36

34Absent a specific model of the sticky information forecaster’s loss function, squared errors are only
a proxy for actual losses. Since the rational expectations benchmark minimizes squared errors, this
makes measuring the consequences of deviations from rational expectations a natural starting point
for assessing the forecast errors of a sticky information forecaster.

35Further details about the computations are provided in the online appendix.
36For h > 1, the estimated bias converges to the difference between sticky information and rational

expectations trends, which is relatively small, while the forecast error variance is strictly increasing
Figure 8(b) shows the MSE at h = 5 is dominated by the forecast error variance to a greater extent
than is shown in Panel 1(a) for h = 1.
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Figure 8: Forecast Stickiness and the Contribution of Persistent Shocks to Inflation
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(b) SI-MSE for h = 5
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Note: Figures 8(a) and 8(b) depict the sticky information-MSE and its two components defined
in equation (10) for h = 1 and h = 5, respectively. Figure 8(c) displays squared bias for the
actual sticky information forecasts with h = 1 as well as a sequence of counterfactual sticky
information forecasts constructed using λ = 0.8. Figure 8(d) compares the shares of unpre-
dictable measurement error disturbances, ζπ,t , to realized inflation in forecast error variances
at different horizons against smoothed estimate of the sticky information weight, λt|T , of M2.
The vertical dotted bands in figure 8(d) denote NBER dated recessions.
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Strikingly, extended periods of large biases (in absolute value) are rare throughout the

sample. Moreover, squared bias becomes negligible since the late 1990s, which is when

our filtered and smoothed estimates of λt increase to 0.6 or more. This evidence is

consistent with the notion that the frequency of sticky information inflation forecast

updating may not have risen by accident, but rather reflects an evaluation of costs and

benefits of forecast updating, as suggested, for example, by the theories and models of

Woodford (2003), Sims (2003), and Mackowiak and Wiederholt (2009).

We confirm the hypothesis that variation in sticky information inflation forecasts

may be related to changes in the inflation process by considering the counterfactual ex-

periment that takes as given our estimates of trend and gap inflation. The hypothetical

sticky information inflation forecasts are based on the sticky information law of motion

(3.2), but fixes λ to a moderately high value of 0.6. This sets the frequency of sticky

information inflation forecast updating to 2.5 quarters on average. Given estimates of

trend and gap inflation and λ = 0.6, the MSE of the h-step ahead rational expectations

and sticky information inflation forecasts are generated to measure bias between these

forecasts. Figure 8(c) compares the actual squared sticky information bias for h = 1

against the counterfactual measure that would have resulted if λ had been equal to

0.6.37 The upshot is that if inflation forecast stickiness had been that high during the

latter 1970s, forecast bias would have been substantially higher than it actually was.

This bias would have been as high as the forecast-error variance associated with the

optimal rational expectations inflation forecast displayed in figure 8(a). This stands in

contrast to the actual and counterfactual bias, which are fairly small, during the second

half of the sample, even though both reflect elevated levels of inflation forecast stick-

iness.38 All told, the estimated increase in forecast stickiness occurs at the same time

the constant frequency of sticky information inflation forecast updating produces little

difference in rational expectations and sticky information inflation forecasts.

A key concern is the importance of persistent shocks in the inflation process. In our

state space models, inflation is the sum of three components: trend, gap and serially un-

correlated measurement error. Hence, only shocks to trend and gap cause variations in

rational expectations forecasts. Remember from (3.2) thatπt = τt + εt +σζ,πζπ,t, where

37The actual squared sticky information bias shown in figure 8(c) corresponds to the squared bias
shown in the MSE decomposition of figure 8(a).

38The online appendix considers an alternative counterfactual generated by setting λ = 0.2. The re-
sulting counterfactual sticky information bias is quantitatively similar to the actual bias generated
by estimates of the sticky information weight that are 0.6 or greater by the second half of the sample.

43



ζπ,t ∼ N
(
0, 1

)
. Since all three inflation components are assumed to be uncorrelated, it

is straightforward to decompose the forecast error variance into the contributions from

each component, where stochastic volatility causes the share of forecast error variances

explained by each shock to vary

Vart
(
πt+h

)
= Vart

(
τt+h

)
+ Vart

(
εt+h

)
+ σ 2

ζ,π .

As described in section 2, optimal rational expectations inflation forecasts are linear

combinations of τt and εt. Hence, greater volatility in the shocks to these states in-

creases the variability of optimal rational expectations inflation forecasts.

We argue that when shocks to τt and εt account for a larger share of variations in

πt a sticky information forecaster has a greater incentive to update more frequently. As

a result, forecast stickiness should be positively related to the share of forecast error

variance due to measurement error in realized inflation. This is measured by

FEV-share-noiset,h =
σ 2
ζ,π

Vart
(
πt+h

) .
Indeed, as figure 8(d) shows, the share of the one-step ahead forecast error variance

due to measurement error mirrors variations in our smoothed estimates of the sticky

information weight, λt|T in figure 6(a).39 Although λt|T suggests low levels of sticky

information during the latter half of the 1970s and the Volcker disinflation, the sticki-

ness of inflation forecast updating has risen since 1990 and remained high except for a

brief dip during the 2007–2009 recession. Figure 8(d) also shows that the share of the

sticky information forecast error variance due to unpredictable measurement error in

inflation was relatively low during the first half of the sample. This share increases at

the same time as the Volcker disinflation takes hold and remains high for the rest of the

sample with only a brief drop during the 2007–2009 recession proving the exception. In

contrast, figures 8(a) and 8(b) depict the MSE of total forecast uncertainty as declining

steadily since the 1970s and has only a minimal increase during the 2007–2009 reces-

sion. In summary, we obtain substantial evidence of an increase in the stickiness of

inflation that lines up with the Volcker disinflation.

39The online appendix documents similar patterns for the share of noise shocks in the FEVs when h> 1.
We also report results based on an alternative decomposition of the FEV in the online appendix that
is akin to one used by Cogley, Primiceri, and Sargent (2010). It measures persistence with respect to
changes in one-step ahead expectations. Our results are unchanged using this measure of persistence.
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6 Conclusions

This paper studies the joint dynamics of realized inflation and a term structure of av-

erage inflation predictions found in the Survey of Professional Forecasters (SPF). We

build non-linear state space models using the Stock and Watson unobserved compo-

nents models and the Coibion and Gorodnichenko (2015) version of the Mankiw and

Reis (2002) sticky information models to estimate trend and gap inflation, the stochas-

tic volatility affecting these states, inflation gap persistence parameter, and the sticky

information weight. The state space models are estimated on a sample of real-time

realized inflation and averages of SPF inflation predictions from 1968Q 4 to 2018Q 3

using sequential Monte Carlo methods. The sequential Monte Carlo methods consist of

a particle learning filter proposed by Carvalho, Johannes, Lopes, and Polson (2010) and

a Rao-Blackwellized particle smoother proposed by Lindsten, Bunch, Särkkä, Schön, and

Godsill (2016).

We draw five headline results from estimates of the state space models. First, the

data prefer the state space model that includes drift in the inflation gap persistence

parameter and sticky information weight. Second, the 4-quarter ahead average SPF

inflation prediction has information that increases the efficiency of estimates of trend

inflation. Third, inflation gap persistence flips from procyclical before the Volcker disin-

flation to lacking any business cycle comovement during the rest of the sample. There is

also substantial persistence in the inflation gap after the Volcker disinflation. The years

after the Volcker disinflation is when the stickiness of inflation forecasts increases. This

remains the case to the end of the sample except for a transitory decline in the frequency

of sticky information inflation forecast updating during the 2007–2009 recession. Fifth,

shifts in the stickiness of inflation forecasts occur at the same time the importance of

persistent shocks for explaining the variation in realized inflation begins to decline.

We interpret this evidence as suggesting sticky information inflation forecasts are state

dependent, but lack business cycle dependence.

Our results fit into a literature that finds permanent shocks matter more to profes-

sional forecasters compared with transitory shocks. An example is that the frequency

of sticky inflation forecast updating is estimated to change at the same time persistent

shocks become less important for inflation dynamics. In our view, this evidence should

point future research toward endogenizing the sticky information weight, perhaps, in

the tradition of rational inattention models of Sims (2003), Woodford (2003), and Mack-
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owiak and Wiederholt (2009). In the same way that this research motivated us, we hope

that our paper stimulates further work on the ways in which professional forecasters

and other economic agents process information to form beliefs and predictions about

future economic outcomes and events.
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