Discussion: Algorithmic Collusion of Pricing and Advertising on E-commerce Platforms (Zhao and Berman)

Kanishka Misra

Algorithmic Collusion

- ► Algorithmic price competition with no coordination
 - non-trivial: algorithms based on stationary environments
 - algorithmic competition: environment is endogenous/nonstationary

- ▶ Literature: Supra competitive prices with AI pricing
 - mechanisms in simulated markets: facilitate repeated games (Calvano et al 2020, Kline 2021), correlated learning (Hansen et al 2021), sophistication (Asker et al 2021), hub and spoke (Harrington 2021)
 - Limited/no theory: Results in the form "showing existence" and mechanisms are inferred

This paper

- Extends the literature to platforms
 - ▶ Sellers: set prices and bid for location

- ▶ Platform: runs auction to set location
- ▶ Buyers: some type does not search
- ▶ Main results (when search costs are high enough)
 - ▶ Q-learning results in lower advertising bid and lower prices
 - ▶ Does not hurt consumers or the platform

Main Thoughts

▶ Show alogirthmic collusion results are knife-edge ▶

Does Q-learning represent seller behavior here?

- Q-learning's has slow convergence rate (\sqrt{t}) v log(t))
- Extending Calvano et al to add bidding increases dimensionality of both the action and state space
 - ▶ Q-learning would require ~100 millions time-periods
 - ➤ Unrealistic in real environments: requires consumer preferences to be stable over a long time-frame

Suggestions

- Setup
 - ➤ Search is exogenous (mental costs) consider choice frictions

- ➤ Outcome of auctions bundled with profits consider adding seperately to the state
- ► Amazon data: very reliant on assumptions
 - estimating search is the key empirical result consider clickthough data
 - ▶ Overall: An interesting addition to a growing literature