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A B S T R A C T   

The mountain pine beetle (Dendroctonus ponderosae Hopkins) is a bark beetle that is native to pine forests of 
western North America and the Black Hills of South Dakota. Recent eastward range expansion into stands of jack 
pine (Pinus banksiana) and associated hybrids with lodgepole pine (Pinus contorta) in western Canada has created 
concern that the insect will continue moving eastward. In the Great Lakes region, mountain pine beetle would 
encounter novel species of pines and associated insect fauna; interactions with which are largely unexplored. We 
baited logs of jack pine with lures for mountain pine beetle and Ips grandicollis (Eichhoff) alone and in combi-
nation in a 2 × 2 factorial design in the Black Hills of South Dakota. Both insects occur in this region, but not jack 
pine, a common species in the Great Lakes region of North America at risk of invasion by mountain pine beetle. 
We measured attraction and reproduction of insects that colonized the logs. Ips grandicollis were significantly 
more attracted to logs of jack pine baited with their aggregation pheromone, ipsenol, than unbaited logs or those 
baited with pheromones of mountain pine beetle and myrcene, a host volatile. Colonization by I. grandicollis was 
inhibited by the presence of lures for mountain pine beetle. We also found larvae of longhorn borers, likely - 
Monochamus spp., infesting logs. These borers, which act as competitors and facultative predators of bark beetles, 
were significantly attracted to logs baited with ipsenol over those baited with lures for mountain pine beetle. Our 
results suggest that if mountain pine beetle were to invade the Great Lakes Region, common bark and wood- 
boring species such as I. grandicollis and longhorn borers would not compete with mountain pine beetles at 
tree-colonizing stages, and thus could pose little resistance to invasion.   

1. Introduction 

In forested ecosystems, bark beetles (Coleoptera: Curculionidae) 
provide critical ecosystem services and impact carbon dynamics by 
promoting wood deterioration, nutrient cycling, and biodiversity 
(Wood, 1982; Kurz et al., 2008; Mikkelson et al., 2013; Beudert, et al., 
2014). Most species of bark beetles are termed “secondary” as they are 
innocuous and infest dying or stressed trees, where they consume the 
phloem tissues (Wood, 1982; Lindgren and Raffa 2013). Conversely, a 
minority of bark beetle species are capable of killing mature, live trees at 
landscape scales. As natural components of disturbance regimes, these 
“primary” species can alter successional trajectories of biomes (Taylor 
and Carroll, 2003; Raffa, et al., 2008). 

Several environmental requirements must be met for tree-killing 
species of bark beetles to reach outbreak levels. The first condition is 

favorable climate. Depending on the species, conditions may include 
landscape-scale drought that stress host trees or warm minimum winter 
temperatures that foster brood survival (Safranyik, 1978; Carroll et al., 
2004; Klutsch et al., 2017). The second requirement is an abundant 
supply of susceptible host trees (Safranyik, 1978). Forestry practices 
such as overstocking or under thinning can increase the likelihood of 
bark beetle outbreaks (Fettig et al. 2007). Finally, population growth of 
outbreaking species must exceed that of predators, parasitoids and other 
subcortical woodborers that compete for resources and exert regulatory 
effects. Each of these guilds may depress the reproductive capabilities of 
primary bark beetles at endemic levels (Rankin and Borden, 1991; 
Lindgren and Raffa, 2013; Aukema et al., 2016). 

Competition may be especially pronounced among bark beetles as an 
endophytic feeding guild (Lindgren and Raffa, 2013), frequently medi-
ating population dynamics between primary and secondary species 
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(Rankin and Borden, 1991; Aukema et al., 2016). Often, several sym-
patric species of bark beetles simultaneously infest the same tree (Ran-
kin and Borden, 1991; Byers, 1989a). The overlap in the subcortical 
layer elicits the need for resource partitioning (Byers, 1989a). Inter-
specific competition can be avoided in two ways: temporally (e.g., 
exploiting differences in phenology) and spatially (e.g., infesting 
different parts of the tree). Host procurement and resource partitioning 
is frequently mediated by semiochemicals. Aggregation pheromones 
attract conspecifics, while inhibitory allomones push heterospecifics 
toward other resources (Paine et al., 1981; Byers, 1989b; Ayres et al., 
2001). Ips pini (Say), I. paraconfusus (Lanier), and Dendroctonus brevico-
mis (LeConte), for example, may simultaneously infest a ponderosa pine 
(Pinus ponderosae) but spatially separate themselves throughout the bole 
(Birch and Wood 1975; Paine et al., 1981; Byers, 1989a). Despite tem-
poral and spatial partitioning strategies among species, however, a 
broad range of overlap can still exist (Paine et al., 1981; Byers, 1989a; 
Ayres et al, 2001). 

The mountain pine beetle, Dendroctonus ponderosae Hopkins (Cole-
optera: Curculionidae), is a bark beetle native to North America west of 
the Rocky Mountains and the Black Hills of South Dakota and Wyoming, 
USA (Safranyik and Carroll, 2006). While mountain pine beetle is a 
generalist, feeding on most species of sympatric pines in these regions, 
its principal hosts have historically been ponderosa pine (Pinus ponder-
osae Dougl. ex Laws) and lodgepole pine (Pinus contorta Dougl. ex Loud) 
(Safranyik and Carroll, 2006; Raffa et al, 2008). Outbreaks of mountain 
pine beetle can lead to landscape-level mortality of mature pines over 
many thousands of hectares (Safranyik and Carroll, 2006; Bentz et al., 
2010; Hicke et al., 2012). While populations of mountain pine beetle 
were historically restricted in their northern range due to climatic and 
geological barriers, ameliorating winter temperatures have permitted 
northward range shifts (Cudmore et al., 2010, Cullingham et al., 2011). 
In recent years, British Columbia, Canada has experienced the largest 
outbreak of D. ponderosae in recorded history (Aukema et al., 2006), 
expanding the insect’s range over the geoclimatic barrier of the Rocky 
Mountains into stands of jack pine (Pinus banksiana Lamb.) and its hy-
brids with lodgepole pine (Pinus contorta Douglas. ex Loud. Var. latifolia 
Engelm.) in northwestern Alberta (Kurz et al., 2008; Safranyik et al., 
2010; Cullingham et al., 2011; De la Giroday et al., 2012; Lusebrink 
et al., 2013). Of emerging concern is potential range expansion of 
mountain pine beetle to the Great Lakes Region of North America with 
evolutionarily naïve host species that include jack pine, red pine (Pinus 
resinosa Ait.), eastern white pine (Pinus strobus L.), and naturalized Scots 
pine (Pinus sylvestris L.) (Cooke and Carroll, 2017; Rosenberger et al., 
2017b). A recent study has shown that age classes and distributions of 
these species exist on the landscape in categories considered highly 
susceptible to this insect based on comparative studies with suitable and 
susceptible hosts in western North America (Windmuller-Campione, 
2018). While little is known about susceptibility of live potential hosts in 
the threatened range, it is apparent that mountain pine beetle is able to 
colonize, tunnel, attract mates, and reproduce within cut logs of all four 
species of pine (Rosenberger et al., 2017b; Cale et al., 2017). 

If mountain pine beetle were to arrive in the Great Lakes Region of 
North America, it may encounter species of secondary bark beetles and 
woodborers with which it shares no evolutionary history. This mixing 
would result in novel ecological interactions that may either facilitate or 
impede the invasion of mountain pine beetle. In regions where mountain 
pine beetle is endemic, for example, persistence of mountain pine beetle 
in the ecosystem is facilitated by species of secondary bark beetles that 
allow mountain pine beetle to co-colonize weakened trees in low 
numbers (Safranyik and Carroll, 2006; Smith et al., 2011; Burke and 
Carroll, 2016). When an environmental stress lowers stand resistance, 
increasing populations of mountain pine beetle begin partially or mass- 
attacking mature, live hosts in a population phase transition across the 
incipient-eruptive threshold (Safranyik and Carroll, 2006). At high 
levels, secondary species may then inhibit the population growth of 
mountain pine beetle. Rankin and Borden (1991), for example, showed 

that forcing a secondary bark beetle such as the pine engraver, Ips pini 
Say, to compete with mountain pine beetle in synchronously co- 
colonized logs resulted in fewer progeny for both species than if logs 
were infested independently. 

The Great Lakes Region has several native species of secondary bark 
beetles such as the pine engraver, I. pini, the red turpentine beetle, 
Dendroctonus valens LeConte, and the eastern five-spined ips, Ips gran-
dicollis Eichhoff. Ips grandicollis is an especially common, multivoltine 
secondary bark beetle native to the Great Lakes Region that typically 
infests dying or stressed pines (Erbilgin et al., 2002; Lombardero et al., 
2006). It is unknown how mountain pine beetle and I. grandicollis might 
interact in the complex of naïve pine species if they were to become 
sympatric in the Great Lakes region. While pheromones of bark beetles 
of the genera Dendroctonus and Ips have been shown to inhibit each 
other’s response in several cases (Rankin and Borden, 1991; Byers, 
1989a; Symonds and Elgar, 2004), the responses of I. grandicollis and 
mountain pine beetle to each other’s pheromones have never been 
studied. Ips grandicollis utilizes a species-specific aggregation phero-
mone, consisting mainly of ipsenol (2-methyl-6-methylideneoct-7-en-4- 
ol), to attract conspecifics and find mates (Witanachchi and Morgan, 
1981). Mountain pine beetle uses both trans-verbenol and (±)-exo-bre-
vicomin as its aggregation pheromones (Conn et al., 1983). In this study, 
we aim to elucidate how the colonization behavior of each species of 
bark beetle is affected by the presence of the other’s aggregation pher-
omones in logs of jack pine. Further, we examine the patterns of 
reproduction of bark and woodboring beetles in logs baited with each 
type of pheromone. We hypothesize that there will be no cross attraction 
or inhibition between I. grandicollis and mountain pine beetle. Our goal 
is to understand whether cross attraction and thus competitive in-
teractions might exist between I. grandicollis as a bark beetle native to 
the Great Lakes Region and the potential invader, mountain pine beetle. 

2. Materials & methods 

2.1. Host material 

Jack pine was used as a representative novel species of pine native to 
the Great Lakes Region. Mountain pine beetle is known to colonize and 
reproduce in jack pine in western forests (Cullingham et al., 2011) and 
can similarly colonize and reproduce in cut logs of jack pine from 
Minnesota (Rosenberger et al., 2017a; Rosenberger et al., 2017b). 
Twelve trees of 25–27 cm in diameter at 1.4 m were harvested from a 
single-aged stand of jack pine approximately 40 years old at the Uni-
versity of Minnesota Cloquet Forestry Center (CFC) in Cloquet, Minne-
sota (46.704490◦ N, − 92.525310◦ E) on 23 July 2018 and again on 22 
July 2019. The site from which trees were harvested is classified as a fire 
dependent ecosystem in the Laurentian Mixed Forest province of the 
state, with a climate moderately modified by Lake Superior and lying 
within USDA Cold Hardiness Zone 4a (Reinikainen et al., 2015). 

Harvested trees were visibly free of infestation of bark beetles or 
other insects. Each year, the twelve felled trees were cut into 48 sections 
approximately 56 cm in length. The ends of these logs were then 
immediately sealed with melted paraffin wax (Gulf Wax, Roswell, 
Georgia) to reduce the desiccation rate of the logs. Once the wax cooled, 
logs were enclosed in 13-gallon drawstring plastic bags and placed in the 
bed of a covered pickup truck to prevent unwanted infestation from 
pine-infesting insects. Each year, the logs were transported to the Black 
Hills National Forest near Rapid City, South Dakota (44.072086◦ N, 
− 103.234799◦ E) where populations of mountain pine beetle and 
I. grandicollis currently exist sympatrically. The logs were deployed at 12 
different sites in stands of mature ponderosa pine within 48 h of being 
felled. Sites were separated by at least 0.5 km. At each site, four logs 
were suspended at breast height using MIL-C-5040 Type III 550 lb. nylon 
paracord (Paracord Planet, Fargo, North Dakota) in a square formation 
at 25 m spacing between logs. 
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2.2. Experimental design 

We utilized a 2x2 factorial design in each of the twelve sites each 
year as follows: each position within the square was randomly assigned a 
commercially available pheromone treatment (Alpha Scents, Inc., West 
Linn, Oregon). Two positions received I. grandicollis lure, while two did 
not. Two positions then also received lures for mountain pine beetle, 
while the other two did not, such that each site ended up with four 
treatments as follows: a mountain pine beetle lure (myrcene, 2-(2H- 
benzotriazol-2-yl)-4-methyl-phenol, butylated hydroxytoluene, trans- 
verbenol, and exo-brevicomin), an I. grandicollis lure containing ipsenol, 
both lure types, and a control with no lures in combination. Amounts 
and elution rates of lure compounds are shown in online supplementary 
material. Each lure packet was attached to the log using a nail through 
the outer bark. 

Logs were exposed to field conditions from July 25-August 8 of the 
years 2018 and 2019 to correspond to the flight period of both mountain 
pine beetle (Safranyik and Carroll, 2006) and I. grandicollis, which is 
typically abundant throughout the summer (Erbilgin et al. 2002). Logs 
were then retrieved from the field and placed inside rearing tubes at the 
proximate Wheaton College Science Station (44.061693◦ N, 
− 103.407476◦ E) under ambient temperature conditions where any 
colonizing insects were allowed to continue development undisturbed 
(Rosenberger et al, 2018). 

For each annual replicate, we removed the logs from the rearing 
tubes and debarked them in two batches: one half after one month (i.e., 
mid-September), and the other half after one year (i.e., July of the 
following year) (n = 24 each time). Logs debarked in the first batch of 
each year were chosen by randomly selecting six of the twelve sites and 
then debarking all logs from that site to ensure equal sampling of 
treatments. We chose to debark logs at these two different time periods 
in order to elucidate differences in insect community composition and 
development after one month and after one year. Outer bark was 
removed with a wood chisel, exposing the internal larval galleries 
created by insects. All adults, larvae, and pupae of insects were counted 
from each gallery and placed in vials of 95% ethanol for identification. 
All bark beetle larvae found were assumed to be from the species that 
had constructed the parental gallery. After debarking, a clear plastic 
sheet was laid over the phloem layer of the peeled barked and markers of 
different colors were used to trace and color-code galleries of bark 
beetles, creating a map of subcortical utilization. A Scalex PlanWheel XL 
was used to measure the one-dimensional length of bark beetle parental 
galleries. In the second year of the study, most of the I. grandicollis brood 
in the initial set of peeled logs had matured to adults by the time logs 
were peeled in mid-September. Because we could not confidently 
distinguish initial colonizing beetles from new progeny that had reached 
adult life stages, we report total counts of bark beetles in each log for 
each year without assigning colonizer and brood status. 

The remaining sets of logs (n = 24 each year) were peeled in July of 
the following year, approximately one year after field exposure to allow 
any univoltine species such as mountain pine beetle to complete 
development (Rosenberger et al., 2018). All insects were collected from 
within the tubes. Larval Monochamus spp. were found to have consumed 
most of the phloem resource, destroying most, if not all, of the bark 
beetle galleries within. Due to the amorphous nature of the cerambycid 
galleries we chose to use imageJ (Schneider et al., 2012) to measure the 
area of phloem consumed by cerambycids rather than gallery length. As 
such, data analyzed from logs left in rearing tubes for one year only 
includes the total area of phloem resource consumed by Monochamus 
spp. larvae. Larvae of different species of Monochamus cannot be iden-
tified to species, so were simply tallied as Monochamus. 

2.3. Statistical analysis 

For the logs peeled after six weeks of field exposure and incubation 
time each year, we constructed separate mixed effects models using 

response variables of the number of bark beetles, the number of gal-
leries, the number of Monochamus spp. larvae and the total phloem 
surface area consumed. Each model used an ANOVA framework where 
the fixed effects incorporated the 2x2 factorial design (i.e., terms for 
mountain pine beetle pheromone lure, I. grandicollis pheromone lure, 
and their interaction) and a term for site was included as a random ef-
fect. A random effect term for year was also originally included in the 
models but low variation between years induced issues of model sin-
gularity, so the term for year was removed. Data from one site in the 
second year (n = 4 logs) was excluded from our analysis due to labeling 
error obscuring treatment. Square root transformations were used on the 
response variables to satisfy the assumptions of a normal distribution of 
residuals and homogenous variances. Assumptions were assessed by 
visual inspection of residual plots. Statistical significance was evaluated 
using α = 0.05. All statistical analyses were conducted using R version 
3.5.3 (R Core team, 2020). 

3. Results 

Ips grandicollis readily colonized the logs of jack pine in the field but 
numbers varied with lure type. The ipsenol treatment significantly 
enhanced colonization by I. grandicollis (Table 1). The two logs baited 
with ipsenol had a mean of 0.1 ± 0.3 SE ovipositional galleries of 
I. grandicollis per dm2 per log compared to a mean of 0.001 ± 0.001 
galleries/dm2/log in the two logs without (Fig. 1A). Conversely, the 
presence of mountain pine beetle pheromone lures appeared to have a 
significant negative effect on the colonization behavior of I. grandicollis 
(Table 1). The two logs baited with myrcene and the aggregation 
pheromones of mountain pine beetle had a mean of 0.024 ± 0.006 
ovipositional galleries of I. grandicollis per dm2 log, compared to 0.078 
± 0.014 in the two logs without. There was a significant interaction 
effect between the two treatments (Table 1) as fewer ovipositional gal-
leries of I. grandicollis were constructed in logs baited with both ipsenol 
and mountain pine beetle lures than would be expected if both main 
effects were additive (Fig. 1A). Thus, the presence of the mountain pine 
beetle lure inhibits the response of I. grandicollis to its own pheromone. 

Unsurprisingly, the effect of pheromone treatments on the number of 
insects found under the bark was very similar to the effects noted on the 
number of ovipositional galleries found above (Table 1; Fig. 1B). We 
observed significantly more I. grandicollis inside logs baited with ipsenol 
with a mean of 3.0 ± 0.9/dm2 compared to those logs without the 
pheromones. In contrast, very few I. grandicollis were found in logs 
baited with mountain pine beetle lures versus those without (Fig. 1B). 
Again, we observed a significant interaction effect between the two lure 
types: we found significantly fewer I. grandicollis in logs baited with both 
pheromones than would be expected with an additive effect of the two 
lures (Table 1; Fig. 1B). In these co-baited logs, we collected a mean of 
0.70 ± 0.32 I. grandicollis/dm2/log. These results confirm an aversive 
response from I. grandicollis to the pheromone lure of mountain pine 
beetle. 

In logs left in rearing tubes for one month, significantly more 

Table 1 
Summary of 2 × 2 factorial statistical results from field experiments using logs of 
jack pine baited with I. grandicollis (IGR) × mountain pine beetle (MPB) lures, n 
= 12 sites of 4 treatments each in Black Hills of South Dakota, each of 2018 and 
2019.  

Response variable IGR lure MPB lure IGR × MPB 
Interaction 

F1,31 P F1,31 P F1,31 P 

I. grandicollis galleries 97.57 <0.001 12.23 <0.001 8.99 <0.005 
I. grandicollis insects 42.73 <0.001 10.04 <0.001 5.62 0.024 
Monochamus larvae 11.62 <0.001 0.77 0.370 8.41 0.007 
Phloem area 

consumed 
4.46 0.0420 1.18 0.290 2.76 0.110  
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Monochamus beetle larvae were found in logs baited with ipsenol than 
those baited with mountain pine beetle aggregation pheromones 
(Table 1; Fig. 2). A mean of 0.42 ± 0.11 SE Monochamus larvae/dm2 

were found in logs baited with ipsenol compared to 0.31 ± 0.09 larvae/ 
dm2 found in logs without ipsenol. There was no overall effect of the 
mountain pine beetle lure on the numbers of Monochamus larvae 
(Table 1), with a mean of 0.28 ± 0.08 Monochamus larvae collected per 
dm2. We did note a significant interaction effect between the two lure 
types (Table 1), with more longhorn borers in the logs with mountain 
pine beetle lure but no ipsenol than would be expected if the main effects 
were simply additive. 

We did not find any mountain pine beetles in the logs peeled in the 
fall of each year or the sets that were allowed to develop for one year. 
Any potential colonizers may have been destroyed by Monochamus, 
however, as up to 90% of the surface area of the logs’ phloem had been 
chewed apart by developing larvae. We noted small but statistically 
significant differences of phloem area consumed by Monochamus larvae 
between some lure treatments in logs left in rearing tubes for one year 
(Table 1; Fig. 3). In logs baited with ipsenol, Monochamus larvae 
consumed a mean of 2,015 ± 308 cm2 which was significantly more than 
logs baited with no lures that had a mean area of 1,084 cm2 ± 290 cm2 of 
phloem consumed per log (IGR effect in Table 1). Logs baited with 
mountain pine beetle lures and those baited with both lures had 1733 
cm2 ± 262 cm2 and 1,762 cm2 ± 289 cm2 of phloem consumed by 
Monochamus larvae respectively. Neither the effect of the MPB lure nor 
the interaction effect was significant (Table 1). 

4. Discussion 

Our results that the eastern five-spined pine engraver constructed 
fewer galleries and produced fewer offspring in logs that were baited 
with mountain pine beetle lures, even in the presence of their own ag-
gregation pheromones, suggests that they will not compete directly 
mountain pine beetle if the latter were to arrive in the Great Lakes re-
gion. These two species have no historic sympatric association in the 
jack pine forests of Minnesota from where the logs originated. The 

aversive behavior of eastern five-spined pine engraver to pheromones of 
mountain pine beetle reflects long conserved traits unique to both 
genera, consistent with interaction between Ips spp. and Dendroctonus 
spp. elsewhere. For example, Byers and Wood (1980) demonstrated that 
Ips paraconfusus and Dendroctonus brevicomis are both captured in traps 
in smaller quantities when in the presence of logs infested by both 
species rather than just conspecifics. Additionally, response of mountain 
pine beetle to its aggregation pheromones has been shown in both lab-
oratory and field bioassays to be inhibited by the addition of ipsdienol, a 
component of the aggregation pheromone produced by I. pini (Hunt and 
Borden, 1988). Similarly, response of I. pini to its pheromone component 
ipsdienol is inhibited by the presence of mountain pine beetle aggre-
gation pheromones involving myrcene, trans-verbenol, and exo-brevi-
comin or some combination of the three (Hunt and Borden, 1988). 

The aversion of bark beetles to aggregation pheromones of other 
species facilitates pheromone-mediated niche partitioning, regulating 
interspecific competition within the tree (Paine et al., 1981; Byers, 
1989a). Several species of Ips in the southern United States compete with 
the southern pine beetle, Dendroctonus frontalis (Zimmerman), for 
example (Stephen, 2011). Typically arriving after D. frontalis, I. avulsis 

Fig. 1. Box and whisker plots of A) the number of galleries formed by 
I. grandicollis and B) the combined number of I. grandicollis adults, pupae, and 
larvae collected from logs baited with the different aggregation pheromones 
and peeled after thirty days in emergence tubes (n = 44 logs; mean surface area 
of a log was 45.74 dm2). The upper whisker indicates the maximum value as the 
third quartile added to 1.5 times the interquartile range. The lower whisker 
represents the minimum value as the first quartile minus 1.5 times the inter-
quartile range. The middle line of each box and whisker plot represents the 
median of the data set. Dots represent data points beyond plus or minus 1.5 
times the interquartile range. 
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whisker plot represents the median of the data set. Dots represent data points 
beyond plus or minus 1.5 times the interquartile range. 
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(Eichoff), I. grandicollis, and I. calligraphus (Germar) may all compete for 
resources within southern pine species, usually resulting in less phloem 
resource being consumed by each species when simultaneously infesting 
a tree than if they were individually infesting that tree (Stephen, 2011). 
While D. frontalis has been shown to be unresponsive to the pheromones 
produced by the southern Ips spp. complex, each of the Ips species in this 
system respond to pheromones of others Ips with only I. grandicollis 
responding to pheromones produced by D. frontalis (Svihra et al., 1980; 
Stephen, 2011). Interestingly, the response of I. grandicollis to phero-
mones of D. frontalis described by Svihra and others (1980) was one of 
attraction, which contrasts with our results. This pattern could indicate 
that sympatric coevolution of I. grandicollis with D. frontalis has resulted 
in the attraction of I. grandicollis to its pheromones while the lack thereof 
with mountain pine beetle has maintained its inhibitory response. 

Most studies of pheromone responses in bark beetles have been 
conducted in areas of high populations, which may obscure responses to 
semiochemicals that vary with population density (Wallin and Raffa, 
2004). Responses of both I. pini and Ips latidens (LeConte) to their 
respective aggregation pheromones, for example, are interrupted by 
verbenone, the anti-aggregation pheromone of mountain pine beetle, 
with increasing levels of interruption with increasing verbenone release 
rates (Borden et al., 1992; Miller et al., 1995). These examples of niche 
separation occur with bark beetles at high population levels. It is 
possible that facilitative interactions may emerge when at endemic 
population levels. Previous infestation of pines by Pseudips mexicanus 
Hopkins, for example, has been shown to create more suitable resources 
for mountain pine beetle when mountain pine beetle is in endemic 
population sizes. Mountain pine beetle was found to be attacking in 
higher densities while excavating similar sized galleries in trees previ-
ously infested by P. mexicanus rather than those not previously infested 
(Smith et al, 2011). 

Species of Monochamus exist naturally in the Black Hills National 
Forest as well as the Great Lakes Region. Monochamus clamator is the 
most abundant sawyer beetle found in the Black Hills, SD and we suspect 
most larvae were of this species. Larvae of Monochamus beetles infest 
and feed on the phloem and xylem of pines. Monochamus spp. are thus 
potential subcortical competitors with mountain pine beetle and 
I. grandicollis as well as facultative predators (Dodds et al., 2001; Schenk 
and Benjamin, 1969; Schoeller et al., 2012). These findings are 

consistent with previous field and laboratory studies indicating that 
beetles in the Monochamus genus are kairomonally responsive to ag-
gregation pheromones of Ips species (Rassati et al. 2012; Pajares et al. 
2017; Chase et al. 2018) but not those of Dendroctonus (Dodds et al., 
2001; Allison et al., 2003). These findings further indicate that species of 
Monochamus may also not act as significant agents of competition or 
predation on mountain pine beetle if it were to arrive in the Great Lakes 
Region but may instead compete more with native species of Ips. 

While we noted aversion of I. grandicollis to mountain pine beetle 
lures, a lack of mountain pine beetles colonizing the logs precludes 
ability to make conclusions concerning the response of mountain pine 
beetle to pheromones of I. grandicollis. We also know little about po-
tential responses of natural enemies of bark beetles to pheromones of 
mountain pine beetle in the Great Lakes Region (Pfammatter et al., 
2015). It is possible that lack of coevolution with mountain pine beetle 
will correspond to a lack of response to the native complex of bark beetle 
predators and parasitoids, functionally releasing invasive populations of 
mountain pine beetle from the pressures of natural enemies. Addition-
ally, our results suggest that insects such as the I. grandicollis may avoid 
trees being mass attacked by mountain pine beetle. 

This research adds to existing bodies of literature of competition and 
interspecific pheromonal response of primary vs. secondary bark beetles 
as well as the response of Cerambycid beetles to the aggregation pher-
omones of bark beetles. Future work should focus on the kairomonal 
and/or allomonal responses of the diverse bark beetle predators as well 
as other potential competitors native to the Great Lakes Region to the 
aggregation pheromones produced by mountain pine beetle (Smith, 
2021). Future work should also focus on testing and characterizing 
direct under-bark interactions where they exist, as neutral, facilitatory, 
or competitive interactions between bark beetle species mediate 
persistence at endemic levels and can influence population phase tran-
sitions (Rankin and Borden, 1991; Safranyik and Carroll, 2006; Smith et 
al, 2011). Understanding these interactions is especially important given 
the emerging threat to eastern North America by mountain pine beetle 
(Cudmore et al., 2010; Cullingham et al., 2011; Rosenberger et al., 
2017b; Rosenberger et al., 2018). 
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