BALANCING USER PRIVACY AND PERSONALIZATION

Malika Korganbekova

The University of Chicago Booth School of Business

(joint with Cole Zuber, Wayfair LLC)

October 14, 2024

ONLINE PLATFORMS PERSONALIZE CONTENT

- ▶ Personalize advertising (Wernerfelt et al., 2023)
- Personalize prices (Dube and Misra, 2022)

Personalize content/product recommendations (this paper)

RETAILERS' RECOMMENDATIONS: FURNITURE

Browsing History \Rightarrow

RETAILERS' RECOMMENDATIONS: FURNITURE

Browsing History \Rightarrow

Recommendations ⇒

2/26

Corner tion: Add to Cost

WHAT MAKES PERSONALIZATION POSSIBLE?

Add to Corr

Add to Cort

Add to Cort

Tracking ⇒ Individual-level data

REGULATORS ARE CONCERNED ABOUT USER PRIVACY

Consumers do not know what or how their data is used

Competition & Markets Authority (UK) and FTC (US)

"Personalisation can be harmful ... These harms often occur through the

manipulation of consumer choices, without the awareness of the consumer."

REGULATORS ARE CONCERNED ABOUT USER PRIVACY

Consumers do not know what or how their data is used

Competition & Markets Authority (UK) and FTC (US)

"Personalisation can be harmful ... These harms often occur through **the**

manipulation of consumer choices, without the awareness of the

consumer."

Browsers within and across websitescookie-based trackinglimit online consumer tracking

RESEARCH QUESTIONS

1 Does **personalization hurt** consumers and sellers on the platform?

2 How do **privacy restrictions** that limit consumer tracking impact: >

different types of consumers, sellers, and the platform

3 How can platforms **mitigate the losses** from privacy restrictions?

METHODOLOGY

1 DoesStep 1: Field experiment personalization hurt consumers and sellers on the platform?

2 How domarketplace?Step 2: Re-train Personalization Algorithm +

Structural model of search privacy restrictions that limit consumer

tracking impact the 3 Step 3: Propose Probabilistic Algorithm +

Structural model of searchHow can platforms mitigate the losses from

privacy restrictions?

WAYFAIR PERSONALIZES PRODUCT RANKINGS

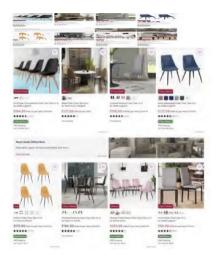
LARGE ONLINE MARKETPLACE OF FURNITURE

Kitchen & Dining Chairs

32,919 Results

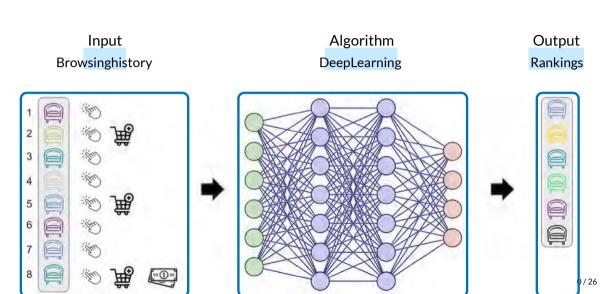
WAYFAIR PERSONALIZES PRODUCT RANKINGS

LARGE ONLINE MARKETPLACE OF FURNITURE



PersonalizedRankings

PERSONALIZATION ALGORITHM



PLATFORM TRACKS CONSUMERS ACROSS SESSIONS

- 1 Consumer Login + Deterministic Matching (40%)
- Online tracking technologies (1st-party and 3rd-party cookies) (60%)

DATA

► All consumers during 2018-2022

▶ Device, browser, source of traffic upon arrival

▶ **Product rankings** at each consumer-pageload

- ➤ **Pixel-level clickstream:** entire history of consumer actions (clicks, scrolling)
- ▶ Transactions: final purchase decisions and product returns

▶ Retail price and seller-set wholesale prices at a daily level

RESEARCH QUESTIONS

¹Step 1: Field experimentDoes **personalization hurt** consumers and sellers on the platform?

LARGE-SCALE FIELD EXPERIMENT

>> 9 million consumers between January 2020 and December 2021

Treatment Control

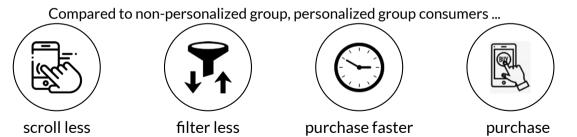
PersonalizedRankings

Non-

Personalized (Bestseller) Rankings

PERSONALIZATION LEADS TO LOWER SEARCH COSTS.

EXPERIMENT RESULTS



1.4%***

Baseline Additional Results

PERSONALIZATION BENEFITS CONSUMERS

EXPERIMENT RESULTS

Compared to non-personalized group, in personalized group ...

► ↑ +3.2-4.1% revenue

► ↑ +19% visibility

 $\underline{\text{Niche}}_{\text{Mid-niche sellers}} \uparrow +2.2\%$

revenue 2D embeddings Nicheness Illustration

Examples

RESEARCH QUESTIONS

1 Does personalization hurt consumers and sellers on the platform? \checkmark

2 How domarketplace? Step 2: Re-train Personalization Algorithm + Structural model of search privacy restrictions that limit consumer tracking impact the

PLATFORM TRACKS CONSUMERS ACROSS SESSIONS

PLATFORM TRACKS CONSUMERS ACROSS SESSIONS

Connecting browsing sessions

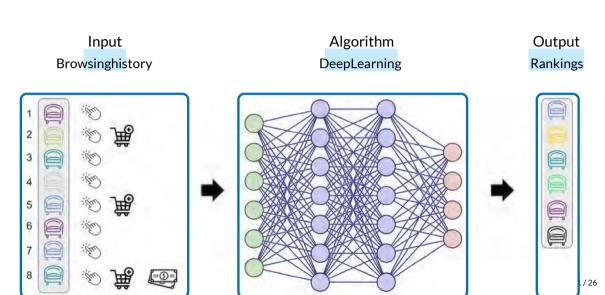
- ▶ 40% of consumers login
- ▶ 60% rely on online tracking technologies (1st-party and 3rd-party cookies)

16/26

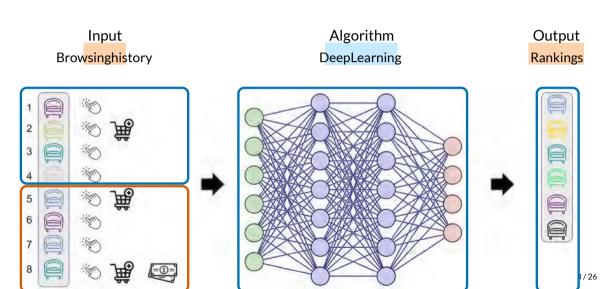
> 7 days < 7 days

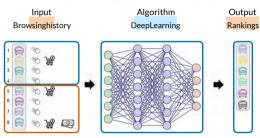
> ~30% of consumers arrive from Safari browser

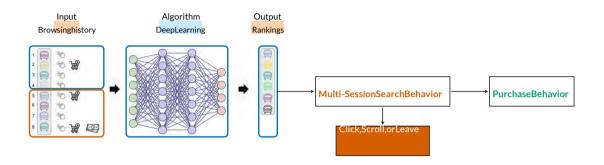
PERSONALIZATION ALGORITHM

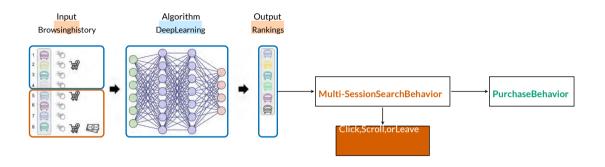


OVERVIEW OF THE COUNTERFACTUAL ANALYSIS RE-TRAINING THE ALGORITHM



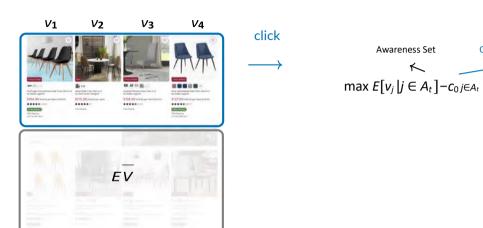






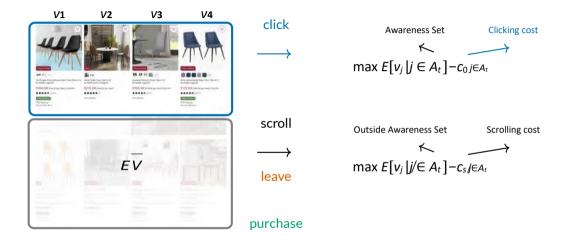
Out comes of the terestes than gets in revenue

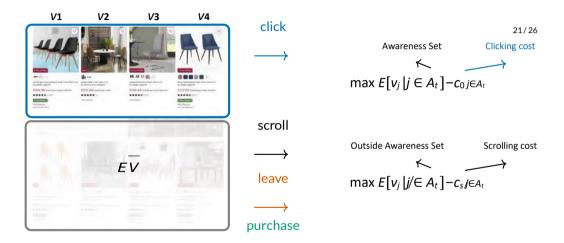
<u>platform</u> revenue and profit

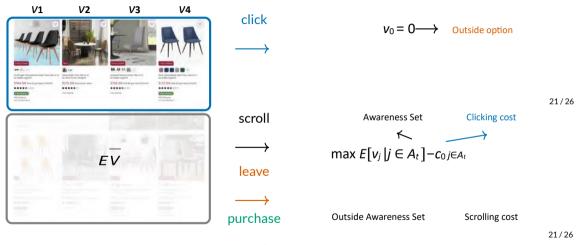


20/26

Clicking cost

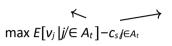






21/26

V1 V2 V3 V4

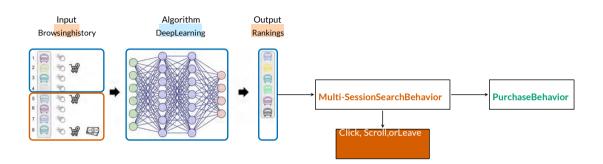


$$v_0 = 0 \longrightarrow Outside option$$

$$v^* \longrightarrow$$
 Best value so far

OVERVIEW OF THE

COUNTERFACTUAL ANALYSIS

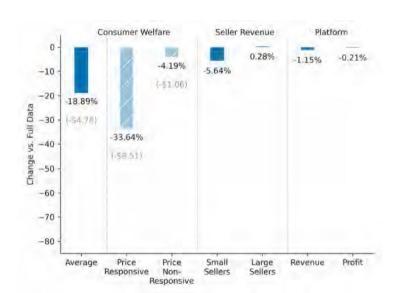


IMPACT OF SAFARI DATA RESTRICTIONS

COUNTERFACTUAL MODEL ESTIMATES

IMPACT OF RESTRICTIONS

COUNTERFACTUAL



SAFARI DATA

MODEL ESTIMATES

RESEARCH QUESTIONS

1 Does **personalization hurt** consumers and sellers on the platform? ✓

2 How do privacy restrictions that limit consumer tracking impact the marketplace? √ 3 How can platforms mitigate the losses from privacy restrictions?

Step 3: Propose Probabilistic Algorithm + Structural model of search

PROBABILISTIC IDENTITY RECOGNITION

ALGORITHM DEVELOPED IN KORGANBEKOVA, ZUBER (2023B)

▶ Use device-level IP address and behavioral (clickstream) data on Wayfair to

predict the user labels

XGBoost algorithm

PROBABILISTIC RECOGNITION CAN IMPROVE OUTCOMES

COUNTERFACTUAL MODEL ESTIMATES

KEY TAKEAWAYS

Personalization benefits consumers, sellers, and the platform

- Privacy restrictions primarily hurt
 - > smaller sellers
 - > high search cost and price responsive consumers

▶ Platforms can partially mitigate these losses using probabilistic identityrecognition

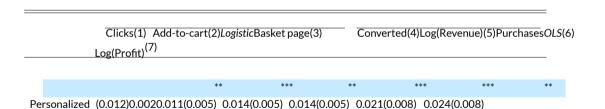
Thank You!

Feedback welcome: malika.korganbekova@chicagobooth.edu

Appendix

CONSUMER OUTCOMES

0.015(0.006)



Intercept 2.988

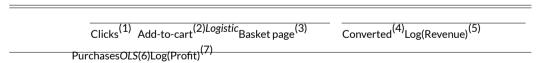
Notes.

the logistic specification and Columns (5)-(7) report the OLS specification results. Robust standard errors in parentheses. The intercept in profit Column (7) is hidden for data sensitivity reasons. Statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001.

This table reports the output from the estimation of equation 1. Data is at the consumer-level. Columns (1)-(4) report

CONSUMER OUTCOMES

$$y_i = \alpha + \beta treatment_i + \varepsilon_i$$
 (1)



** *** ** *** **

Personalized (0.012)0.0020.011(0.005) 0.014(0.005) 0.014(0.005) 0.021(0.008) 0.024(0.008) 0.015(0.006)

Intercept 2.988

 $\underline{Observations 635,267} (0.008)*{**}0.246 \underline{635,267} (0.004)*{**}0.148 \underline{635,267} (0.004)*{***}-0.870 \underline{635,267} (0.004)*{***}$

 $1.947635,267(0.005)***1.095635,267(0.006)***635,267(0.004)^{-}$

Notes.

the logistic specification and Columns (5)-(7) report the OLS specification results. Robust standard errors in parentheses. The intercept in profit Column (7) is hidden for data sensitivity reasons. Statistical significance: *p < 0.05, **p < 0.01, ***p < 0.01

This table reports the output from the estimation of equation 1. Data is at the consumer-level. Columns (1)-(4) report

Back •

$y_{ij} = \alpha + \beta treatment_i + \varepsilon_{ij}$

		PurchaseC	Outcomes	:
_	(1)	(2)	(3)	
le	og(price)	log(quantity)	log(revenue)	
		0.009	0.015	log(profit)0.004(4)
	(0.001)	(0.004)	(0.003)	10g(profit)0.004(4)

Personalized group

0.005 (0.003)

7/15

PLATFORM OUTCOMES

Intercept

6.022***

2.075***

7.343***

(2)

Observations 2,022,708(0.001) 2,022,708(0.001) 2,022,708(0.002)

Notes.

consumer-purchased product level. The intercept in Column (4) is hidden for data sensitivity reasons. Statistical significance: $^*p < 0.05$, $^{**}p < 0.01$, $^{***}p < 0.001$.

 $\underline{2,022,708}(0.002)$ This table reports the output from the estimation of

equation 2. Data is at the

Back

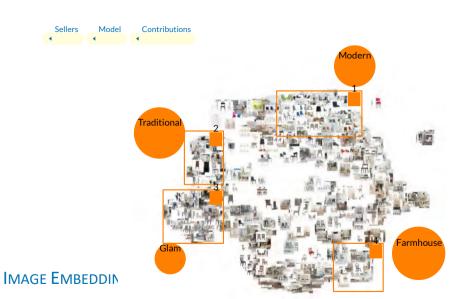
PROBABILISTIC IDENTITY RECOGNITION

ALGORITHM DEVELOPED IN KORGANBEKOVA, ZUBER (2023B)

	(y)	Device A and Device B
<u>device</u>	<u>1</u>	IP address Screen Size
2 device	<u>0</u>	ClickstreamIP address Screen Size
		10 / 15

10 / 15

device	4device	<u>1</u>	ClickstreamIP address Screen Size
<u> 1device</u>	<u>3</u>		<u>Clickstream</u>
3device 1			
Device A	Device B	Same consumer	Features of



IDENTIFICATION

Prior parameters from first searches: $\mu(x) = \alpha + x\beta_i$ and

$$\kappa(X_{j},X_{k}) = \exp\left(-\sum_{a} \frac{(X_{ja} - X_{ka})^{2}}{\rho_{a}}\right)$$

» higher variation in

attributes in searched products across

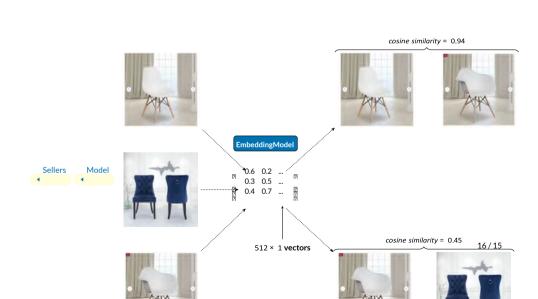
individuals versuswithin

 $\Rightarrow \beta_i$

- ▶ Price parameters: Price experiments -12% to +12% random variation
- Scrolling cost: # of scrolls
- Clicking cost: experimental variation
- \triangleright Product fixed effects ξ_i : from purchase—click probability
- Learning: consumer jumps in attribute space

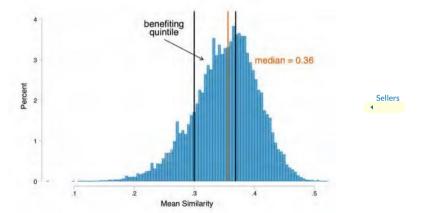
Back

IMAGE EMBEDDINGS IDEA



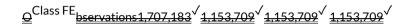
SELLER TYPES BY NICHENESS Niche: low weighted cosine

similarity to other products



RATING ANALYSIS

			Sentiment		
	rating	neutral	positive	negative	
1.treatment	0.004**	-0.013***	0.015***	-0.001	
	(0.001)	(0.005)	(0.005)	(0.001)	(1)(2)
		(3)(4)			, , , ,



Notes.

is at the consumer-purchased product level. The intercept in Column (4) is hidden for data sensitivity reasons. Statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001.

output from the estimation of equation 2. Data

Back

RANDOMIZATION CHECKS

Back

This table reports the

 $\textcolor{red}{\textbf{Non-personalized}(1)} \textcolor{red}{\textbf{Personalized}(2)} \textcolor{red}{\textbf{Difference}(3)} \textcolor{red}{\textbf{p-value}(4)}$

Historical Purchases (\$)	886.98	937.77	-50.79 _(-1.26)	0.21
Historical Quantity Bought	6.19	6.51	(-1.22) ^{-0.32}	0.22
Estimated networth	348,657.63	346,654.85	(-1.22)	0.13
Estimated income	70,847.86	70,779.64	2,002.77(1.51)	0.63
Age	24.90	24.89	68.22 _(0.48)	0.60
Home Value	175,067.06	175,177.83	(0.52)0.01	0.85
Prices searched	87.24	87.29	-110.77(-	0.84
Gender dummy (0,1)	0.85	0.85	0.19)	0.82

(-0.20)^{-0.05}

"When I saw these chairs online I thought they were probably too good to be true. The price is ridiculously low so I worried that the chairs would be cheaply made. Well they are VERY CHEAPLY MADE. I'm giving them 2 stars instead of one because they are cute and they are so inexpensive. I ordered six chairs total (2 sets from another online retailer and one set from Wayfair) and 4 of them were damaged in one way or another right out of the box. Some of it was minor damage like chipped paint and scratches and in once case the damage was severe where the composite wood seat was completely chipped up and pieces of wood were sheared off. I still liked the chairs though and forged ahead. I exchanged the severely damaged set and while I waited for those to be shipped I put the other chairs together and really found out how poorly made these are. When tightening the screws the wood actually started to split with hairline-like fractures along the

sides of the seat. These fractures are visible. From far away the chairs look fine, but every single one of the six I ended up with is damaged in some minor and visible way (chipped paint, split wood, seats that don't quite fit on the base properly). **Anyway**,

hoping that something so inexpensive would be acceptable in quality. I would have gladly paid

4

more for chairs that were better made. I guess it's my fault though for" Back

Within-website (first-party) Cross-website (third-party) tracking tracking

➤ Safari resets first-party cookies ➤ Chrome will block 3rd party after 7 days of inactivity cookies

IDENTITY FRAGMENTATION

Lin and Misra (2022) point out three types of possible biases

Outcome fragmentation \uparrow observations but outcome variation is constant \rightarrow direct attenuation

omitted variables (data from other devices) Exposure fragmentation X

 \rightarrow positive or negative bias

Spurious covariance $cov(personalization exposure, device usage)^{\sim} \rightarrow$

positive or negative bias Results are attenuated

checked on consumers who are 100% identified - estimates are larger

ADDITIONAL EXPERIMENTAL RESULTS

Consumers in personalized group

- > spend less overall time searching (-1.1%)
- give more positive reviews (+1.5%)

▶ no significant differences in time spent on product page vs ranking pagewithin a session

within product pages they search more intensively

