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Executive Summary 

 In order to develop landscape-scale estimates of soil erosion in Minnesota’s agricultural 

landscapes, we conducted a broad survey study of 137Cs in cultivated fields and uncultivated grassland 

reference sites located across the southern third of Minnesota. Because the only source of 137Cs is nuclear 

fission and it binds tightly to soils, landscapes were "labeled" with 137Cs during aboveground testing of 

nuclear weapons in the 1950s and 1960s. As a result of this, 137Cs inventories can serve as an effective 

tracer for soil movement on decadal timescales. A 137Cs conversion model was used to determine soil 

erosion rates for 107 locations in cultivated sites. Measured soil erosion rates ranged from 49 t ha-1 yr-1 

(erosion) to -74 t ha-1 yr-1 (deposition). Based on these measured rates, regression models were developed 

with the goal of broadly predicting soil erosion rates based on topographic characteristics. Digital terrain 

attributes were calculated from LiDAR-derived (Light Detection And Ranging) digital elevation models 

and then used as predictor terms in regression model development. Resulting models showed that: (1) 

profile curvature, (2) planform curvature, and (3) slope steepness were significant model terms in 

predicting erosion rates for different Minnesota Major Land Resource Areas (MLRAs). The resulting 

regression models were able to explain 38% of the variability observed in measured soil erosion rates. 

When applied to cultivated landscapes, the regression models create maps of predicted long-term rates of 

soil erosion or deposition. These maps will be helpful to BWSR personnel, soil conservationists, and 

other local government unit personnel to help identify which portions of the landscape would benefit the 

most from perennial vegetation conservation practices. In a complementary manner, these maps may also 

be used to quantify the soil and water quality benefits of farmland enrollment into a conservation program 

(or, conversely, the environmental impact of converting perennially vegetated land for cultivation).   

  



Introduction 

Recent increases in corn and soybean prices have resulted, in the upper Midwest, in a shift toward 

increasing land managed for row crop production at the expense of perennial grasslands, including loss of 

CRP lands [Wright and Wimberly, 2013]. Under greater crop commodity prices, even marginally 

productive portions of the landscape can become profitable for farmers. The increase in cultivation on 

certain portions of the landscape can have detrimental impacts on soil and water quality through increased 

erosion. More specifically, landscape segments that are characterized by steep slopes and high curvature 

are especially prone to soil erosion [Ritchie and McHenry, 1990; Wischmeier and Smith, 1965; 1978]. 

While these ideas are well-established, resources to expand and apply them to broad portions of the 

landscape have been limited. In particular, wide availability of Digital Elevation Models (DEMs) has, 

until recently, been limited to products with a 30 m pixel resolution (or greater). While helpful in 

characterizing landscape-scale trends, this resolution was too coarse to produce a data product that could 

be meaningfully applied to many farm fields because important topographic features can often be smaller 

than 30 m. Subsequently, studies that showed the utility of including digital terrain attributes such as 

slope and curvature [Hurst et al., 2012; Moore et al., 1993; Yoo et al., 2005] required site-specific surveys 

that contained sufficient detail but were limited in spatial scope.  

More recently, Light Detection and Ranging (LiDAR) technology has advanced and become 

more affordable such that detailed DEMs are now becoming widely available for large areas. The State of 

Minnesota has been involved in coordinating and collecting statewide coverage of LiDAR data from 2010 

through 2012 and those data products are now freely available. The MN LiDAR data have been used to 

produce digital elevation models with pixel resolutions of 1 and 3 meters and vertical accuracy of about 

10 cm (root mean square error, county-specific values available at 

http://www.mngeo.state.mn.us/chouse/elevation/CVA_map_mn_lidar.pdf ). The availability of these 

high-resolution DEMs provides the opportunity for a new assessment of soil erosion potential around 

Minnesota’s farmland under row crop vs. grassland cover.  

Detailed DEMs, however, only provide a portion of the information needed to assess land use 

impacts on soil erosion in the landscape. A separate measure of soil movement is also necessary to 

complement the DEMs and develop relationships suitable for quantifying topographic and land 

management effects on soil erosion. One method suitable for tracking soil erosion over time is 

measurement of 137Cs activity in a variety of landscape positions, which can reflect different erosion (or 

deposition) history. 137Cs is a radioactive isotope produced only as a result of high-yield thermonuclear 

reactions. In the 1950s and early 1960s, aboveground testing of thermonuclear bombs resulted in wide 



global distribution of 137Cs (and other isotopes). Fallout of 137Cs via dry and (mostly) wet deposition is 

locally homogenous (although larger regional and global patterns do exist due to differences in 

precipitation, [Longmore, 1982] and 137Cs binds strongly to soil minerals [Ritchie and McHenry, 1990]. 

Because atmospheric testing of nuclear weapons ceased when the limited nuclear test ban treaty went into 

effect (October, 1963), the presence of 137Cs in the soil profile can be used to interpret the movement of 

soil over an approximately 50-yr time span and help calculate long-term average erosion rates in 

agricultural soils when used in conjunction with 137Cs data from nearby reference sites (perennial 

grasslands).  

The goals of this study were to: (1) measure long-term average soil erosion rates for a variety of 

landscape positions across the predominantly-agricultural landscapes in the southern third of Minnesota, 

and (2), develop empirical models based on digital terrain attributes in order to expand soil erosion 

estimates to nearby similar croplands. It is the intent of this work that maps of long-term soil erosion rates 

can be used by local government units (LGUs) and Soil and Water Conservation District (SWCD) 

personnel to help identify landscape positions that are most prone to erosion as well as to quantify long-

term (50-yr) average erosion rates. This information can help SWCD and LGU personnel identify priority 

locations for establishment (or maintenance) of CRP lands (or similar perennial cover) in order to protect 

Minnesota’s soil and water resources while also helping to ensure more effective use of limited 

conservation funds. 

Important Considerations 

Results from this work are intended to be helpful for estimating long-term average erosion rates 

under cropland and grassland scenarios based on digital terrain attributes. More specifically, cropland 

scenarios reflect corn and soybean row crop agriculture, which dominates Minnesota’s agricultural 

landscape. Empirical models developed here do not attempt to account for differences in soil erosion that 

may result from agricultural management practices such as no-till, conservation tillage, or contour 

tillage (or other practices). It is assumed that these practices varied and were not constant over the 50-yr 

time period that 137Cs measurements encompass. Because of differences in management practices, results 

presented here may differ from actual erosion/deposition rates on an individual farm. Rather, these 

results are intended to estimate the average amount of soil erosion that would be prevented for a given 

landscape element if it were enrolled in a conservation program such as CRP (or otherwise managed in 

perennial vegetation). 

  



Methods 

Study Areas 

Sites for this study were selected to include the Major Land Resource Areas [USDA, 2006] of 

Minnesota that are dominant in the agricultural lands comprising roughly the southern third of the state. 

Agricultural lands in the north western portion of the state (Red River Valley) were not included because 

of a history of land surface re-shaping to accommodate water drainage [McCullough, 2002] which 

precludes meaningful analysis of 137Cs data.  

Northern Mississippi Valley Loess Hills (MLRA 105) - Landscapes in MLRA 105 are bedrock-

controlled. The bedrock consists of gently sloping strata of sandstones, dolomites, and limestones, with an 

occasional thin layer of shale. Streams are deeply incised in this karstic landscape. Although most or all 

of this area was glaciated at one time, intense erosion associated with periglacial conditions, has stripped 

away most of the glacial sediments. Thick (2.5 to 10 m) Peorian age loess now mantles the existing high 

relief landscape, often directly overlying bedrock. This landscape has a well-developed surficial drainage 

network, high relief, and virtually no closed depressions. Sediments that reach streams are transported out 

of the landscape. Presettlement vegetation was mainly hardwood forest on the slopes and either hardwood 

forest or prairie on the broader uplands. 

Eastern Iowa and Minnesota Till Prairies (MLRA 104) - Landscapes in MLRA 104 (the 

northern extension of the Iowan Erosion Surface [Ruhe et al., 1968]) are also relatively old and have well-

developed surficial drainage. These landscapes are outside the boundary of the Wisconsinan glacial 

advance but were previously covered with a thick deposit of heavy Pre-Illinoisan clay-loam till. They 

have moderate relief and have developed a well-connected drainage network. Thin (0.5 to 0.75 m) 

Peorian age loess mantles these landscapes. The loess is somewhat sandier than that found in MLRA 105 

to the east, but appears to be derived from the same western source [Mason et al., 1994]. Presettlement 

vegetation in the region was mainly tall-grass prairie.  

Central Iowa and Minnesota Till Prairies (MLRA 103) - Landscapes in MLRA 103 have 

developed mainly on glacial sediments associated with the Late Wisconsinan Des Moines Lobe advance. 

These sediments are generally loamy in texture. Because of the moderate relief and young age of these 

sediments, there has been little development of stream networks or other surficial drainage. Most of the 

landscape consists of closed depressions and a deranged drainage network. Presettlement vegetation in the 

area was dominated by prairie grasses with wetland vegetation present in the low-lying areas. 



Consequently, sediments that are eroded from the uplands by tillage or water erosion are still retained 

within the landscape.  

Rolling Till Prairie (MLRA 102A) - Landscapes in MLRA 102A have developed mainly on 

glacial moraines, outwash plains, terraces, and floodplain deposits. Much of the drainage in this MLRA is 

poorly organized and small depressions known as prairie pothole ponds and lakes are common. Most of 

the sediments eroded from upland areas are retained within the landscapes. Most of the landscape consists 

of closed depressions and a deranged drainage network. Similar to the Central Iowa and Minnesota Till 

Prairies, presettlement vegetation in the area was dominated by prairie grasses with wetland vegetation 

present in the low-lying areas. 

A summary of sample location distribution is shown in Figure 1. Agricultural sites included 

UMN research and outreach center farms (Waseca, Lambteron, Morris) as well as private landowners 

identified via contacts with the MN Department of Agriculture and local Soil and Water Conservation 

Districts. In additional to agricultural sites, nearby grassland locations were selected to serve as reference 

points for 137Cs data. The key criteria for these sites was that they have been under perennial grassland 

cover for at least the past 50 years as verified by a combination of approaches including historic air 

photos (going back to 1938), landowner knowledge, and DNR records (for Scientific and Natural Areas, 

SNAs). In total, 215 points were sampled across southern Minnesota, 107 cropland sites and 108 

grassland sites. 

  



 

Figure 1. Minnesota Map showing the location of soil sampling locations with respect to Major Land 
Resource Areas across southern Minnesota. MLRA Numbers correspond with USDA designations and 
text above.  



Soil Sample Collection 

Field-sampling points were selected by inspecting the terrain attribute maps and identifying 

points that represented the range of attribute values present at a given site. In this manner, our sampling 

approach was targeted at representing the range of available terrain attribute values. Care was taken to 

select sampling points where terrain attribute values did not change abruptly from one pixel to the next in 

order to avoid sites that may be particularly sensitive to small differences in sample location. In the field, 

sampling points were located with a handheld GPS unit (accuracy was typically better than 3m, 

comparable to the pixel size of the 3m DEM used for model development). Soil samples were collected to 

150 cm in the following depth increments: 0-5, 5-10, 10-15, 15-20, 20-25, 25-30, 30-40, 40-50, 50-75, 

75-100, 100-125, and 125-150 cm. Samples in the upper 50 cm were collected by excavating a shallow pit 

(Figure 2) and then carefully collecting about 500 g of soil from each depth increment which was placed 

in a labeled plastic bag. At the same time a bulk density sample was collected from the same depth 

increment using a brass cylinder of known volume, which was pushed into the soil and then excavated. 

A slide-hammer cylindrical 

corer (5 cm diameter, 30 cm long) 

with internal plastic sleeves (AMS, 

American Falls, Idaho, USA) was 

used to collect soil samples below 50 

cm depth. Between sample 

increments, the hole was widened 

with a 7.0 cm diameter closed basket 

auger and then cleaned with a 7.0 cm 

diameter planer auger to prevent soil 

from above from contaminating the 

next sample. Sleeves were removed 

from the corer after sampling, capped 

on each end, labeled with the date, 

sample number, location, and depth, 

and placed in a labeled plastic zipper 

bag. Samples were stored with ice in 

coolers while in the field. Following 

transport to the laboratory, they were 

stored in a cold room until processed. 

Figure 2. Photo showing sample collection increments for a 
typical soil pit. Pit face sampling was performed for the upper 50 
cm. A multi-stage core sampler was used to collect samples to a 
depth of 150 cm. 



Soil Sample Processing 

Bulk Density 

Sample bulk density was determined for each depth increment in the upper 50 cm (pit face 

sampling) by inserting a metal ring of known volume into soil and then carefully collecting the soil 

volume contained within the ring. Upon returning to the lab, soils were dried overnight at 105°C. 

Following drying, the soil was weighed, then sieved (2 mm) to remove root and rock fragments before 

calculating bulk density. Bulk density determined via the metal ring method for the 40-50 cm depth 

increment was assumed to be representative of bulk density for deeper soil depths (in order to avoid 

potential compaction effects on bulk density data that may have been introduced from the hand-driven 

hammer corer.  

137Cs and Soil Organic Carbon (SOC) 

Soil samples for elemental and 137Cs analyses were dried at 35°C overnight. Samples in plastic 

core sleeves were expelled prior to drying. Following drying, samples were hand-ground with a mortar 

and pestle and sieved (2 mm) to remove root and rock fragments before storage in either polycarbonate 

bottles or polyethylene Bags. For 137Cs samples, a subsample of approximately 200-250 g was loosely 

packed to a depth of 1 cm center thickness in a Marinelli beaker, sealed with tape to prevent exchange of 

gasses with the atmosphere, and stored until analyzed. Prior to elemental analysis, carbonates were 

removed via HCl fumigation after methods described by [Harris et al., 2001]. Briefly, samples were 

placed into plastic weigh-boats (following visual inspection to ensure no identifiable plant material was 

present) and wetted with milli-Q water (18ΜΩ or greater). Soils were then fumigated overnight in a 

dessicator with HCl vapor. The dessicator lid was opened and excess HCl vapor was allowed to dissipate 

for 2-3 hours in a fume hood before samples were moved to an oven and dried overnight at 40°C. Then, a 

known mass of sample was weighed for elemental analysis (organic C) via high-temperature combustion 

on a VarioMAX elemental analyzer (Elementar Americas Inc.) calibrated to glutamic acid standards. 

Elemental analyzer runs were interspersed with blanks and check-standards (glutamic acid). Mean 

deviation on duplicate samples was 0.05 %.  

137Cs activity measurement via gamma spectroscopy 

Samples were measured for their 137Cs content via gamma spectroscopy on a high purity 

germanium crystal detector (GX4018 coaxial, Canberra Industries, Inc.). Analysis time varied with 

sample depth and typically ranged from 8h (surface samples) to 24h (deep samples). Gamma spectra were 

energy- and efficiency calibrated based on an internally-prepared standard mixture of BL-5 uranium ore 



(238U series in secular equilibrium) combined with 137Cs. The standard was mixed with deep loess parent 

material (no 137Cs detectable) to achieve an activity of 5.122 to 5.430 Bq g-1 (depending on compound). 

Data were processed with the Genie2000 software and resulting sample activities are reported as Bq kg-1. 

Minimum detectable activity (MDA) varied with acquisition time and sample activity and was determined 

for each sample individually. For data reported here, the mean MDA/signal ratio for samples collected 

from the soil surface was typically around 10%. Duplicate analyses of select samples showed mean 

difference of 0.06 Bq kg-1 with an average coefficient of variation of 3.7%. 

Digital Terrain Attributes 

Digital terrain attributes were calculated from LiDAR-derived digital elevation models (DEMs) 

available from the Minnesota Elevation Mapping Project: 

http://www.mngeo.state.mn.us/committee/elevation/mn_elev_mapping.html 

The final elevation product is available with cell sizes of both one and three meters. For this 

work, we opted to use the three-meter DEM as the base from which to determine digital terrain attributes. 

This decision was based on 1) the accuracy of the handheld GPS unit used for field work; 2) the 

observation that the one meter product tends to include more temporary features in crop lands such as 

tillage tracks from farm implements; and 3) preliminary results that show similar overall results between 

models based on both one- and three-meter DEMS. Three meter DEMs were used to calculate digital 

terrain attributes with the ArcGIS software package (v 10.2). Primary attributes (percent slope, profile 

curvature, and planform curvature) were calculated directly with available spatial analyst tools. Because 

of deranged drainage patterns and numerous internally drained areas common in MLRAs 102A and 103, 

we also explored DEM pits as an explanatory topographic feature. 

Early efforts with digital terrain attribute modeling also included secondary attributes such as the 

Compound Topographic Index (CTI) and Stream Power Index (SPI). Preliminary results showed that 

these secondary terrain attributes did not substantially improve the predictive power of multiple 

regression models [Dalzell et al, 2011]. Further, the DEM software processing tool we employed 

(TauDEM; http://hydrology.usu.edu/taudem/taudem5/index.html) contained idiosnycracies that precluded 

its application for generating our final predictive models. These problems appeared to become worse 

when applied to larger DEMs such as the county-scale data used for this project. Because it was important 

that products from this work be applicable to broad portions of Minnesota’s agricultural landscape, (as 

well as preliminary results that suggested their limited utility to improve predictive models) we ultimately 

opted to exclude secondary terrain attributes (SPI and CTI) from our analysis.  

http://www.mngeo.state.mn.us/committee/elevation/mn_elev_mapping.html
http://hydrology.usu.edu/taudem/taudem5/index.html


Estimation of Soil Erosion Rates (Proportional Model) 

For each sampling pit, soil erosion/deposition rates were determined by comparing the 137Cs 

inventory (whole profile) against the inventory of grassland sites. Differences in the 137Cs inventory were 

converted to rates of soil movement based on a simple proportional model (PM) [Walling et al., 2002]. 

The basic PM for estimating soil erosion based on 137Cs inventories takes the form: 

𝑌𝑌 = 10
𝐵𝐵𝐵𝐵𝐵𝐵
100𝑇𝑇

 

where: 

Y = soil erosion rate (t ha-1 yr-1; negative erosion indicated soil deposition) 

B = bulk density of the soil (kg m-3) 

d = the depth of cultivation (m) 

X = percentage reduction in the 137Cs inventory relative to a reference site: (Aref-A)/Aref*100 

Aref = 137Cs reference inventory for undisturbed site (Bq m-2) 

A = 137Cs inventory for each sampling point (Bq m-2) 

T = time elapsed since onset of 137Cs accumulation (y) 

 

 For this study, the value of “d” was determined by inspecting 137Cs distribution profiles of 

cultivated sites. Most sites showed soil mixing to a depth of 0.20 or 0.25 m. The value of “d’ was set to 

0.225m. The bulk density (B) was determined based on the average measured value of samples in the 

upper 25 cm. Aref was determined from 137Cs profiles of samples collected at reference sites across the 

study area. While reference sites were selected based on criteria of no cultivation history and perennial 

vegetation cover over the past approximately 50 years, some 137Cs profiles showed signs of disturbance 

and soil redistribution (in particular, several samples from a private hay field located in Dodge county). 

These sites were excluded from consideration as reference sites. The remaining sites were used to 

compute a mean total 137Cs inventory value, which was 1989.7 Bq m-2. The time since onset of 137Cs 

accumulation (T) was set to reflect the difference between the timing of sample collection (2011) and the 

ratification of the nuclear test ban treaty of 1963 (48 y).    



This model has the advantage of being mathematically straightforward and relatively easy to use. 

This model does not attempt to differentiate between erosion caused by water vs. tillage. Such models 

exist [Li et al., 2010; Walling et al., 2002], but rely on additional parameterization and a suite of 

assumptions that are beyond the scope of this work. Further, such models are not applied to study areas as 

large as employed in this study. However, given our application of these results to broader statewide 

trends (as opposed to a detailed study of one hillslope), we opted to use a simple model that could be 

easily applied without requiring estimates of additional parameters.  

Statistical Analysis 

Simple multiple linear regression analysis was applied to develop empirical relationships between 

terrain attributes and soil erosion rates determined based on 137Cs inventories. Soil erosion rates were the 

model response variable while MLRAs (fixed effect) and digital terrain attributes were input as potential 

predictor variables. Interactions were also allowed between MLRAs and digital terrain attributes. 

Following initial model creation, non-significant terms were removed and the process was repeated. The 

end result was a set of four equations (one for each MLRA) to predict soil erosion rates based on digital 

terrain attributes. Statistical significance was determined at the α = 0.05 level. In cases where p values are 

not provided in the text, statistical significance is neither assigned nor implied. 

Before model creation, 25% of the samples were randomly selected (Microsoft Excel random 

number generator). Those samples were excluded from the model development exercise and used to 

validate the prediction expression.  

  



Results 

137Cs profiles from undisturbed 

grassland sites showed generally the 

same distribution across all sample sites. 

After excluding profiles that showed 

evidence of soil disturbance, an average 
137Cs inventory was determined based on 

data from 30 pits (Figure 3). The average 
137Cs inventory of these sites was 1989.7 

Bq m-2; this was used as the value of Aref 

to parameterize the Proportional Model.   

Observed data showed that 

cropland soils had 137Cs inventories that 

ranged from 467.3 (eroding sites) to 

4079.8 Bq m-2 (depositional sites). In 

nearly all crop sites, the 137Cs profile in 

the upper 20-25 cm was uniform, 

reflecting efficient mixing accomplished 

by agricultural tillage (Figure 4). Eroding 

sites exhibited overall depleted 137Cs 

activities as deeper soils (unlabeled by 137Cs) are incorporated into the tillage layer following erosion of 

previous topsoil. Depositional sites, by contrast, showed deep 137Cs profiles, reflecting the previous 

positon of the soil surface and accumulation of soil eroded from upland sites.  

  

Figure 3. Average 137Cs activity profile of grassland reference 
sites. The mean value of reference sites was used to 
parameterize the Proportional Model in order to estimate soil 
erosion rates based on 137Cs inventories at cultivated sites. 
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Figure 4. Representative 137Cs profiles from grassland reference sites as well as cultivated sites reflecting 
different erosion/deposition histories. 

  



The equations that resulted from multiple linear regression analysis showed significant terms for 

slope steepness, profile curvature, and plan curvature as well as differences in the prediction expression 

for each MLRA (below). Terms that differ between MLRAs are highlighted in bold.  

Permanent Cover Reduction Models 

MLRA 102A Rolling Till Prairie 

Y = -31.39703+10.14056+(5.86678*Slope)+(-14.00313*ProCurve)+((Slope-5.38106)*-
6.30051)+((PlanCurv-(-0.08753))* -35.43550)+(28.55380*PlanCurv) 

MLRA 103 Central Iowa and Minnesota Till Prairies 

Y = -31.39703+6.83722+(5.86678*Slope)+(-14.00313*ProCurve)+((Slope-5.38106)*-
5.82018)+((PlanCurv-(-0.08753))* -21.90729)+(28.55380*PlanCurv) 

MLRA 104 Eastern Iowa and Minnesota Till Prairies 

Y = -31.39703+-25.94160+(5.86678*Slope)+(-14.00313*ProCurve)+((Slope-5.38106)* 
13.83139)+((PlanCurv-(-0.08753))*78.54040)+(28.55380*PlanCurv) 

MLRA 105 Northern Mississippi Valley Loess Hills 

Y = -31.39703+8.96382+(5.86678*Slope)+(-14.00313*ProCurve)+((Slope-5.38106)*-
1.71070)+((PlanCurv-(-0.08753))*-21.19761)+(28.55380*PlanCurv) 

 

The prediction expression was able to explain 33% of the variability in the observed data (r2 = 

0.33). The 25% of samples reserved for the validation data set showed a similar agreement between 

observed and predicted values of soil erosion or deposition (Figure 5) with an r2 value of 0.54. That 

comparison included two influential data points, however. When excluded, the regression between 

observed and predicted data was similar but the r2 value decreased to 0.24. When applied to the all data 

points across the study area, r2 agreement between observed and model-predicted soil erosion and 

deposition rates was 0.38 (Figure 5).  

  



 

Figure 5. Results from a simple multiple linear regression model established to predict soil erosion rates 
from digital terrain attributes. The left panel shows the model applied only to the data points that were 
used to develop the model. The right panel shows all data points.  

Discussion 

The regression models developed for this study were able to predict 38% of the variability in 

observed soil erosion rates across the study area (p < 0.0001). Additional variability in the observed data 

that is not accounted for by the model is likely the result of several factors ranging from uncertainty in 

parameterization of the Proportional Model to differences in management practices across all study sites 

and MLRAs which would have produced different erosion rates over the past half-century (as well as 

random error introduced during sample and data collection). The models developed here are able to 

predict and quantify broad trends in soil erosion or deposition rates across a large portion of Minnesota’s 

agricultural landscape. 

Regression models were applied to each MLRA to generate maps that predict the long-term 

average soil erosion rates for the landscape under cultivated land use. A brief examination of a selected 

field in MLRA 105 is helpful for highlighting some of the uses and potential pitfalls of these data 

products (Figure 6). While there are some locally high areas of potential soil erosion within the field, 

most are near zero and the field-wide average soil erosion rate is 6.7 t ha-1 yr-1. A widely applied estimate 

of tolerable soil loss is about 11 t ha-1 yr-1 [Hudson, 1995]. The depositional site located along the 

southern edge of the field (Figure 6) also highlights the importance of including additional information 



when considering locations for soil conservation 

practices. If that depositional site is situated along a 

ditch, it is likely that deposited sediment may be 

periodically re-mobilized and transported to receiving 

waterways during large storm events (something that 

is not considered by this model).  

Based on the assumption that soil erosion 

(over decadal time-scales) is close to zero on 

perennially-vegetated landscapes, the soil erosion map 

can be used as a tool by BWSR staff, soil 

conservationists, or other interested parties as a 

method for estimating the amount of soil erosion that 

may be prevented for specific landscape segments 

when enrolled in conservation programs. Conversely, 

this map may also be used to predict the amount of 

erosion that may occur if conservation land is 

converted to cultivation. It is important to note that we 

did not perform this analysis for any forested 

landscapes and results of this analysis should not be 

applied to forest vs. cropland comparison without 

further development and testing. 

  

Figure 6. Example output of the multiple 
regression model for a selected farm field in 
MLRA 105. Based on digital terrain attributes, 
the model result shows localized areas of 
potentially high soil erosion rates while the 
overall field average erosion rate is 6.7 t ha-1 yr-1.  



Suggestions for Future Work  

Model Refinement - A portion of the uncertainty unaccounted for by the regression model is 

likely to arise from differences in management practices across the agricultural sites used for this study. 

One potential way to quantify that uncertainty is to conduct more focused research on smaller sites with 

more uniform management practices. The UMN Research and Outreach centers are good candidates for 

this kind of inquiry and additional sampling is already underway as part of separate project. Ongoing 

analysis of additional future samples (in addition to those collected for this study) are likely to yield 

predictive regression models which are able to further constrain topographic effects on soil erosion under 

more specific sets of management practices. As further refinements are developed and become available, 

we will remain in communication with BWSR personnel to discuss the potential for improving existing 

conservation estimator projects. Additional refinement may be possible through application of more 

sophisticated conversion models to estimate soil erosion rates based on 137Cs inventories. This effort 

would require more detailed information (or robust sets of assumptions) in order to parameterize the 

additional variables that are considered by these models.  

 Accounting for stream networks – The models developed from this study are based solely on 

predicting long-term soil erosion rates from digital terrain attributes. They do not account for the potential 

of downslope deposited sediment to be further re-mobilized into streams or rivers during large runoff 

events. Potential methods to account for this may include intersecting results from this soil erosion model 

with flow direction and flow accumulation information to highlight areas where high soil erosion occurs 

in close proximity to receiving waterways.   
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Appendix A – Method for Determining Field-Average Erosion/Deposition Rates 

This brief tutorial is intended to provide someone with basic GIS experience (and access to ArcMAP 
software with Spatial Analyst) the ability to compute field-average erosion/deposition rates based on the 
raster maps produced from this study.  

Inputs: 

1. Soil erosion/deposition raster for your county of interest (required) 
2. Air Photo layer to help identify area of interest (optional but very helpful) 

Outputs: 

1. Shapefile of your area of interest 
2. Raster showing the average predicted erosion/deposition rate for your area of interest.  

 

Step 1. Manually delineate your field or area of interest. 

• After identifying your field/area of interest, use the ArcMAP drawing tool to draw a polygon 
around your area.  (Fig A-1) 

• Using the ArcMAP “Draw” toolbar, select the draw polygon tool and create an appropriate 
polygon around your area. (Fig A-2) 

• From the “Drawing” drop-down menu, select “Convert Graphics to Features” and add the 
exported data to the map as a layer. (Fig A-3) 

 

Figure A-1 

 



 

Figure A-2 

 

 

Figure A-3 



Step 2. Perform zonal statistics.  

• Launch the “zonal statistics” tool (Spatial Analyst -> Zonal -> Zonal Statistics). (Fig A-4) 
• Input raster or feature zone data = the converted graphics (created in step 1 above) 
• Zone field = name 
• Input value raster = the soil erosion/deposition rate raster for your area. 
• Output raster = select an appropriate location and file name. 
• Statistics type = MEAN 

 

 

Figure A-4 

The resulting raster should occupy the same extent as your field/area of interest. The raster will have only 
one value, which is the mean erosion/deposition rate for your area. (Positive values indicate erosion, 
negative values indicate deposition) 

 

 

 


