LLM4Eval@WSDM 2025: Large Language Model for Evaluation in Information Retrieval

2025 Web Search and Data Mining |

PDF

Large language models (LLMs) have demonstrated increasing task-solving abilities not present in smaller models. Utilizing the capabilities and responsibilities of LLMs for automated evaluation (LLM4Eval) has recently attracted considerable attention in multiple research communities. For instance, LLM4Eval models have been studied in the context of automated judgments, natural language generation, and retrieval augmented generation systems. We believe that the information retrieval community can significantly contribute to this growing  research area by designing, implementing, analyzing, and evaluating various aspects of LLMs with applications to LLM4Eval tasks. The main goal of LLM4Eval workshop is to bring together researchers from industry and academia to discuss various aspects of LLMs for evaluation in information retrieval, including automated judgments, retrieval-augmented generation pipeline evaluation, altering human evaluation, robustness, and trustworthiness of LLMs for evaluation in addition to their impact on real-world applications. We also plan to run an automated judgment challenge prior to the workshop, where participants will be asked to generate labels for a given dataset while maximising correlation with human judgments. The format of the workshop is interactive, including roundtable and keynote sessions and tends to avoid the one-sided dialogue of a mini-conference. This is the second iteration of the workshop. The first version was held in conjunction with SIGIR 2024, attracting over 50 participants.